

Diofant Documentation

 Release 0.13.0Diofant Development Team

CONTENTS

1 Installation 1
1.1 From Sources 1
1.2 Run Diofant 1
1.3 Feedback 2
2 Tutorial 3
2.1 Introduction 3
2.2 Basics 6
2.3 Gotchas 9
2.4 Printing 10
2.5 Simplification 13
2.6 Calculus 19
2.7 Solvers 24
2.8 Polynomials 26
2.9 Matrices 29
2.10 Expression Trees 35
3 Command-Line Usage 39
3.1 python -m diofant 39
4 Reference 41
4.1 Config 41
4.2 Core 41
4.3 Combinatorics 148
4.4 Number Theory 236
4.5 Concrete Mathematics 268
4.6 Mathematical Functions 282
4.7 Geometry 403
4.8 Integrals 468
4.9 Logic 493
4.10 Domains 503
4.11 Matrices 509
4.12 Polynomials 586
4.13 Printing 629
4.14 Interactive 647
4.15 Plotting 648
4.16 Series 661
4.17 Sets 664
4.18 Simplify 678
4.19 Stats 705
4.20 Solvers 742
4.21 Tensors 834
4.22 Utilities 863
4.23 Parsing 905
4.24 Calculus 908
4.25 Differential Geometry 915
4.26 Vectors 928
5 Internals 965
5.1 Internals of the Polynomial Manipulation Module 965
5.2 The Gruntz Algorithm 995
5.3 Details on the Hypergeometric Function Expansion 997
5.4 Computing Integrals using Meijer G-Functions 1007
5.5 Numerical evaluation 1021
6 Development 1029
6.1 Reporting Issues 1029
6.2 Contributing Code 1029
6.3 Rosetta Stone 1030
6.4 Versioning and Release Procedure 1031
7 About 1033
7.1 License 1033
8 Release Notes 1035
8.1 Diofant 0.13 1035
8.2 Diofant 0.12 1039
8.3 Diofant 0.11 1042
8.4 Diofant 0.10 1048
8.5 Diofant 0.9 1053
8.6 Diofant 0.8 1061
8.7 SymPy releases 1068
Bibliography 1103
Python Module Index 1107
Index 1109

INSTALLATION

The Diofant can be installed on any computer with Python 3.9 or above. You can install latest release with pip:

```
pip install diofant
```

or to install also extra dependencies:
pip install diofant[gmpy,interactive]
To use Unicode pretty printing (page 11) - configure your system to have good TTF fonts. The DejaVu Sans Mono seems to be an acceptable choice. On Debian you can install this font package with:

```
apt install fonts-dejavu
```


1.1 From Sources

If you are a developer or like to get the latest updates as they come, be sure to install from the git repository and include required extra dependencies:

```
git clone git://github.com/diofant/diofant.git
cd diofant
pip install -e .[develop,docs,tests]
```


1.2 Run Diofant

To verify that your freshly-installed Diofant works, please start up the Python interpreter:

```
python
```

and execute some simple statements like the ones below:

```
>>> from diofant.abc import x
>> ((1 + x)**(1/x)).limit(x, 0)
E
```

Tip: Run Diofant as a module (page 39) for interactive work:
python -m diofant

For a starter guide on using Diofant, refer to the Tutorial (page 3).
Also, you may want to run full set of unit tests to make sure everything works:

```
pytest --pyargs diofant
```

pytest and some other packages are required for testing, so be sure to install the Diofant first with the optional "tests" list of dependencies:

```
pip install diofant[tests]
```


1.3 Feedback

If you think there's a bug, you have a question or you would like to request a feature, please open an issue ticket (page 1029). General questions and comments can be sent to the Diofant mailing list.

TUTORIAL

Warning: It assumed that the reader already knows the Python programming language. If you do not, please start from the Python tutorial.

This tutorial aims to give an introduction to Diofant for someone who has not used the library before. Many features will be introduced in this tutorial, but they will not be exhaustive. In fact, virtually every functionality shown here will have more options or capabilities than what will be shown. The rest of documentation serves as API documentation, which extensively lists every feature and option of each function.

2.1 Introduction

Symbolic computation deals with the computation of mathematical objects symbolically. This means that the mathematical objects are represented exactly, not approximately, and mathematical expressions with unevaluated variables are left in symbolic form.

Let's take an example. Start the Python interpreter:

```
python
```

Say we wanted to use the built-in Python functions to compute square roots. We might do something like this

```
>>> import math
>>> math.sqrt(9)
3.0
```

Here we got the exact answer - 9 is a perfect square - but usually it will be an approximate result

```
>>> math.sqrt(8)
2.8284271247461903
```

This is where symbolic computation first comes in: with a symbolic computation system like Diofant, square roots of numbers that are not perfect squares are left unevaluated by default

```
>>> import diofant
>>> diofant.sqrt(3)
sqrt(3)
```

Furthermore - and this is where we start to see the real power of symbolic computation results can be symbolically simplified.

```
>>> diofant.sqrt(8)
2*sqrt(2)
```

Yet we can also approximate this number with any precision

```
>>> _evalf(20)
2.82\overline{8}4271247461900976
```

The above example starts to show how we can manipulate irrational numbers exactly using Diofant. Now we introduce symbols.
Let us define a symbolic expression, representing the mathematical expression $x+2 y$.

```
>>> x, y = diofant.symbols('x y')
>>> expr = x + 2*y
>>> expr
x + 2*y
```

Note: Unlike many symbolic manipulation systems you may have used, in Diofant symbols are not defined automatically. To define symbols (instances of Symbol (page 82)) you may use symbols() (page 84).

Note that we wrote $x+2 * y$, using Python's mathematical syntax, just as we would if x and y were ordinary Python variables. But in this case, instead of evaluating to something, the expression remains as just $\mathrm{x}+2 * \mathrm{y}$. Now let us play around with it:

```
>>> expr + 1
x + 2*y + 1
>>> expr - x
2*y
```

Notice something in the above example. When we typed expr - x, we did not get $x+2 * y$ - x, but rather just $2 * y$. The x and the $-x$ automatically canceled one another. This is similar to how sqrt (8) automatically turned into 2*sqrt (2) above.

Tip: Use evaluate() (page 57) context or evaluate flag to prevent automatic evaluation, for example:

```
>>> diofant.sqrt(8, evaluate=False)
sqrt(8)
>>> _.doit()
2*sq\overline{r}t(2)
```

This isn't always the case in Diofant, however:

```
>>> x*expr
x*(x + 2*y)
```

Here, we might have expected $x(x+2 y)$ to transform into $x^{2}+2 x y$, but instead we see that the expression was left alone. This is a common theme in Diofant. Aside from obvious simplifications like $x-x=0$ and $\sqrt{8}=2 \sqrt{2}$, most simplifications are not performed automatically. This is because we might prefer the factored form $x(x+2 y)$, or we might prefer the expanded form $x^{2}+2 x y$ - both forms are useful in different circumstances. In Diofant, there are functions to go from one form to the other

```
>>> diofant.expand(x*expr)
x**2 + 2*x*y
>>> diofant.factor(_)
x*(x + 2*y)
```

The real power of a symbolic computation system (which by the way, are also often called computer algebra systems, or just CASs) such as Diofant is the ability to do all sorts of computations symbolically: simplify expressions, compute derivatives, integrals, and limits, solve equations, work with matrices, and much more. Diofant includes modules for plotting, printing (like 2D pretty printed output of math formulas, or $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$), code generation, statistics, combinatorics, number theory, logic, and more. Here is a small sampling of the sort of symbolic power Diofant is capable of, to whet your appetite.

Note: From here on in this tutorial we assume that these statements were executed:

```
>>> from diofant import *
>>> a, b, c, d, t, x, y, z = symbols('a:d t x:z')
>>> init_printing(pretty_print=True, use_unicode=True)
```

Last one will make all further examples pretty print with unicode characters.
import * has been used here to aid the readability of the tutorial, but is best to avoid such wildcard import statements in production code, as they make it unclear which names are present in the namespace.

Take the derivative of $\sin (x) e^{x}$.

```
>>> diff(sin(x)*exp(x))
x x
e \cdot }\operatorname{sin}(x)+e e\cdot\operatorname{cos}(x
```

Compute $\int\left(e^{x} \sin (x)+e^{x} \cos (x)\right) d x$.

```
>>> integrate(exp(x)*sin(x) + exp(x)*\operatorname{cos(x))}
X
e · sin(x)
```

Compute $\int_{-\infty}^{\infty} \sin \left(x^{2}\right) d x$.

```
>>> integrate(sin(x**2), (x, -oo, oo))
\ \2}\cdot\sqrt{}{\pi
```

Find $\lim _{x \rightarrow 0^{+}} \frac{\sin (x)}{x}$.

```
>>> limit(sin(x)/x, x, 0)
1
```

Solve $x^{2}-2=0$.

```
[>> solve(x**2 - 2, x)
```

Solve the differential equation $f^{\prime \prime}-f=e^{x}$.

```
>>> f = symbols('f', cls=Function)
>>> dsolve(Eq(f(x).diff((x, 2)) - f(x), exp(x)))
f(x) = e e}\cdot(\mp@subsup{C}{2}{}+\frac{x}{2})+\mp@subsup{e}{}{-x}\cdot\mp@subsup{C}{1}{
```

Find the eigenvalues of $\left[\begin{array}{ll}1 & 2 \\ 2 & 2\end{array}\right]$.
$\Rightarrow \gg \operatorname{Matrix}([[1,2],[2,2]])$, eigenvals()
$\left\{\begin{array}{l}3 \\ \frac{-}{2}+\frac{\sqrt{17}}{2}: 1,-\frac{\sqrt{17}}{2}+\frac{3}{2}: 1\end{array}\right\}$

Rewrite the Bessel function $J_{y}(z)$ in terms of the spherical Bessel function $j_{y}(z)$.

```
>>> besselj(y, z).rewrite(jn)
V 2}\cdot\sqrt{}{z}\cdotjn(y - 1/2, z
    \\pi
```

Print $\int_{0}^{\pi} \cos ^{2}(x) d x$ using LETEX.

2.2 Basics

Here we discuss some of the most basic aspects of expression manipulation in Diofant.

2.2.1 Assumptions

The assumptions system allows users to declare certain mathematical properties on symbols, such as being positive, imaginary or integer.
By default, all symbols are complex valued. This assumption makes it easier to treat mathematical problems in full generality.
>>> $\operatorname{sqrt}\left(x^{* *} 2\right)$
$\sqrt{x^{2}}$

Yet obviously we can simplify above expression if some additional mathematical properties on x are assumed. This is where assumptions system come into play.
Assumptions are set on Symbol (page 82) objects when they are created. For instance, we can create a symbol that is assumed to be positive.

```
>>> p = symbols('p', positive=True)
```

And then, certain simplifications will be possible:

```
>>> sqrt(p**2)
p
```

The assumptions system additionally has deductive capabilities. You might check assumptions on any expression with is_assumption attributes, like is_positive (page 76).

```
>>> p.is_positive
True
>>> (1 + p).is_positive
True
>>> (-p).is_positive
False
```

Note: False is returned also if certain assumption doesn't make sense for given object.

In a three-valued logic, used by system, None represents the "unknown" case.

```
>>> (p - 1).is_positive is None
```

True

2.2.2 Substitution

One of the most common things you might want to do with a mathematical expression is substitution with subs() (page 52) method. It replaces all instances of something in an expression with something else.

```
>>> expr = cos(x) + 1
>>> expr.subs({x: y})
cos(y) + 1
>>> expr
cos(x) + 1
```

We see that performing substitution leaves original expression expr unchanged.

Note: Almost all Diofant expressions are immutable. No function (or method) will change them in-place.

Use several method calls to perform a sequence of substitutions in same variable:

```
>>> x**y
y
x
>>> _. subs({y: x**y}).subs({y: x**x})
    ( ( (x x
x
```

Use flag simultaneous to do all substitutions at once.

```
>>> (x - y).subs({x: y, y: x})
0
>>> (x - y).subs({x: y, y: x}, simultaneous=True)
-x + y
```


2.2.3 Numerics

To evaluate a numerical expression into a floating point number with arbitrary precision, use evalf() (page 142). By default, 15 digits of precision are used.

```
>>> expr = sqrt(8)
>>> expr.evalf()
2.82842712474619
```

But you can change that. Let's compute the first 70 digits of π.

```
>>> pi.evalf(70)
3.141592653589793238462643383279502884197169399375105820974944592307816
```

Complex numbers are supported:

```
>>> (1/(pi + I)).evalf()
0.289025482222236 - 0.0919996683503752.i
```

If the expression contains symbols or for some other reason cannot be evaluated numerically, calling evalf() (page 142) returns the original expression or a partially evaluated expression.

```
>>> (pi*x**2 + x/3).evalf()
3.14159265358979\cdotx + 0.333333333333333\cdotx
```

You can also use the standard Python functions float and complex to convert symbolic expressions to regular Python numbers:

```
>>> float(pi)
3.141592653589793
>>> complex(pi + E*I)
(3.141592653589793+2.718281828459045j)
```

Sometimes there are roundoff errors smaller than the desired precision that remain after an expression is evaluated. Such numbers can be removed by setting the chop flag.

```
>>> one = cos(1)**2 + sin(1)**2
>>> (one - 1).evalf(strict=False)
-0.e-146
>>> (one - 1).evalf(chop=True)
0
```

Discussed above method is not effective enough if you intend to evaluate an expression at many points, there are better ways, especially if you only care about machine precision.
Substitution may be used to evaluate an expression for some floating point number

```
>>> expr = sin(x)/x
>>> expr.subs({x: 0.1})
0.998334166468282
```

but this method is slow.
The easiest way to convert an expression to the form that can be numerically evaluated with libraries like numpy or the standard library math module - use the lambdify() (page 902) function.

```
>>> f = lambdify(x, expr, 'math')
>> f(0.1)
0.9983341664682815
```

Using the numpy library gives the generated function access to powerful vectorized ufuncs that are backed by compiled C code.

```
>>> f = lambdify(x, expr, 'numpy')
>>> f(range(1, 5))
[ 0.84147098 0.45464871 0.04704 -0.18920062]
```


2.3 Gotchas

Lets recall again, that Diofant is nothing more than a Python library, like numpy or even the Python standard library module sys. What this means is that Diofant does not add anything to the Python language. Limitations that are inherent in the language are also inherent in Diofant.

In this section we are trying to collect some things that could surprise newcomers.

2.3.1 Numbers

To begin with, it should be clear for you, that if you type a numeric literal - it will create a Python number of type int or float.
Diofant uses its own classes for numbers, for example Integer (page 91) instead of int. In most cases, Python numeric types will be correctly coersed to Diofant numbers during expression construction.

```
>>> 3 + x**2
2
x + 3
>>> type(_ - x**2)
<class 'dīofant.core.numbers.Integer'>
```

But if you use some arithmetic operators between two numerical literals, Python will evaluate such expression before Diofant has a chance to get to them.

```
>> X**(3/2)
    1.5
x
```

Tip: Wrapping the integer division with Fraction is automatically enabled if you run Diofant as a module (page 39).

The universal solution is using correct Diofant numeric class to construct numbers explicitly. For example, Rational (page 89) in the above example

```
>>> x**Rational(3, 2)
    3/2
x
```


2.3.2 Equality

You may think that $==$, which is used for equality testing in Python, is used for Diofant to test mathematical equality. This is not quite correct either. Let us see what happens when we use $==$.

```
>>> (x + 1)**2 == x**2 + 2*x + 1
False
```

But, $(x+1)^{2}$ does equal $x^{2}+2 x+1$. What is going on here?
In Diofant, $==$ represents structural equality testing and $(x+1)^{2}$ and $x^{2}+2 x+1$ are not the same in this sense. One is the power and the other is the addition of three terms.
There is a separate class, called $E q$ (page 109), which can be used to create a symbolic equation

```
>>> Eq((x + 1)**2 - x**2, 2*x + 1)
    2 2
- x + (x + 1) = 2•x + 1
```

It is not always return a bool object, like $==$, but you may use some simplification methods to prove (or disprove) equation.

```
>>> expand(_)
true
```


2.3.3 Naming of Functions

Diofant uses different names for some mathematical functions than most computer algebra systems. In particular, the inverse trigonometric functions use the python names of asin() (page 294), acos() (page 295) and so on instead of arcsin and arccos.

2.4 Printing

As we have already seen, Diofant can pretty print its output using Unicode characters. This is a short introduction to the most common printing options available in Diofant. The most common ones are

- Str (page 11)
- Repr (page 11)
- 2D Pretty Printer (page 11) (Unicode or ASCII)
- LaTeX (page 12)
- Dot (page 12)

In addition to these, there are also "printers" that can output Diofant objects to code, such as C, Fortran, or Mathematica.

Best printer is enabled automatically for interactive session (i.e. $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ in the IPython notebooks, pretty printer in the IPython console or str printer in the Python console). If you want manually configure pretty printing, please use the init_printing() (page 647) function.
Lets take this simple expression

```
>>> expr = Integral(sqrt(1/x))
```

and try several available printers.

2.4.1 Str

To get a string form of an expression, use str. This is also the form that is produced by print (). String forms are designed to be easy to read and mostly to be in a form that is a correct Python syntax so that it can be copied and pasted.

```
>> str(expr)
'Integral(sqrt(1/x), x)'
>>> print(expr)
Integral(sqrt(1/x) , x)
```


2.4.2 Repr

The repr form of an expression is designed to show the exact form of an expression, it would yield an object with the same value when passed to eval(). To get it, use repr().

```
>>> repr(expr)
"Integral(Pow(Pow(Symbol('x'), Integer(-1)), Rational(1, 2)), Tuple(Symbol('x')))"
```

The repr form is mostly useful for understanding how an expression is built internally.

2.4.3 2D Pretty Printer

A two-dimensional (2D) textual representation of the expression can be obtained with pretty() (page 632).

Note: Unicode pretty-printing is enabled by default in the IPython terminal frontend.
You can pass use_unicode=False to use ASCII symbols.

```
>>> print(pretty(expr, use_unicode=False))
    /
    //1
        // - x dx
/
```

pprint() (page 632) prints the output to the screen.
$\int^{\ggg} \sqrt{\frac{1}{-}} \mathrm{dx}$

2.4.4 LaTeX

To get the LATEX form of an expression, use latex () (page 639).

```
>>> print(latex(expr))
\int \sqrt{\frac{1}{x}}\, dx
```


2.4.5 Dot

dotprint() (page 646) function prints output to dot format, which can be rendered with Graphviz:

2.5 Simplification

The generic way to do nontrivial simplifications of expressions is calling simplify() (page 678) function.

```
>>> simplify(sin(x)**2 + cos(x)**2)
1
>> simplify((x**3 + x**2 - x - 1)/( }\mp@subsup{x}{}{**2 + 2*x + 1))
x - 1
>>> simplify(gamma(x)/gamma(x - 2))
(x-2)\cdot(x-1)
```

There are also more directed simplification functions. These apply very specific rules to the input expression and are typically able to make guarantees about the output. For instance, the factor() (page 610) function, given a polynomial with rational coefficients in several variables, is guaranteed to produce a factorization into irreducible factors.
The simplify() (page 678) function applies almost all available in Diofant such specific simplification rules in some heuristics sequence to produce the simplest result.

Tip: The optional measure keyword argument for simplify() (page 678) lets the user specify the Python function used to determine how "simple" an expression is. The default is count_ops() (page 138), which returns the total number of operations in the expression.

That is why it is usually slow. But more important pitfail is that sometimes simplify() (page 678) doesn't "simplify" how you might expect, if, for example, it miss some transformation or apply it too early or too late. Lets look on an example

```
>>> simplify(x**2 + 2*x + 1)
2
x + 2\cdotx + 1
>>> factor(_)
    2
(x + 1)
```

Obviously, the factored form is more "simple", as it has less arithmetic operations.
The function simplify() (page 678) is best when used interactively, when you just want to whittle down an expression to a simpler form. You may then choose to apply specific functions once you see what simplify() (page 678) returns, to get a more precise result. It is also useful when you have no idea what form an expression will take, and you need a catchall function to simplify it.

2.5.1 Rational Functions

expand () (page 133) is one of the most common simplification functions in Diofant. Although it has a lot of scopes, for now, we will consider its function in expanding polynomial expressions.

```
>>> expand((x + 1)**2)
2
x + 2.x + 1
>>> expand((x+2)*(x-3))
2
x - x - 6
```

Given a polynomial, expand() (page 133) will put it into a canonical form of a sum of monomials with help of more directed expansion methods, namely expand_multinomial() (page 140) and expand_mul() (page 139).
expand() (page 133) may not sound like a simplification function. After all, by its very name, it makes expressions bigger, not smaller. Usually this is the case, but often an expression will become smaller upon calling expand() (page 133) on it due to cancellation.

```
>>> expand((x + 1)*(x - 2) - (x - 1)*x)
```

-2

Function factor() (page 610) takes a multivariate polynomial with rational coefficients and factors it into irreducible factors.

```
>>> factor(x**3 - x**2 + x - 1)
(x-1)\cdot(\begin{array}{c}{2}\\{x}\end{array}+1)
>>> factor(x**2*z + 4*x*y*z + 4*y**2*z)
z\cdot(x + 2.y)
```

For polynomials, factor() (page 610) is the opposite of expand() (page 133).

Note: The input to factor() (page 610) and expand() (page 133) need not be polynomials in the strict sense. They will intelligently factor or expand any kind of expression (though, for example, the factors may not be irreducible if the input is no longer a polynomial over the rationals).

```
>>> expand((cos(x)+\operatorname{sin}(x))**2)
sin (x) + 2\cdotsin(x)\cdot\operatorname{cos}(x) + cos (x)
>>> factor(_)
(\operatorname{sin}(x) + cos(x))
(sin(x) + cos(x))
```

collect() (page 687) collects common powers of a term in an expression.

```
>>> x*y + x - 3 + 2*x**2 - z*x**2 + x**3
x - x }\mp@subsup{}{}{2}\cdotz+2\cdot\mp@subsup{x}{}{2}+x\cdoty+x-
>>> collect(_, x)
    3 2
x + x (-z + 2) + x (y + 1) - 3
```

collect() (page 687) is particularly useful in conjunction with the coeff() (page 66) method.

```
>>> _.coeff(x, 2)
-z + 2
```

cancel() (page 608) will take any rational function and put it into the standard canonical form, p / q, where p and q are expanded polynomials with no common factors.

```
>>> 1/x + (3*x/2 - 2)/(x - 4)
3\cdotx
--2
2 1
x-4 + - 
>>> cancel(_)
```



```
>>> expr = (x*y**2 - 2*x*y*z + x*z**2 + y**2 - 2*y*z + z**2)/(x**2 - 1)
>>> expr
    x\cdoty 2}-2\cdotx\cdoty\cdotz+x\cdot\mp@subsup{z}{}{2}+\mp@subsup{y}{}{2}-2\cdoty\cdotz+\mp@subsup{z}{}{2
        2
        x - 1
>>> cancel(_)
    2 2
y - 2.y\cdotz + z
    x - 1
```

Note: Since factor() (page 610) will completely factorize both the numerator and the denominator of an expression, it can also be used to do the same thing:

```
>>> factor(expr)
2
(y - z)
x - 1
```

However, it's less efficient if you are only interested in making sure that the expression is in canceled form.
apart() (page 626) performs a partial fraction decomposition on a rational function.

```
>>> (4*x**3 + 21*x**2 + 10*x + 12)/(x**4 + 5*x**3 + 5*x**2 + 4*x)
\frac{4\cdot\mp@subsup{x}{}{4}+21\cdot\mp@subsup{x}{}{2}+10\cdotx+12}{44}
>>> apart(_)
2\cdotx-1
x + x + 1
```


2.5.2 Trigonometric Functions

To simplify expressions using trigonometric identities, use trigsimp() (page 692) function.

```
>>> trigsimp(sin(x)**2 + cos(x)**2)
1
>>> trigsimp(sin(x)**4 - 2*\operatorname{cos(x)**2*sin(x)**2 + cos(x)**4)}
cos(4\cdotx)
>> trigsimp(sin(x)*tan(x)/sec(x))
    2
sin (x)
```

It also works with hyperbolic functions.

```
>>> trigsimp(cosh(x)**2 + sinh(x)**2)
cosh(2\cdotx)
>>> trigsimp(sinh(x)/tanh(x))
cosh(x)
```

Much like simplify() (page 678) function, trigsimp() (page 692) applies various trigonometric identities to the input expression, and then uses a heuristic to return the "best" one.

To expand trigonometric functions, that is, apply the sum or double angle identities, use expand_trig() (page 140) function.

```
>>> expand_trig(sin(x + y))
sin(x)\cdot\operatorname{cos}(y)+\operatorname{sin}(y)\cdot\operatorname{cos}(x)
>>> expand trig(tan(2*x))
    2\cdot\operatorname{tan}(x)
        2
- tan (x) + 1
```


2.5.3 Powers and Logarithms

powdenest () (page 696) function applies identity $\left(x^{a}\right)^{b}=x^{a b}$, from left to right, if assumptions allow.

```
>>> a, b = symbols('a b', real=True)
>>> p = symbols('p', positive=True)
>>> powdenest((p**a)**b)
a\cdotb
p
```

powsimp() (page 694) function reduces expression by combining powers with similar bases and exponent.

```
>>> powsimp(z**x*z**y)
    x + y
z
```

Again, as for powdenest() (page 696) above, for the identity $x^{a} y^{a}=(x y)^{a}$, that combine bases, we should be careful about assumptions.

```
>>> q = symbols('q', positive=True)
>>> powsimp(p**a*q**a)
(p\cdotq)
```

In general, this identity doesn't hold. For example, if $x=y=-1$ and $a=1 / 2$.
expand_power_exp() (page 141) and expand_power_base() (page 141) functions do reverse of powsimp() (page 694).

```
>>> expand_power_exp(x**}(y+z)
y z
x · x
>>> expand_power_base((p*q)**a)
a a
p - q
```

Logarithms have similar issues as powers. There are two main identities

1. $\log (x y)=\log (x)+\log (y)$
2. $\log \left(x^{n}\right)=n \log (x)$

Neither identity is true for arbitrary complex x and y, due to the branch cut in the complex plane for the complex logarithm.
To apply above identities from left to right, use expand_log() (page 139). As for powers, the identities will not be applied unless they are valid with given set of assumptions for symbols.

```
>>> expand log(log(p*q))
log(p) + log(q)
>>> expand_log(log(p/q))
log(p) - log(q)
>>> expand_log(log(p**2))
2\cdotlog(p)
>>> expand_log(log(p**a))
a\cdotlog(p)
>>> expand_log(log(x*y))
log(x·y)
```

To apply identities from right to left, i.e. do reverse of expand_log() (page 139), use logcombine() (page 684) function.

```
>>> logcombine(log(p) + log(q))
log(p\cdotq)
>>> logcombine(a*log(p))
log(p
>>> logcombine(a*log(z))
a\cdotlog(z)
```


2.5.4 Special Functions

Diofant implements dozens of special functions (page 331), ranging from functions in combinatorics to mathematical physics.
To expand special functions in terms of some identities, use expand_func() (page 139). For example the gamma function gamma (page 333) can be expanded as

```
>>> expand func(gamma(x + 3))
x\cdot(x + 1)\cdot\}(x+2)\cdot\Gamma(x
```

This method also can help if you would like to rewrite the generalized hypergeometric function hyper (page 378) or the Meijer G-function meijerg (page 380) in terms of more standard functions.

```
>>> expand_func(hyper([1, 1], [2], z))
- log(-z + \overline{1})
    z
>>> meijerg([[1], [1]], [[1], []], -z)
```



```
>>> expand_func(_)
z
    e
```

Another type of expand rule is expanding complex valued expressions and putting them into a normal form. For this expand_complex() (page 140) is used. Note that it will always perform arithmetic expand to obtain the desired normal form.

```
>>> expand_complex(x + I*y)
i\cdot(re(y) + + im(x)) + re(x) - im(y)
```

The same behavior can be obtained by using as_real_imag() (page 64) method.

```
>>> (x + I*y).as_real_imag()
(re(x) - im(y), re(y) + im(x))
```

To simplify combinatorial expressions, involving factorial (page 320), binomial (page 316) or gamma (page 333) - use combsimp() (page 697) function.

```
>>> combsimp(factorial(x)/factorial(x - 3))
x·(x - 2).(x - 1)
>>> combsimp(binomial(x + 1, y + 1)/binomial(x, y))
x + 1
y + 1
>>> combsimp(gamma(x)*gamma(1 - x))
    \pi
sin(\pi\cdotx)
```


2.5.5 CSE

Before evaluating a large expression, it is often useful to identify common subexpressions, collect them and evaluate them at once. This is called common subexpression elimination (CSE) and implemented in the cse() (page 699) function.
\square
$\ggg \operatorname{cse}(\operatorname{sqrt}(\sin (x)))$
$([],[\sqrt{\sin (x)}])$
$l \gg \operatorname{cse}(\operatorname{sqrt}(\sin (x)+5) * \operatorname{sqrt}(\sin (x)+4))$
$\left(\left[\left(x_{0}, \sin (x)\right)\right],\left[\sqrt{x_{0}+4} \cdot \sqrt{x_{0}+5}\right]\right)^{\prime}$
>>> $\operatorname{cse}(\operatorname{sqrt}(\sin (x+1)+5+\cos (y)) * \operatorname{sqrt}(\sin (x+1)+4+\cos (y)))$
$\left(\left[\left(x_{0}, \sin (x+1)+\cos (y)\right)\right],\left[\sqrt{x_{0}+4} \cdot \sqrt{x_{0}+5}\right]\right)$

```
>>> cse((x - y)*(z - y) + sqrt((x - y)*(z - y)))
([(\mp@subsup{x}{0}{},-y), (x1, (x+\mp@subsup{x}{0}{})\cdot(\mp@subsup{x}{0}{}+z))],[\sqrt{}{\mp@subsup{x}{1}{}}+\mp@subsup{x}{1}{}])
```

Optimizations to be performed before and after common subexpressions elimination can be passed in the `optimizations" optional argument.

```
>>> cse((x - y)*(z - y) + sqrt((x - y)*(z - y)), optimizations='basic')
l>> cse((x-y)*(z-y)+\operatorname{sgrt}((x-y)*
```

However, these optimizations can be very slow for large expressions. Moreover, if speed is a concern, one can pass the option order='none'. Order of terms will then be dependent on hashing algorithm implementation, but speed will be greatly improved.

2.6 Calculus

This section covers how to do basic calculus tasks such as derivatives, integrals, limits, and series expansions in Diofant.

2.6.1 Derivatives

To take derivatives, use the diff() (page 128) function.

```
>>> diff(cos(x))
-sin(x)
>>> diff(exp(x**2), x)
(x
```

$\operatorname{diff()}$ (page 128) can take multiple derivatives at once. To take multiple derivatives, pass the variable as many times as you wish to differentiate, or pass a tuple (variable and order). For example, both of the following find the third derivative of x^{4}.

```
>>> diff(x**4, x, x, x)
24\cdotx
>>> diff(x**4, (x, 3))
24\cdotx
```

You can also take derivatives with respect to many variables at once. Just pass each derivative in order, using the same syntax as for single variable derivatives. For example, each of the following will compute $\frac{\partial^{7}}{\partial x \partial y^{2} \partial z^{4}}{ }^{x y z}$.

```
>>> expr = exp(x*y*z)
>>> diff(expr, x, y, y, z, z, z, z)
e
>>> diff(expr, x, (y, 2), (z, 4))
e
>>> diff(expr, x, y, y, (z, 4))
e
```

diff() (page 128) can also be called as a method diff() (page 68). The two ways of calling diff() (page 128) are exactly the same, and are provided only for convenience.

```
>>> expr.diff(x, y, y, (z, 4))
e
```

To create an unevaluated derivative, use the Derivative (page 126) class. It has the same syntax as diff() (page 128).

```
>>> Derivative(expr, x, y, y, (z, 4))
    7
    \partial}(\mp@subsup{e}{}{x\cdoty\cdotz}
\partialz \partialy \partialx
```

Such unevaluated objects also used when Diofant does not know how to compute the derivative of an expression.
To evaluate an unevaluated derivative, use the doit() (page 48) method.

```
>>> - doit()
```


2.6.2 Integrals

To compute an integral, use the integrate() (page 475) function. There are two kinds of integrals, definite and indefinite. To compute an indefinite integral, do

```
>>> integrate(cos(x))
sin(x)
```

Note: For indefinite integrals, Diofant does not include the constant of integration.

For example, to compute a definite integral

$$
\int_{0}^{\infty} e^{-x} d x
$$

we would do

```
>>> integrate(exp(-x), (x, 0, oo))
1
```

Tip: ∞ in Diofant is oo (that's the lowercase letter "oh" twice).
As with indefinite integrals, you can pass multiple limit tuples to perform a multiple integral. For example, to compute

$$
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-x^{2}-y^{2}} d x d y
$$

do

```
>>> integrate(exp(-x**2 - y**2), (x, -00, oo), (y, -00, oo))
```

π

If integrate() (page 475) is unable to compute an integral, it returns an unevaluated Integral (page 481) object.

```
>>> integrate(x**x)
|
    x d
    x dx
>>> print(_)
Integral( (x**x, x)
```

As with Derivative (page 126), you can create an unevaluated integral directly. To later evaluate this integral, call doit() (page 482).

```
>>> Integral(log(x)**2)
2
    log}(x)d
>>> _.doit()
x\cdotlog (x) - 2.x.log(x) + 2\cdotx
```

integrate() (page 475) uses powerful algorithms that are always improving to compute both definite and indefinite integrals, including a partial implementation of the Risch algorithm

```
>>> Integral((x**4 + x**2*exp(x) - x**2 - 2*x*exp(x) - 2*x -
exp(x))*exp(x)/((x-1)**2* (x+1)**2* (exp(x) + 1)))
    e}\mp@subsup{e}{}{x}\cdot(\mp@subsup{e}{}{x}\cdot\mp@subsup{x}{}{2}-2\cdot\mp@subsup{e}{}{x}\cdotx-\mp@subsup{e}{}{x}+\mp@subsup{x}{}{4}-\mp@subsup{x}{}{2}-2\cdotx
    (e
>>> }\overline{x}.\operatorname{doit()
e
x - 1
```

and an algorithm using Meijer G-functions that is useful for computing integrals in terms of special functions, especially definite integrals

```
>>> Integral(sin(x**2))
\intin}(\mp@subsup{x}{}{2})d
>>> _.doit()
3\cdot\sqrt{}{2}\cdot\sqrt{}{\pi}\cdot\mathrm{ fresnels ( ( }\frac{\sqrt{}{2}\cdotx}{\sqrt{}{\pi}})\cdot\Gamma(3/4)
    8\cdot\Gamma(7/4)
```

```
>>> Integral(x**y*exp(-x), (x, 0, oo))
|
    e
0
>>> _.doit()
    \Gamma(\overline{y}+1) for -re(y)<1
\infty
    e
```


0

This last example returned a Piecewise (page 308) expression because the integral does not converge unless $\Re(y)>1$.

2.6.3 Sums and Products

Much like integrals, there are summation() (page 280) and product() (page 280) to compute sums and products respectively.

```
>>> summation(2**x, (x, 0, y - 1))
y
2 - 1
>>> product(z, (x, 1, y))
y
z
```

Unevaluated sums and products are represented by Sum (page 270) and Product (page 273) classes.

```
>>> Sum(1, (x, 1, z))
    Z
\
x = 1
>>> _.doit()
Z
```


2.6.4 Limits

Diofant can compute symbolic limits with the limit() (page 662) function. To compute a directional limit

$$
\lim _{x \rightarrow 0^{+}} \frac{\sin x}{x},
$$

do

```
>>> limit(sin(x)/x, x, 0)
```

1
limit() (page 662) should be used instead of subs() (page 52) whenever the point of evaluation is a singularity. Even though Diofant has objects to represent ∞, using them for evaluation is not reliable because they do not keep track of things like rate of growth. Also, things like $\infty-\infty$ and $\frac{\infty}{\infty}$ return nan (not-a-number). For example

```
>>> expr = x**2/exp(x)
>>> expr.subs({x: oo})
nan
>>> limit(expr, x, oo)
0
```

Like Derivative (page 126) and Integral (page 481), limit() (page 662) has an unevaluated counterpart, Limit (page 661). To evaluate it, use doit() (page 662).

```
>>> Limit((cos(x) - 1)/x, x, 0)
    cos(x) - 1
lim
x->->\mp@subsup{0}{}{+}
>>> _.doit()
0
```

To change side, pass ' - ' as a third argument to limit() (page 662). For example, to compute

$$
\lim _{x \rightarrow 0^{-}} \frac{1}{x},
$$

do

```
>>> limit(1/x, x, 0, dir='-')
-\infty
```

You can also evaluate bidirectional limit

```
>>> limit(sin(x)/x, x, 0, dir='real')
1
>>> limit(1/x, x, 0, dir='real')
Traceback (most recent call last):
PoleError: left and right limits for expression 1/x at point x=0 seems to be not equal
```


2.6.5 Series Expansion

Diofant can compute asymptotic series expansions of functions around a point.

```
>>> series(exp(sin(x)), x, 0, 4)
1+x+\frac{\mp@subsup{x}{}{2}}{2}+0(\mp@subsup{x}{}{4})
```

The $O\left(x^{4}\right)$ term, an instance of O (page 662) at the end represents the Landau order term at $x=0$ (not to be confused with big O notation used in computer science, which generally represents the Landau order term at $x=\infty$). Order terms can be created and manipulated outside of series() (page 662).

```
>>> x + x**3 + x**6 + 0(x**4)
x+ x 3}+0(\mp@subsup{x}{}{4}
>> x*0(1)
0(x)
```

If you do not want the order term, use the remove0() (page 79) method.

```
>>> series(exp(x), x, 0, 3).remove0()
2
x
- +x + 1
2
```

The 0 (page 662) notation supports arbitrary limit points:
>>> $\operatorname{series}(\exp (x-1), x, x 0=1)$

2.7 Solvers

This section covers equations solving.

Note: Any expression in input, that not in an Eq (page 109) is automatically assumed to be equal to 0 by the solving functions.

2.7.1 Algebraic Equations

The main function for solving algebraic equations is solve() (page 742).
When solving a single equation, the output is a list of the solutions.

```
>>> solve(x**2 - x)
[{x: 0}, {x: 1}]
```

If no solutions are found, an empty list is returned.

```
>>> solve(exp(x))
[]
```

solve() (page 742) can also solve systems of equations.

```
>>> solve([x - y + 2, x + y - 3])
[{x: 1/2, y: 5/2}]
>>> solve([x*y - 7, x + y - 6])
[{x:-\sqrt{}{2}+3,y:\sqrt{}{2}+3},{x:\sqrt{}{2}+3,y:-\sqrt{}{2}+3}]
```

Each solution reported only once:

```
>>> solve(x**3 - 6*x**2 + 9*x)
[{x: 0}, {x: 3}]
```

To get the solutions of a polynomial including multiplicity use roots() (page 623).

```
>>> roots(x**3 - 6*x**2 + 9*x)
{0: 1, 3: 2}
```


2.7.2 Recurrence Equations

To solve recurrence equations, use rsolve() (page 821). First, create an undefined function by passing cls=Function to the symbols() (page 84) function.

```
>>> f = symbols('f', cls=Function)
```

We can call $f(x)$, and it will represent an unknown function application.
Note: From here on in this tutorial we assume that these statements were executed:

```
>>> from diofant import *
>>> a, b, c, d, t, x, y, z = symbols('a:d t x:z')
>> k, m, n = symbols('k m n', integer=True)
>> f, g, h = symbols('f:h', cls=Function)
>>> init_printing(pretty_print=True, use_unicode=True)
```

As for algebraic equations, the output is a list of dict's

```
[\mp@code{rsolve(f(n + 1) - 3*f(n) - 1)}
```

The arbitrary constants in the solutions are symbols of the form $\mathrm{C} 0, \mathrm{C} 1$, and so on.

2.7.3 Differential Equations

To solve the differential equation

```
>>> Eq(f(x).diff(x, x) - 2*f(x).diff(x) + f(x), sin(x))
f(x)-2\cdot\frac{d}{dx}(f(x))+\frac{d}{2}(f(x))=\operatorname{sin}(x)
```

Note: Derivatives of the unknown function $\mathrm{f}(\mathrm{x})$ are unevaluated.
we would use
>>> dsolve(_)
$f(x)=e^{x} \cdot\left(C_{1}+C_{2} \cdot x\right)+\frac{\cos (x)}{2}$
dsolve() (page 771) can also solve systems of equations, like solve() (page 742).

```
>>> dsolve([f(x).diff(x) - g(x), g(x).diff(x) - f(x)])
[f(x)= e e}\cdot\mp@subsup{C}{2}{}-\mp@subsup{e}{}{-x}\cdot\mp@subsup{C}{1}{},g(x)=\mp@subsup{e}{}{x}\cdot\mp@subsup{C}{2}{}+\mp@subsup{e}{}{-x}\cdot\mp@subsup{C}{1}{}
```


2.8 Polynomials

We show here some functions, that provide different algorithms dealing with polynomials in the form of Diofant expression.

Note, that coefficients of a polynomial can be elements of any commutative ring, this ring is called the domain of the polynomial ring and may be specified as a keyword parameter for functions. Polynomial generators also can be specified via an arbitrary number of arguments after required arguments of functions.

2.8.1 Division

The function $\operatorname{div}()$ (page 610) provides division of polynomials with remainder. That is, for polynomials f and g , it computes q and r , such that $f=g \cdot q+r$ and $\operatorname{deg}(r)<q$. For polynomials in one variables with coefficients in a field, say, the rational numbers, q and r are uniquely defined this way

```
>>> f, g = 5*x**2 + 10*x + 3, 2*x + 2
```

```
>>> div(f, g)
(\frac{5\cdotx}{2}+\frac{5}{2},
>>> expand(_[0]*g + _[1])
5\cdotx
```

As you can see, q has a non-integer coefficient. If you want to do division only in the ring of polynomials with integer coefficients, you can specify an additional parameter

```
>>> div(f, g, field=False)
(5, 5: < 2-7)
```

But be warned, that this ring is no longer Euclidean and that the degree of the remainder doesn't need to be smaller than that of f . Since 2 doesn't divide $5,2 x$ doesn't divide $5 x^{2}$, even if the degree is smaller. But

```
>>> g = 5*x + 1
>>> div(f, g, field=False)
(x, 9·x + 3)
>>> expand(_[0]*g + _[1])
2
5\cdotx + 10\cdotx + 3
```

This also works for polynomials with multiple variables

```
>>> div(x*y + y*z, 3*x + 3*z)
(\begin{array}{l}{y}\\{3}\end{array},0
```


2.8.2 GCD and LCM

With division, there is also the computation of the greatest common divisor and the least common multiple.
When the polynomials have integer coefficients, the contents' gcd is also considered

```
>>> gcd((12*x + 12)*x, 16*x**2)
4.x
```

But if the polynomials have rational coefficients, then the returned polynomial is monic

```
>>> gcd(3*x**2/2, 9*x/4)
x
```

Symbolic exponents are supported

```
>>> gcd(2*x**(n + 4) - x**(n + 2), 4*x**(n + 1) + 3*x**n)
n
x
```

It also works with multiple variables. In this case, the variables are ordered alphabetically, be default, which has influence on the leading coefficient

```
>>> gcd(x*y/2 + y**2, 3*x + 6*y)
x + 2.y
```

The lcm is connected with the gcd and one can be computed using the other

```
>>> f, g = x*y**2 + x**2*y, x**2*y**2
```

```
>>> gcd(f, g)
x'y
>>> lcm(f,g)
x}\cdoty+x\cdot
>>> expand(f*g)
4 3 3 4
x - y + x · y
>> expand(gcd(f, g, x, y)*lcm(f, g, x, y))
x 4}\cdot\mp@subsup{y}{}{3}+\mp@subsup{x}{}{3}\cdot\mp@subsup{y}{}{4
```


2.8.3 Square-free factorization

The square-free factorization of a univariate polynomial is the product of all factors (not necessarily irreducible) of degree 1,2 etc

```
>>> sqf(2*x**2 + 5*x**3 + 4*x**4 + x**5)
(x+2)\cdot(\mp@subsup{x}{}{2}+x)
```


2.8.4 Factorization

Factorization supported over different domains, lets compute one for the rational field, its algebraic extension or the finite field of order 5

```
>>> f = x**4 - 3* (**2 + 1
```

```
>>> factor(f)
(2
>>> factor(f, extension=GoldenRatio)
```



```
>>> factor(f, modulus=5)
(x+2)}\mp@subsup{)}{}{2}\cdot(x+3
```

The finite fields of prime power order are supported

```
>>> factor(x**3 + 3*x + 2, modulus=4)
(x+1)\cdot(\mp@subsup{x}{}{2}+x+2)
```

You also may use gaussian keyword to obtain a factorization over Gaussian rationals

```
>> factor(4*x**4 + 8*x**3 + 77*x**2 + 18*x + 153, gaussian=True)
4\cdot(x-\frac{3\cdoti}{2})\cdot(x+\frac{3\cdoti}{2})\cdot(x+1-4\cdoti)\cdot(x+1+4\cdoti)
```

Computing with multivariate polynomials over various domains is as simple as in univariate case.

```
>>> factor (x**2 + 4*x*y + 4*y**2)
(x + 2.y)
>>> factor(x**3 + y**3, extension=sqrt(-3))
(x+y)\cdot(x+y\cdot(-\frac{1}{2}-\frac{V}{3}\cdoti
```


2.8.5 Gröbner bases

Buchberger's algorithm is implemented, supporting various monomial orders

```
>>> groebner([x**2 + 1, y**4*x + x**3])
```



```
>>> groebner([x**2 + 1, y**4*x + x**3, x*y*z**3], order=grevlex)
GroebnerBasis([yy 4
```


2.9 Matrices

To make a matrix in Diofant, use the Matrix (page 509) object. A matrix is constructed by providing a list of row vectors that make up the matrix.

```
>>> Matrix([[1, -1], [3, 4], [0, 2]])
[1
3 4
0 2
```

A list of elements is considered to be a column vector.

```
>>> Matrix([1, 2, 3])
[l
```

One important thing to note about Diofant matrices is that, unlike every other object in Diofant, they are mutable. This means that they can be modified in place, as we will see below. Use ImmutableMatrix (page 579) in places that require immutability, such as inside other Diofant expressions or as keys to dictionaries.

2.9.1 Indexing

Diofant matrices support subscription of matrix elements with pair of integers or slice instances. In last case, new Matrix (page 509) instances will be returned.

```
>>> M = Matrix([[1, 2, 3], [4, 5, 6]])
>>> M[0, 1]
2
>>> M[1, 1]
5
>>> M[:, 1]
[2]
5
>>> M[1, :-1]
[4 5]
>>> M[0, :]
[1 2 3]
>>> M[:, -1]
[3]
6]
```

It's possible to modify matrix elements.

```
>> M[0, 0] = 0
>> M
0
[4 5 6
>>> M[1, 1:] = Matrix([[0, 0]])
```

\ggg
$\left[\begin{array}{lll}0 & 2 & 3 \\ 4 & 0 & 0\end{array}\right]$

2.9.2 Reshape and Rearrange

To get the shape of a matrix use shape (page 547) property

```
>>> M = Matrix([[1, 2, 3], [-2, 0, 4]])
>>> M
[1 2 3
-2 0
>>> M.shape
(2, 3)
```

To delete a row or column, use del

```
>>> del M[:, 0]
>> M
[2 3
0 4
>> del M[1, :]
>>> M
[2 3]
```

To insert rows or columns, use methods row_insert() (page 546) or col_insert() (page 525).

```
>>> M
[2 3]
>>> M = M.row insert(1, Matrix([[0, 4]]))
>>> M
[2 3
[0 4
>>> M = M.col_insert(0, Matrix([1, -2]))
>> M
11 
l-2 0}404
```

Note: You can see, that these methods will modify the Matrix in place. In general, as a rule, such methods will return None.

To swap two given rows or columns, use methods row_swap() (page 563) or col_swap() (page 562).

```
>>> M.row_swap(0, 1)
>> M
[ -2 
```

(continued from previous page)

```
>>> M.col_swap(1, 2)
>>> M
[-2 4
[1 
```

To take the transpose of a Matrix, use T (page 521) property.
$\rightarrow \gg$ M.T
$\left[\begin{array}{cc}-2 & 1 \\ 4 & 3 \\ 0 & 2\end{array}\right]$

2.9.3 Algebraic Operations

Simple operations like addition and multiplication are done just by using +, *, and **. To find the inverse of a matrix, just raise it to the -1 power.

```
>>> M, N = Matrix([[1, 3], [-2, 3]]), Matrix([[0, 3], [0, 7]])
>>> M +N
[1 6
l-2 10}
>>> M*N
[0 24
[0 15}
>>> 3*M
[3 9
-6 9
>>> M**2
-5 12
-8 3
>>> M**-1
[1/3 -1/3
2/9 1/9
>>> N**-1
Traceback (most recent call last):
ValueError: Matrix det == 0; not invertible.
```


2.9.4 Special Matrices

Several constructors exist for creating common matrices. To create an identity matrix, use eye() (page 552) function.

```
\(\ggg\) eye(3)
\(\left[\begin{array}{llll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]\)
\(\ggg\)
\(\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]\)
```

To create a matrix of all zeros, use zeros() (page 552) function.

```
l
```

Similarly, function ones() (page 552) creates a matrix of ones.

```
>>> ones(3, 2)
[lll}
```

To create diagonal matrices, use function diag() (page 552). Its arguments can be either numbers or matrices. A number is interpreted as a 1×1 matrix. The matrices are stacked diagonally.

```
l>>
```


2.9.5 Advanced Methods

To compute the determinant of a matrix, use $\operatorname{det}()$ (page 526) method.
$\left[\begin{array}{lll}\rightarrow \gg & \text { Matrix }([[1, ~ 0, ~ 1], ~[2, ~-1, ~ 3], ~[4, ~ 3, ~ 2]]) ~ \\ {\left[\begin{array}{lll}1 & 0 & 1 \\ 2 & -1 & 3 \\ 4 & 3 & 2\end{array}\right]} \\ \ggg & \operatorname{det}\left(_\right)\end{array}\right.$

To put a matrix into reduced row echelon form, use method rref() (page 547). It returns a tuple of two elements. The first is the reduced row echelon form, and the second is a list of indices of the pivot columns.
$\left.\begin{array}{l}\rightarrow \gg \\ {\left[\begin{array}{cccc}1 & 0 & 1 & 3 \\ 2 & 3 & 4 & 7 \\ -1 & -3 & -3 & -4\end{array}\right]} \\ \ggg \\ -\operatorname{rref}() \\ \left(\left[\begin{array}{cccc}1 & 0 & 1 & 3 \\ 0 & 1 & 2 / 3 & 1 / 3 \\ 0 & 0 & 0 & 0\end{array}\right],[0,1]\right.\end{array}\right)$

To find the nullspace of a matrix, use method nullspace() (page 543). It returns a list of column vectors that span the nullspace of the matrix.

To find the eigenvalues of a matrix, use method eigenvals() (page 528). It returns a dictionary of roots including its multiplicity (similar to the output of roots() (page 623) function).

```
>>> M = Matrix([[3, -2, 4, -2], [5, +3, -3, -2],
#.. [5, -2, 2, -2], [5, -2, -3, +3]])
>>> M
\(\left[\begin{array}{llll}3 & -2 & 4 & -2 \\ 5 & 3 & -3 & -2 \\ 5 & -2 & 2 & -2\end{array}\right]\)
```

```
\5 -2 -3 3}\\
>>> M.eigenvals()
{-2: 1, 3: 1, 5: 2}
```

This means that M has eigenvalues -2 , 3 , and 5 , and that the eigenvalues -2 and 3 have algebraic multiplicity 1 and that the eigenvalue 5 has algebraic multiplicity 2.
Matrices can have symbolic elements.

```
>>> Matrix([[x, x + y], [y, x]])
[\begin{array}{cc}{x}&{x+y}\\{y}&{x}\end{array}]}{\begin{array}{l}{[>>}
```

To find the eigenvectors of a matrix, use method eigenvects() (page 528).

This shows us that, for example, the eigenvalue 5 also has geometric multiplicity 2, because it has two eigenvectors. Because the algebraic and geometric multiplicities are the same for all the eigenvalues, M is diagonalizable.
To diagonalize a matrix, use method diagonalize() (page 527). It returns a tuple (P, D), where D is diagonal and $M=P D P^{-1}$.

If all you want is the characteristic polynomial, use method charpoly() (page 523). This is more efficient than eigenvals() (page 528) method, because sometimes symbolic roots can be expensive to calculate.

```
>>> M.charpoly(x)
PurePoly(x**4 - 11*x**3 + 29*x**2 + 35*x - 150, x, domain='ZZ')
>>> factor(_)
    2
(x-5)\cdot(x-3)\cdot(x+2)
```

To compute Jordan canonical form J for matrix M and its similarity transformation P (i.e. such that $J=P M P^{-1}$), use method jordan_form() (page 540).

2.10 Expression Trees

Most generic interface to represent a mathematical expression in Diofant is a tree. Let us take the expression

```
>>> x*y + x**2
2
x + x}
```

We can see what this expression looks like internally by using repr()

```
>>> repr(_)
"Add(Pow(S\overline{ymbol('x'), Integer(2)), Mul(Symbol('x'), Symbol('y')))"}
```

The easiest way to tear this apart is to look at a diagram of the expression tree

First, let's look at the leaves of this tree. We got here instances of the Symbol (page 82) class and the Diofant version of integers, instance of the Integer (page 91) class, even technically we input integer literal 2.

What about $x^{*} y$? As we might expect, this is the multiplication of x and y. The Diofant class for multiplication is Mul (page 103)
>>> $\operatorname{repr}\left(x^{*} y\right)$

```
"Mul(Symbol('x'), Symbol('y'))"
```

Thus, we could have created the same object by writing

```
>>> Mul(x, y)
x'y
```

When we write $x^{* *} 2$, this creates a Pow (page 100) class instance

```
>>> repr(x**2)
"Pow(Symbol('x'), Integer(2))"
```

We could have created the same object by calling

```
>>> Pow(x, 2)
2
x
```

Now we get to our final expression, $x^{*} y+x^{* *} 2$. This is the addition of our last two objects. The Diofant class for addition is Add (page 106), so, as you might expect, to create this object, we also could use

```
>>> Add(Pow(x, 2), Mul(x, y))
2
x + x·y
```

Note: The arguments of Add (page 106) and the commutative arguments of Mul (page 103) are stored in an order, which is independent of the order inputted.

There is no subtraction class. $\mathrm{x}-\mathrm{y}$ is represented as $\mathrm{x}+(-1) * \mathrm{y}$

```
>>> repr(x - y)
"Add(Symbol('x'), Mul(Integer(-1), Symbol('y')))"
```


Similarly to subtraction, there is no division class

We see that x / y is represented as $x^{*} y * *(-1)$.
But what about $x / 2$? Following the pattern of the previous example, we might expect to see Mul(x, Pow(Integer(2), -1)). But instead, we have
>>> repr(x/2)
"Mul(Rational(1, 2), Symbol('x'))"

Rational numbers are always combined into a single term in a multiplication, so that when we divide by 2 , it is represented as multiplying by $1 / 2$.

2.10.1 Walking the Tree

Let's look at how to dig our way through an expression tree, using a very generic interface - attributes func (page 48) and args (page 46).

The head of the object is encoded in the func (page 48) attribute

```
>>> expr = 2 + x*y
>>> expr
x\cdoty + 2
>>> expr.func
<class 'diofant.core.add.Add'>
```

The class of an object need not be the same as the one used to create it

```
>>> Add(x, x)
2·x
>>> _.func
<clas\overline{s} 'diofant.core.mul.Mul'>
```

Note: Diofant classes heavy use of the __new_() class constructor, which, unlike init__(), allows a different class to be returned from the constructor.

The children of a node in the tree are held in the args (page 46) attribute

```
>>> expr.args
(2, x·y)
```

Note: Every expression with non-empty args (page 46) can be reconstructed, using

```
>>> expr.func(*expr.args)
x}y + 
```

Empty args (page 46) signal that we have hit a leaf of the expression tree

```
>>> x.args
()
>>> Integer(2).args
()
```

This interface allows us to write recursive generators that walk expression trees either in post-order or pre-order fashion

```
>>> tuple(preorder_traversal(expr))
(x\cdoty + 2, 2, x}y\cdoty,\overline{x},y
>>> tuple(postorder_traversal(expr))
(2, x, y, x}y,y,x\cdoty ¢ 2)
```


COMMAND-LINE USAGE

When called as a program from the command line, the following form is used:

3.1 python -m diofant

Python shell for Diofant.
This is just a normal Python shell (IPython shell if you have the IPython package installed), that adds default imports and run some initialization code.
usage: python -m diofant [-h] [--no-wrap-division] [-a] [--no-ipython]
-h, --help
show this help message and exit
--no-wrap-division
Don't wrap integer divisions with Fraction
-a, --auto-symbols
Automatically create missing Symbol's
--no-ipython
Don't use IPython

REFERENCE

Most of the things are already documented though in this document, that is automatically generated using Diofant's docstrings.

Tip: Because every feature of Diofant must have a test case, when you are not sure how to use something, just look into the tests subdirectories, find that feature and read the tests for it.

Warning: The Diofant project is in the early stage of developement and has no stable API yet.

4.1 Config

Configuration utilities.

```
diofant.config.setup (key, value=None)
```

Assign a value to (or reset) a configuration item.

4.2 Core

Core module. Provides the basic operations needed in diofant.

4.2.1 sympify

sympify

> diofant. core. sympify. sympify (a, locals=None, convert_xor=True, strict=False, rational=False, evaluate=None)
> Converts an arbitrary expression to a type that can be used inside Diofant.

For example, it will convert Python ints into instance of diofant.Rational, floats into instances of diofant.Float, etc. It is also able to coerce symbolic expressions which inherit from Basic. This can be useful in cooperation with SAGE.

It currently accepts as arguments:

- any object defined in diofant
- standard numeric python types: int, long, float, Decimal
- strings (like " 0.09 " or " $2 \mathrm{e}-19$ ")
- booleans, including None (will leave None unchanged)
- lists, sets or tuples containing any of the above

If the argument is already a type that Diofant understands, it will do nothing but return that value. This can be used at the beginning of a function to ensure you are working with the correct type.

```
>>> sympify(2).is_integer
True
>>> sympify(2).is_real
True
```

```
>>> sympify(2.0).is_real
```

>>> sympify(2.0).is_real
True
True
>>> sympify('2.0').is_real
>>> sympify('2.0').is_real
True
True
>>> sympify('2e-45').is_real
>>> sympify('2e-45').is_real
True

```
True
```

If the expression could not be converted, a SympifyError is raised.

```
>>> sympify('x***2')
Traceback (most recent call last):
SympifyError: SympifyError: "could not parse u'x***2'"
```


Locals

The sympification happens with access to everything that is loaded by from diofant import *; anything used in a string that is not defined by that import will be converted to a symbol. In the following, the bitcount function is treated as a symbol and the 0 is interpreted as the Order object (used with series) and it raises an error when used improperly:

```
>>> s = 'bitcount(42)'
>>> sympify(s)
bitcount(42)
>>> sympify('0(x)')
0(x)
>>> sympify('0 + 1')
Traceback (most recent call last):
TypeError: unbound method...
```

In order to have bitcount be recognized it can be imported into a namespace dictionary and passed as locals:

```
>>> ns = {}
>>> exec('from diofant.core.evalf import bitcount', ns)
>>> sympify(s, locals=ns)
6
```

In order to have the 0 interpreted as a Symbol, identify it as such in the namespace dictionary. This can be done in a variety of ways; all three of the following are possibilities:

```
>>> ns['0'] = Symbol('0') # method 1
>>> exec('from diofant.abc import 0', ns) # method 2
>>> ns.update({0: Symbol('0')}) # method 3
>>> sympify('0 + 1', locals=ns)
0 + 1
```

If you want all single-letter and Greek-letter variables to be symbols then you can use the clashing-symbols dictionaries that have been defined there as private variables: _clash1 (single-letter variables), _clash2 (the multi-letter Greek names) or _clash (both single and multi-letter names that are defined in abc).

```
>>> from diofant.abc import _clash1
>>> _clash1
{'E': E, 'I': I, 'N': N, 'O': O, 'S': S}
>>> sympify('E & O', _clash1)
E & 0
```

Strict
If the option strict is set to True, only the types for which an explicit conversion has been defined are converted. In the other cases, a SympifyError is raised.

```
>>> print(sympify(None))
None
>>> sympify(None, strict=True)
Traceback (most recent call last):
SympifyError: SympifyError: None
```


Evaluation

If the option evaluate is set to False, then arithmetic and operators will be converted into their Diofant equivalents and the evaluate=False option will be added. Nested Add or Mul will be denested first. This is done via an AST transformation that replaces operators with their Diofant equivalents, so if an operand redefines any of those operations, the redefined operators will not be used.

```
>>> sympify('2**2 / 3 + 5')
19/3
>>> sympify('2**2 / 3 + 5', evaluate=False)
2**2/3 + 5
```

Sometimes autosimplification during sympification results in expressions that are very different in structure than what was entered. Below you can see how an expression reduces to -1 by autosimplification, but does not do so when evaluate option is used.

```
>>> -2*(-(-x + 1/x)/(x*(x - 1/x)**2) - 1/(x*(x - 1/x))) - 1
-1
>>> s = '-2*(-(-x + 1/x)/(x*(x - 1/x)**2) - 1/(x*(x - 1/x))) - 1'
>>> sympify(s)
-1
>>> sympify(s, evaluate=False)
-2*((x - 1/x)/(x*(x - 1/x)**2) - 1/(x*(x - 1/x))) - 1
```


Extending

To extend sympify to convert custom objects (not derived from Basic), just define a _diofant_ method to your class. You can do that even to classes that you do not own by subclassing or adding the method at runtime.

```
>>> class MyList1:
... def __iter__(self):
... yield \overline{1}
... yield 2
.:. return
#. def __getitem__(self, i):
"." return list(self)[i]
#". def _diofant_(self):
#". def _ diofant_(self):
>>> sympify(MyList1())
Matrix([
[1],
[2]])
```

If you do not have control over the class definition you could also use the converter global dictionary. The key is the class and the value is a function that takes a single argument and returns the desired Diofant object, e.g. converter[MyList] = lambda x : Matrix(x).

```
>>> class MyList2: # XXX Do not do this if you control the class!
... def _iter__(self): # Use _diofant_!
#. yield \overline{1}
... yield 2
.." return
#". def __getitem__(self, i):
#.. return list(self)[i]
>>> converter[MyList2] = lambda x: Matrix(x)
>>> sympify(MyList2())
Matrix([
[1],
[2]])
```


4.2.2 assumptions

This module contains the machinery handling assumptions.
All symbolic objects have assumption attributes that can be accessed via .is_<assumption name> attribute, i.e. is_integer (page 74). Full set of defined assumption names are accessible as Expr.default_assumptions.rules.defined_facts attribute.
Assumptions determine certain properties of symbolic objects and can have 3 possible values: True, False, None. True is returned if the object has the property and False is returned if it doesn't or can't (i.e. doesn't make sense):

```
>>> I.is_algebraic
True
>>> I.is_real
False
>>> I.is_prime
False
```

When the property cannot be determined (or when a method is not implemented) None will be returned, e.g. a generic symbol, x, may or may not be positive so a value of None is returned for x.is_positive.
By default, all symbolic values are in the largest set in the given context without specifying the property. For example, a symbol that has a property being integer, is also real, complex,
etc.

See also:

ImaginaryUnit (page 98), is_algebraic (page 70), is_real (page 77), is_prime (page 76)

Notes

Assumption values are stored in obj._assumptions dictionary or are returned by getter methods (with property decorators) or are attributes of objects/classes.

```
class diofant.core.assumptions.ManagedProperties(*args,**kws)
```

Metaclass for classes with old-style assumptions.

class diofant.core.assumptions.StdFactKB(facts=None)

A FactKB specialised for the built-in rules
This is the only kind of FactKB that Basic objects should use.
diofant.core.assumptions.as_property (fact)
Convert a fact name to the name of the corresponding property.
diofant.core.assumptions.check_assumptions (expr, **assumptions)
Checks if expression expr satisfies all assumptions.

Parameters

- expr (Expr) - Expression to test.
- **assumptions (dict) - Keyword arguments to specify assumptions to test.
Returns True, False or None (if can't conclude).

Examples

```
>>> check assumptions(-5, integer=True)
True
>>> x = Symbol('x', positive=True)
>>> check_assumptions(2*x + 1, negative=True)
False
>>> check_assumptions(z, real=True) is None
True
```

diofant.core.assumptions.make_property (fact)
Create the automagic property corresponding to a fact.

4.2.3 cache

cacheit
diofant.core.cache.cacheit (f, maxsize=None)
Caching decorator.
The result of cached function must be immutable.

Examples

```
>>> @cacheit
... def f(a, b):
"." print(a, b)
#. return a + b
>>f(x,y)
x y
x + y
>>> f(x,y)
x + y
```


4.2.4 basic

Base class for all the objects in Diofant.
class diofant.core.basic.Atom(*args)
A parent class for atomic things.
An atom is an expression with no subexpressions, for example Symbol, Number, Rational or Integer, but not Add, Mul, Pow.
classmethod class_key()
Nice order of classes.
doit (**hints)
Evaluate objects that are not evaluated by default.

See also:

Basic.doit (page 48)
sort_key (order=None)
Return a sort key.
class diofant.core.basic.Basic(*args)
Base class for all objects in Diofant.
Always use args property, when accessing parameters of some instance.
property args
Returns a tuple of arguments of 'self'.

Examples

```
>>> cot(x).args
(x,)
>>> (x*y).args
(x, y)
```

atoms (*types)
Returns the atoms that form the current object.
By default, only objects that are truly atomic and can't be divided into smaller pieces are returned: symbols, numbers, and number symbols like I and pi. It is possible to request atoms of any type, however, as demonstrated below.

Examples

```
>>> e = 1 + x + 2*sin(y + I*pi)
>>> e.atoms()
{1, 2, I, pi, x, y}
```

If one or more types are given, the results will contain only those types of atoms.

```
>>> e.atoms(Symbol)
{x, y}
```

>>> e.atoms (Number)
\{1, 2\}
>>> e.atoms(Number, NumberSymbol)
\{1, 2, pi\}
>>> e.atoms(Number, NumberSymbol, I)
\{1, 2, I, pi\}

Note that I (imaginary unit) and zoo (complex infinity) are special types of number symbols and are not part of the NumberSymbol class.

The type can be given implicitly, too:

```
>>> e.atoms(x)
{x, y}
```

Be careful to check your assumptions when using the implicit option since Integer(1).is_Integer = True but type(Integer(1)) is One, a special type of diofant atom, while type(Integer(2)) is type Integer and will find all integers in an expression:

```
>>> e.atoms(Integer(1))
{1}
```

```
>>> e.atoms(Integer(2))
{1, 2}
```

Finally, arguments to atoms() can select more than atomic atoms: any diofant type can be listed as an argument and those types of "atoms" as found in scanning the arguments of the expression recursively:

```
>>> from diofant.core.function import AppliedUndef
```

```
>>> (1 + x + 2*sin(y + I*pi)).atoms(Mul)
{I*pi, 2*sin(y + I*pi)}
```

```
>>> f = Function('f')
>>> e = 1 + f(x) + 2*sin(y + I*pi)
>>> e.atoms(Function)
{f(x), sin(y + I*pi)}
>>> (1 + f(x) + 2*sin(y + I*pi)).atoms(AppliedUndef)
{f(x)}
```


classmethod class_key()

Nice order of classes.
copy ()
Return swallow copy of self.
count (query)
Count the number of matching subexpressions.
count_ops (visual=None)
Wrapper for count_ops that returns the operation count.
doit (**hints)
Evaluate objects that are not evaluated by default.
For example, limits, integrals, sums and products. All objects of this kind will be evaluated recursively, unless some species were excluded via 'hints' or unless the 'deep' hint was set to 'False'.

Examples

```
>>> 2*Integral(x, x)
2*Integral(x, x)
```

>>> (2*Integral(x, x)).doit()
x**2
>>> (2*Integral(x, x)).doit(deep=False)
2*Integral(x, x)
find(query)
Find all subexpressions matching a query.
property free_symbols
Return from the atoms of self those which are free symbols.
For most expressions, all symbols are free symbols. For some classes this is not true.
e.g. Integrals use Symbols for the dummy variables which are bound variables, so Integral has a method to return all symbols except those. Derivative keeps track of symbols with respect to which it will perform a derivative; those are bound variables, too, so it has its own free_symbols method.
Any other method that uses bound variables should implement a free_symbols method.
property func
The top-level function in an expression.
The following should hold for all objects:
$x==x . f u n c(* x . a r g s)$

Examples

```
>>> a = 2*x
>>> a.func
<class 'diofant.core.mul.Mul'>
>>> a.args
(2, x)
>>> a.func(*a.args)
2*x
>>> a == a.func(*a.args)
True
```


has (*patterns)

Test if any subexpression matches any of the patterns.
Parameters *patterns (tuple of Expr) - List of expressions to search for match.
Returns bool - False if there is no match or patterns list is empty, else True.

Examples

```
>>> e = x**2 + sin(x*y)
>>> e.has(z)
False
>>> e.has(x, y, z)
True
>>> x.has()
False
```

match (pattern)
Pattern matching.
Wild symbols match all.
Parameters pattern (Expr) - An expression that may contain Wild symbols.

Returns

dict or None - If pattern match self, return a dictionary of replacement rules, such that:

```
pattern.xreplace(self.match(pattern)) == self
```


Examples

```
>>> p = Wild('p')
>>> q = Wild('q')
>>> e = (x+y)**(x+y)
>>> e.match(p**p)
{p_: x + y}
>>> e.match(p**q)
{p_: x + y, q_: x + y}
>>> (p**q).xreplace(_)
(x+y)**(x+y)
```


See also:

xreplace (page 54), diofant. core. symbol.Wild (page 82)
rcall (*args)
Apply on the argument recursively through the expression tree.
This method is used to simulate a common abuse of notation for operators. For instance in Diofant the the following will not work:
(x+Lambda(y, 2*y))(z) == x+2*z,
however you can use

```
>>> (x + Lambda(y, 2*y)).rcall(z)
x + 2*z
```

replace (query, value, exact=False)
Replace matching subexpressions of self with value.
Traverses an expression tree and performs replacement of matching subexpressions from the bottom to the top of the tree in a simultaneous fashion so changes made are targeted only once. In addition, if an expression containing more than one Wild symbol is being used to match subexpressions and the exact flag is True, then the match will only succeed if non-zero values are received for each Wild that appears in the match pattern.
The list of possible combinations of queries and replacement values is listed below:

Examples

Initial setup

```
>>> f = log(sin(x)) + tan(sin(x**2))
```

1.1. type -> type obj.replace(type, newtype)

When object of type type is found, replace it with the result of passing its argument(s) to newtype.

```
>>> f.replace(sin, cos)
log(\operatorname{cos}(x)) + tan(cos(x**2))
>>> (x*y).replace(Mul, Add)
x + y
```

1.2. type -> func obj.replace(type, func)

When object of type type is found, apply func to its argument(s). func must be written to handle the number of arguments of type.

```
>>> f.replace(sin, lambda arg: sin(2*arg))
log(sin(2*x)) + tan(sin(2*x**2))
>>> (x*y).replace(Mul, lambda *args: sin(2*Mul(*args)))
sin(2*x*y)
```

2.1. pattern -> expr obj.replace(pattern(wild), expr(wild))

Replace subexpressions matching pattern with the expression written in terms of the Wild symbols in pattern.

```
>>> a = Wild('a')
>>> f.replace(sin(a), tan(a))
log(tan(x)) + tan(tan(x**2))
>> f.replace(sin(a), tan(a/2))
log(tan(x/2)) + tan(tan(x**2/2))
>>> f.replace(sin(a), a)
log(x) + tan(x**2)
>>> (x*y).replace(a*x, a)
y
```

When the default value of False is used with patterns that have more than one Wild symbol, non-intuitive results may be obtained:

```
>>> b = Wild('b')
>>> (2*x).replace(a*x + b, b - a)
2/x
```

For this reason, the exact option can be used to make the replacement only when the match gives non-zero values for all Wild symbols:

```
>>> (2*x + y).replace(a*x + b, b - a, exact=True)
y - 2
>>> (2*x).replace(a*x + b, b - a, exact=True)
2*x
```

2.2. pattern -> func obj.replace(pattern(wild), lambda wild: expr(wild))

All behavior is the same as in 2.1 but now a function in terms of pattern variables is used rather than an expression:

```
>>> f.replace(sin(a), lambda a: sin(2*a))
log(\operatorname{sin}(2*x))+\operatorname{tan}(\operatorname{sin}(2*x**2))
```

3.1. func -> func obj.replace(filter, func)

Replace subexpression e with func(e) if filter(e) is True.

```
>>> g = 2*sin(x**3)
>>> g.replace(lambda expr: expr.is_Number, lambda expr: expr**2)
4*}\operatorname{sin}(x**9
```

The expression itself is also targeted by the query but is done in such a fashion that changes are not made twice.

```
>>> e = x*(x*y + 1)
>>> e.replace(lambda x: x.is_Mul, lambda x: 2*x)
2*x*(2*x*y + 1)
```


See also:

subs (page 52) substitution of subexpressions as defined by the objects themselves.
xreplace (page 54) exact node replacement in expr tree; also capable of using matching rules
rewrite(*args, **hints)
Rewrite functions in terms of other functions.
Rewrites expression containing applications of functions of one kind in terms of functions of different kind. For example you can rewrite trigonometric functions as complex exponentials or combinatorial functions as gamma function.
As a pattern this function accepts a list of functions to to rewrite (instances of DefinedFunction class). As rule you can use string or a destination function instance (in this case rewrite() will use the str() function).

There is also the possibility to pass hints on how to rewrite the given expressions. For now there is only one such hint defined called 'deep'. When 'deep' is set to False it will forbid functions to rewrite their contents.

Examples

Unspecified pattern:

```
>>> sin(x).rewrite(exp)
-I*(E**(I*x) - E**(-I*X))/2
```

Pattern as a single function:

```
>>> sin(x).rewrite(sin, exp)
-I*(E**(I*x) - E**(-I*x))/2
```

Pattern as a list of functions:

```
>>> sin(x).rewrite([sin], exp)
-I*(E**(I*x) - E**(-I*x))/2
```

sort_key (order=None)
Return a sort key.

Examples

```
>>> sorted([Rational(1, 2), I, -I], key=lambda x: x.sort_key())
[1/2, -I, I]
```

```
>>> [x, 1/x, 1/x**2, x**2, sqrt(x), root(x, 4), x**Rational(3, 2)]
[x, 1/x, x**(-2), x**2, sqrt(x), x**(1/4), x**(3/2)]
>>> sorted(_, key=lambda x: x.sort_key())
[x**(-2), 1/\overline{x, x**(1/4), sqrt(x), \overline{x}, x**(3/2), x**2]}]
```

subs (*args, **kwargs)
Substitutes old for new in an expression after sympifying args.
args is either:

- one iterable argument, e.g. foo.subs(iterable). The iterable may be
o an iterable container with (old, new) pairs. In this case the replacements are processed in the order given with successive patterns possibly affecting replacements already made.
o a dict or set whose key/value items correspond to old/new pairs. In this case the old/new pairs will be sorted by op count and in case of a tie, by number of args and the default_sort_key. The resulting sorted list is then processed as an iterable container (see previous).

If the keyword simultaneous is True, the subexpressions will not be evaluated until all the substitutions have been made.

Examples

```
>>> (1 + x*y).subs({x: pi})
pi*y + 1
>>> (1 + x*y).subs({x: pi, y: 2})
1 + 2*pi
>>> (1 + x*y).subs([(x, pi), (y, 2)])
1 + 2*pi
>> reps = [(y, x**2), (x, 2)]
>>> (x + y).subs(reps)
6
>>> (x + y).subs(reversed(reps))
x**2 + 2
l>> (x**2 + x**4).subs({x**2: y})
```

To replace only the $\mathrm{x}^{* *} 2$ but not the $\mathrm{x}^{* *} 4$, use xreplace:

```
>>> (x**2 + x**4).xreplace({x**2: y})
x**4 + y
```

To delay evaluation until all substitutions have been made, set the keyword simultaneous to True:

```
>> (x/y).subs([(x, 0), (y, 0)])
0
>>> (x/y).subs([(x, 0), (y, 0)], simultaneous=True)
nan
```

This has the added feature of not allowing subsequent substitutions to affect those already made:

```
>>> ((x + y)/y).subs({x + y: y, y: x + y})
1
>>> ((x + y)/y).subs({x + y: y, y: x + y}, simultaneous=True)
y/(x + y)
```

In order to obtain a canonical result, unordered iterables are sorted by count_op length, number of arguments and by the default_sort_key to break any ties. All other iterables are left unsorted.

```
>>> from diofant.abc import e
```

>>> expr $=\operatorname{sqrt}(\sin (2 * x)) * \sin (\exp (x) * x) * \cos (2 * x)+\sin (2 * x)$

```
>>> expr.subs({sqrt(sin(2*x)): a, sin(2*x): b,
*."*}\operatorname{cos(2*x): c, x: d, exp(x): e})
a*c*sin(d*e) + b
```

The resulting expression represents a literal replacement of the old arguments with the new arguments. This may not reflect the limiting behavior of the expression:

```
>>> (x**3 - 3*x).subs({x: 00})
nan
```

```
>>> limit(x**3 - 3*x, x, oo)
00
```

If the substitution will be followed by numerical evaluation, it is better to pass the substitution to evalf as

```
>>> (1/x).evalf(21, subs={x: 3.0}, strict=False)
0.333333333333333333333
```

rather than

```
>>> (1/x).subs({x: 3.0}).evalf(21, strict=False)
0.333333333333333
```

as the former will ensure that the desired level of precision is obtained.

See also:

replace (page 49) replacement capable of doing wildcard-like matching, parsing of match, and conditional replacements
xreplace (page 54) exact node replacement in expr tree; also capable of using matching rules
diofant. core.evalf.EvalfMixin.evalf (page 142) calculates the given formula to a desired level of precision
xreplace(rule)
Replace occurrences of objects within the expression.
Parameters rule (dict-like) - Expresses a replacement rule
Returns xreplace (the result of the replacement)

Examples

```
>>> (1 + x*y).xreplace({x: pi})
pi*y + 1
>>> (1 + x*y).xreplace({x: pi, y: 2})
1 + 2*pi
```

Replacements occur only if an entire node in the expression tree is matched:

```
>>> (x*y + z).xreplace({x*y: pi})
z + pi
>>> (x*y*z).xreplace({x*y: pi})
x*y*z
>>> (2*x).xreplace({2*x: y, x: z})
y
>>> (2*2*x).xreplace({2*x: y, x: z})
4*z
>>> (x + y + 2).xreplace({x + y: 2})
x + y + 2
>>> (x + 2 + exp(x + 2)).xreplace({x + 2: y})
E**y + x + 2
```

xreplace doesn't differentiate between free and bound symbols. In the following, $\operatorname{subs}(\mathrm{x}, \mathrm{y})$ would not change x since it is a bound symbol, but xreplace does:

```
>>> Integral(x, (x, 1, 2*x)).xreplace({x: y})
Integral(y, (y, 1, 2*y))
```

Trying to replace x with an expression raises an error:

```
>>> Integral(x, (x, 1, 2*x)).xreplace({x: 2*y})
Traceback (most recent call last):
ValueError: Invalid limits given: ((2*y, 1, 4*y),)
```


See also:

replace (page 49) replacement capable of doing wildcard-like matching, parsing of match, and conditional replacements
subs (page 52) substitution of subexpressions as defined by the objects themselves.
class diofant.core.basic.preorder_traversal(node, keys=None)
Do a pre-order traversal of a tree.
This iterator recursively yields nodes that it has visited in a pre-order fashion. That is, it yields the current node then descends through the tree breadth-first to yield all of a node's children's pre-order traversal.

For an expression, the order of the traversal depends on the order of .args, which in many cases can be arbitrary.

Parameters

- node (diofant expression) - The expression to traverse.
- keys ((default None) sort key(s)) - The key(s) used to sort args of Basic objects. When None, args of Basic objects are processed in arbitrary order. If key is defined, it will be passed along to ordered() as the only key(s) to use to sort the arguments; if key is simply True then the default keys of ordered will be used.

Yields subtree (diofant expression) - All of the subtrees in the tree.

Examples

The nodes are returned in the order that they are encountered unless key is given; simply passing key=True will guarantee that the traversal is unique.

```
>>> list(preorder traversal((x + y)*z, keys=True))
[z*}(x+y),z,x + y, x, y]
```

skip()
Skip yielding current node's (last yielded node's) subtrees.

Examples

```
>>> pt = preorder_traversal((x+y*z)*z)
>>> for i in pt:
    print(i)
        if i == x + y*z:
                                pt.skip()
z*(x + y*z)
z
x + y*z
```


4.2.5 core

4.2.6 singleton

Singleton mechanism
diofant.core.singleton.S: diofant.core.singleton.SingletonRegistry (page 56) = S

Alias for instance of SingletonRegistry (page 56).
class diofant. core.singleton.Singleton(*args, **kwargs)
Metaclass for singleton classes.
A singleton class has only one instance which is returned every time the class is instantiated. Additionally, this instance can be accessed through the global registry object S (page 56) as S.<class_name>.

Examples

```
>>> class MySingleton(Basic, metaclass=Singleton):
... pass
>>> Basic() is Basic()
False
>>> MySingleton() is MySingleton()
True
>>> S.MySingleton is MySingleton()
True
```


Notes

Instance creation is delayed until the first time the value is accessed.
This metaclass is a subclass of ManagedProperties because that is the metaclass of many classes that need to be Singletons (Python does not allow subclasses to have a different metaclass than the superclass, except the subclass may use a subclassed metaclass).
class diofant. core.singleton. SingletonRegistry
The registry for the singleton classes.
Several classes in Diofant appear so often that they are singletonized, that is, using some metaprogramming they are made so that they can only be instantiated once (see the diofant. core.singleton. Singleton (page 56) class for details). For instance, every time you create Integer (0), this will return the same instance, diofant. core. numbers. Zero (page 93).

```
>>> a = Integer(0)
>>> a is S.Zero
True
```

All singleton instances are attributes of the S (page 56) object, so Integer(0) can also be accessed as S.Zero.

Notes

For the most part, the fact that certain objects are singletonized is an implementation detail that users shouldn't need to worry about. In Diofant library code, is comparison is often used for performance purposes. The primary advantage of S (page 56) for end users is the convenient access to certain instances that are otherwise difficult to type, like S.Half (instead of Rational (1, 2)).

When using is comparison, make sure the argument is a Basic (page 46) instance. For example,

```
>>> int(0) is S.Zero
False
```

class diofant. core.singleton.SingletonWithManagedProperties (*args, **kwargs)
Metaclass for singleton classes with managed properties.

4.2.7 evaluate

diofant. core.evaluate.evaluate (x)
Control automatic evaluation.
This context managers controls whether or not all Diofant functions evaluate by default.
Note that much of Diofant expects evaluated expressions. This functionality is experimental and is unlikely to function as intended on large expressions.

Examples

```
>>> X + x
2*x
>>> with evaluate(False):
... X + X
X + X
```


4.2.8 expr

4.2.9 Expr

class diofant.core.expr.Expr(*args)
Base class for algebraic expressions.
Everything that requires arithmetic operations to be defined should subclass this class, instead of Basic (which should be used only for argument storage and expression manipulation, i.e. pattern matching, substitutions, etc).

See also:

diofant. core.basic.Basic (page 46)

adjoint()

Compute conjugate transpose or Hermite conjugation.

See also:

diofant.functions.elementary.complexes.adjoint (page 286)

```
apart ( \(x=\) None, **args)
```

See the apart function in diofant.polys.
args_cnc (cset=False, warn=True, split_1=True)
Return [commutative factors, non-commutative factors] of self.
self is treated as a Mul and the ordering of the factors is maintained. If cset is True the commutative factors will be returned in a set. If there were repeated factors (as may happen with an unevaluated Mul) then an error will be raised unless it is explicitly suppressed by setting warn to False.
Note: -1 is always separated from a Number unless split_1 is False.

```
>>> A, B = symbols('A B', commutative=0)
>> (-2*x*y).args_cnc()
[[-1, 2, x, y], []]
>>> (-2.5*x).args_cnc()
[[-1, 2.5, x], []]
>>> (-2*x*A*B*y).args_cnc()
[[-1, 2, x, y], [A, B]]
>>> (-2*x*A*B*y).args_cnc(split_1=False)
[[-2, x, y], [A, B]]
>>> (-2*x*y).args cnc(cset=True)
[{-1, 2, x, y}, []]
```

The arg is always treated as a Mul:

```
>>> (-2 + x + A).args_cnc()
[[], [x - 2 + A]]
>>> (-00).args_cnc() # -oo is a singleton
[[-1, 00], []]
```

as_base_exp()

Return base and exp of self.

See also:

diofant.core.power.Pow.as_base_exp (page 102)
as_coeff_Add (rational=False)
Efficiently extract the coefficient of a summation.

as_coeff_Mul (rational=False)

Efficiently extract the coefficient of a product.

as_coeff_add (*deps)

Return the tuple (c, args) where self is written as an Add, a.
c should be a Rational added to any terms of the Add that are independent of deps.
args should be a tuple of all other terms of a; args is empty if self is a Number or if self is independent of deps (when given).
This should be used when you don't know if self is an Add or not but you want to treat self as an Add or if you want to process the individual arguments of the tail of self as an Add.

- if you know self is an Add and want only the head, use self.args[0];
- if you don't want to process the arguments of the tail but need the tail then use self.as_two_terms() which gives the head and tail.
- if you want to split self into an independent and dependent parts use self. as_independent(*deps)

```
>>> (Integer(3)).as_coeff_add()
(3, ())
>>> (3 + x).as_coeff_add()
(3, (x,))
>>> (3 + x + y).as_coeff_add(x)
(y + 3, (x,))
>>> (3 + y).as_coeff_add(x)
(y+3, ())
```

as_coeff_exponent (x) $c^{*} x^{* *} e->c, e$ where x can be any symbolic expression.
as_coeff_mul(*deps, **kwargs)
Return the tuple (c, args) where self is written as a Mul, m.
c should be a Rational multiplied by any terms of the Mul that are independent of deps.
args should be a tuple of all other terms of m; args is empty if self is a Number or if self is independent of deps (when given).
This should be used when you don't know if self is a Mul or not but you want to treat self as a Mul or if you want to process the individual arguments of the tail of self as a Mul.

- if you know self is a Mul and want only the head, use self.args[0];
- if you don't want to process the arguments of the tail but need the tail then use self.as_two_terms() which gives the head and tail;
- if you want to split self into an independent and dependent parts use self. as_independent(*deps)

```
>>> (Integer(3)).as_coeff_mul()
(3, ())
>>> (3*x*y).as_coeff_mul()
(3, (x,y))
>>> (3*x*y).as_coeff_mul(x)
(3*y, (x,))
>>> (3*y).as_coeff_mul(x)
(3*y, ())
```

as_coefficient (expr)
Extracts symbolic coefficient at the given expression.
In other words, this functions separates 'self' into the product of 'expr' and 'expr'free coefficient. If such separation is not possible it will return None.

Examples

```
>>> E.as_coefficient(E)
1
>>> (2*E).as_coefficient(E)
2
>>> (2*sin(E)*E).as_coefficient(E)
```

Two terms have E in them so a sum is returned. (If one were desiring the coefficient of the term exactly matching E then the constant from the returned expression could be selected. Or, for greater precision, a method of Poly can be used to indicate the desired term from which the coefficient is desired.)

```
>>> (2*E + X*E).as_coefficient(E)
x + 2
>>> _.args[0] # just want the exact match
2
>>> p = (2*E + x*E).as_poly()
>>> p
Poly(x*E + 2*E, x, E, domain='ZZ')
>>> p.coeff_monomial(E)
2
```

Since the following cannot be written as a product containing E as a factor, None is returned. (If the coefficient $2 * x$ is desired then the coeff method should be used.)

```
>>> (2*E*x + x).as_coefficient(E)
>>> (2*E*X + x).coēff(E)
2*x
```

>>> ($\left.E^{*}(x+1)+x\right) . a s _c o e f f i c i e n t(E)$

```
>>> (2*pi*I).as coefficient(pi*I)
2
>>> (2*I).as_coefficient(pi*I)
```


See also:

coeff (page 66) return sum of terms have a given factor
as_coeff_Add (page 58) separate the additive constant from an expression
as_coeff_Mul (page 58) separate the multiplicative constant from an expression
as_independent (page 61) separate x-dependent terms/factors from others
diofant. polys.polytools.Poly.coeff_monomial (page 591) efficiently find the single coefficient of a monomial in Poly
as_coefficients_dict()
Return a dictionary mapping terms to their Rational coefficient. Since the dictionary is a defaultdict, inquiries about terms which were not present will return a coefficient of 0 . If an expression is not an Add it is considered to have a single term.

Examples

```
>>> (3*x + a*x + 4).as_coefficients_dict()
{1: 4, x: 3, a*x: 1}
>>> _[a]
0
>>> (3*a*x).as_coefficients_dict()
{a*x: 3}
```

as_content_primitive(radical=False)
This method should recursively remove a Rational from all arguments and return that (content) and the new self (primitive). The content should always be positive
 canonical form and should try to preserve the underlying structure if possible (i.e. expand_mul should not be applied to self).

Examples

```
>>> eq = 2 + 2*x + 2*y*(3 + 3*y)
```

The as_content_primitive function is recursive and retains structure:

```
>>> eq.as_content_primitive()
(2, x + 3*}\mp@subsup{\mp@code{y*}}{}{*}(y+\overline{1})+1
```

Integer powers will have Rationals extracted from the base:

```
>>> ((2 + 6*x)**2).as_content_primitive()
(4, (3*x + 1)**2)
>>>}((2+6*x)**(2*y)).as_content_primitive(
(1, (2*(3*x + 1))**(2*y))
```

Terms may end up joining once their as_content_primitives are added:

```
>>> ((5*(x*(1 + y)) + 2*x*(3 + 3*y))).as_content_primitive()
(11, x*(y + 1))
>>> ((3*(x*(1 + y)) + 2*x*(3 + 3*y))).as_content_primitive()
(9, x*(y + 1))
>>>((3*(z*(1 + y)) + 2.0*x*(3 + 3*y))).as_content_primitive()
(1, 6.0***(y + 1) + 3*z*(y + 1))
>>> ((5*(x*(1 + y)) + 2*x*(3 + 3*y))**2).as content primitive()
(121, x**2*(y + 1)**2)
>>> ((5*(x*(1 + y)) + 2.0*x*(3 + 3*y))**2).as_content_primitive()
(1, 121.0*x**2*(y + 1)**2)
```

Radical content can also be factored out of the primitive:

```
>>> (2*sqrt(2) + 4*sqrt(10)).as_content_primitive(radical=True)
(2, sqrt(2)*(1 + 2*sqrt(5)))
```

as_expr(*gens)

Convert a polynomial to a Diofant expression.

Examples

```
>>> f = (x**2 + x*y).as_poly(x, y)
>>> f.as_expr()
x**2 + x夹y
```

```
>>> sin(x).as_expr()
sin(x)
```

as_independent (*deps, **hint)
A mostly naive separation of a Mul or Add into arguments that are not are dependent on deps. To obtain as complete a separation of variables as possible, use a separation method first, e.g.:

- separatevars() to change Mul, Add and Pow (including exp) into Mul
- .expand(mul=True) to change Add or Mul into Add
- .expand(log=True) to change log expr into an Add

The only non-naive thing that is done here is to respect noncommutative ordering of variables.

The returned tuple (i, d) has the following interpretation:

- i will has no variable that appears in deps
- d will be 1 or else have terms that contain variables that are in deps
- if self is an Add then self $=\mathrm{i}+\mathrm{d}$
- if self is a Mul then self $=i^{*}$ d
- if self is anything else, either tuple (self, Integer(1)) or (Integer(1), self) is returned.
To force the expression to be treated as an Add, use the hint as_Add=True

Examples

- self is an Add

```
>>> (x + x*y).as_independent(x)
(0, x*y + x)
>>> (x + x*y).as_independent(y)
(x, x*y)
>>> (2*x*sin(x) + y + x + z).as_independent(x)
(y + z, 2*x*sin(x) + x)
>>> (2* ** sin(x) + y + x + z).as_independent(x, y)
(z, 2*x*sin(x) + x + y)
```

- self is a Mul

```
>>> (x*sin (x)*\operatorname{cos}(y)).as_independent(x)
(cos(y), x*sin(x))
```

non-commutative terms cannot always be separated out when self is a Mul

```
>>> n1, n2, n3 = symbols('n1 n2 n3', commutative=False)
>>> (n1 + n1*n2).as_independent(n2)
(n1, n1*n2)
>>> (n2*n1 + n1*n2).as_independent(n2)
(0, n1*n2 + n2*n1)
>>> (n1*n2*n3).as_independent(n1)
(1, n1*n2*n3)
>>> (n1*n2*n3).as_independent(n2)
(n1, n2*n3)
>>> ((x-n1)*(x-y)).as_independent (x)
(1, (x - y)*(x - n1))
```

- self is anything else:

```
>>> (sin(x)).as_independent(x)
(1, sin(x))
>>> (sin(x)).as_independent(y)
(sin(x), 1)
>>> exp(x+y).as_independent(x)
(1, E** (x + y))
```

- force self to be treated as an Add:

```
>>> (3*x).as_independent(x, as_Add=True)
(0, 3*x)
```

- force self to be treated as a Mul:

```
>>> (3+x).as independent(x, as Add=False)
(1, x + 3)
>>> (-3+x).as_independent(x, as_Add=False)
(1, x - 3)
```

Note how the below differs from the above in making the constant on the dep term positive.

```
>>> (y*(-3+x)).as_independent(x)
(y, x - 3)
```

- use .as_independent() for true independence testing instead of .has(). The former considers only symbols in the free symbols while the latter considers all symbols

```
>>> I = Integral(x, (x, 1, 2))
>>> I.has(x)
True
>>> x in I.free_symbols
False
>>> I.as_independent(x) == (I, 1)
True
>>> (I + x).as_independent(x) == (I, x)
True
```

Note: when trying to get independent terms, a separation method might need to be used first. In this case, it is important to keep track of what you send to this routine so you know how to interpret the returned values

```
>>> separatevars(exp(x+y)).as_independent(x)
(E**y, E**x)
>>> (x + x*y).as_independent(y)
(x, x*y)
>>> separatevars(x + x*y).as independent(y)
(x, y + 1)
>>> (x*(1 + y)).as_independent(y)
(x, y + 1)
>>> (x*(1 + y)).expand(mul=True).as_independent(y)
(x, x*y)
>>> a, b = symbols('a b', positive=True)
>>> (log(a*b).expand(log=True)).as_independent(b)
(log(a), log(b))
```


See also:

diofant.simplify.simplify.separatevars (page 680), expand (page 68), diofant.core.add.Add.as_two_terms (page 107), diofant.core.mul.Mul. as_two_terms (page 104), as_coeff_add (page 58), as_coeff_mul (page 59)
as_leading_term (*symbols)
Returns the leading (nonzero) term of the series expansion of self.
The _eval_as_leading_term routines are used to do this, and they must always return a non-zero value.

Examples

```
>>> (1 + x + x**2).as_leading_term(x)
1
>>> (1/x**2 + x + x**2).as_leading_term(x)
x**(-2)
```

as_numer_denom()
Expression -> a/b -> a, b.

This is just a stub that should be defined by an object's class methods to get anything else.

See also:

normal (page 78) return a / b instead of a, b
as_ordered_factors (order=None)
Return list of ordered factors (if Mul) else [self].
as_ordered_terms (order=None, data=False)
Transform an expression to an ordered list of terms.

Examples

```
>>> (sin(x)**2*\operatorname{cos(x) + sin(x)**2 + 1).as_ordered_terms()}
[\operatorname{sin}(x)**2*\operatorname{cos}(x), sin(x)**2, 1]
```

as_poly(*gens, **args)
Converts self to a polynomial or returns None.

Examples

```
>>> (x**2 + x*y).as_poly()
Poly(x**2 + x*y, x, y, domain='ZZ')
```

```
>>> (x**2 + x*y).as_poly(x, y)
Poly(x**2 + x*y, x, y, domain='ZZ')
```

```
>>> (x**2 + sin(y)).as_poly(x, y) is None
```

True
as_powers_dict()

Return self as a dictionary of factors with each factor being treated as a power. The keys are the bases of the factors and the values, the corresponding exponents. The resulting dictionary should be used with caution if the expression is a Mul and contains non- commutative factors since the order that they appeared will be lost in the dictionary.
as_real_imag (deep=True, **hints)
Performs complex expansion on 'self' and returns a tuple containing collected both real and imaginary parts. This method can't be confused with re() and im() functions, which does not perform complex expansion at evaluation.

However it is possible to expand both re() and im() functions and get exactly the same results as with a single call to this function.
>>> $x, y=$ symbols('x y ', real=True)

```
>>> (x + y*I).as_real_imag()
(x, y)
```

```
>>> (z + t*I).as_real_imag()
(re(z) - im(t), re(t)}
```

as_terms()

Transform an expression to a list of terms.
aseries ($x, n=6$, bound $=0$, hir $=$ False)
Returns asymptotic expansion for "self".
This is equivalent to self.series (x, oo, n)
Use the hir parameter to produce hierarchical series. It stops the recursion at an early level and may provide nicer and more useful results.
If the most rapidly varying subexpression of a given expression f is f itself, the algorithm tries to find a normalized representation of the mrv set and rewrites f using this normalized representation. Use the bound parameter to give limit on rewriting coefficients in its normalized form.
If the expansion contains an order term, it will be either $0\left(x^{* *}(-n)\right)$ or $0\left(w^{* *}(-n)\right)$ where w belongs to the most rapidly varying expression of self.

Examples

```
>>> e = sin(1/x + exp(-x)) - sin(1/x)
>>> e.series(x, oo)
E**(-x)*(1/(24*x**4) - 1/(2*x**2) + 1 + 0(x**(-6), (x, oo)))
>>> e.aseries(x, n=3, hir=True)
-E**(-2*x)*sin(1/x)/2 + E**(-x)*\operatorname{cos(1/x) + 0(E**(-3*x), (x, 00))}
```

```
>>> e = exp(exp(x)/(1-1/x))
>>> e.aseries(x, bound=3)
```



```
๑E**x/X**2)
>>> e.series(x, 0o)
E**(E**x/(1 - 1/x))
```


Notes

This algorithm is directly induced from the limit computational algorithm provided by Gruntz [Gru96], p.90. It majorly uses the mrv and rewrite sub-routines. The overall idea of this algorithm is first to look for the most rapidly varying subexpression w of a given expression f and then expands f in a series in w . Then same thing is recursively done on the leading coefficient till we get constant coefficients.

References

- https://en.wikipedia.org/wiki/Asymptotic_expansion
cancel (*gens, **args)
See the cancel function in diofant.polys.
property canonical_variables
Return a dictionary mapping any variable defined in self. variables as underscoresuffixed numbers corresponding to their position in self.variables. Enough underscores are added to ensure that there will be no clash with existing free symbols.

Examples

```
>>> Lambda(x, 2*x).canonical_variables
```

\{x: 0_\}
coeff $(x, n=1$, right=False $)$
Returns the coefficient from the term(s) containing $x^{* *} \mathrm{n}$. If n is zero then all terms independent of x will be returned.
When x is noncommutative, the coefficient to the left (default) or right of x can be returned. The keyword 'right' is ignored when x is commutative.

See also:

diofant.core.expr.Expr.as_coefficient (page 59), diofant.core.expr.Expr. as_coeff_Add (page 58), diofant.core.expr.Expr.as_coeff_Mul (page 58), diōfant. $\bar{c} o r e . e x p r . E x p r . a s _i n d e p e n d e n t ~(p a g e ~ 61), ~ d i o f a n t . p o ̄ l y s . p o l y t o o l s . ~$ Poly.coeff_monomial (page 591)

Examples

You can select terms that have an explicit negative in front of them:

```
>>> (-x + 2*y).coeff(-1)
x
>>> (x - 2*y).coeff(-1)
2*y
```

You can select terms with no Rational coefficient:

```
>>> (x + 2*y).coeff(1)
x
>>> (3 + 2*x + 4*x**2).coeff(1)
```

You can select terms independent of x by making $\mathrm{n}=0$; in this case expr.as_independent(x)[0] is returned (and 0 will be returned instead of None):

```
>>> (3 + 2*x + 4*x**2).coeff(x, 0)
3
>>> eq = ((x + 1)**3).expand() + 1
>>> eq
x**3 + 3*x**2 + 3*x + 2
>>> [eq.coeff(x, i) for i in reversed(range(4))]
```

```
[1, 3, 3, 2]
>>> eq -= 2
>>> [eq.coeff(x, i) for i in reversed(range(4))]
[1, 3, 3, 0]
```

You can select terms that have a numerical term in front of them:

```
>>> (-x - 2*y).coeff(2)
-y
>>> (x + sqrt(2)*x).coeff(sqrt(2))
x
```

The matching is exact:

```
>>> (3 + 2*x + 4*x**2).coeff(x)
2
>>> (3 + 2*x + 4*x**2).coeff(x**2)
4
>>> (3 + 2*x + 4*x**2).coeff(x**3)
0
>>> (z* (x + y)**2).coeff((x + y)**2)
z
>>> (z*(x+y)**2).coeff(x + y)
0
```

In addition, no factoring is done, so $1+z^{*}(1+y)$ is not obtained from the following:

```
>>> (x + z*(x + x*y)).coeff(x)
1
```

If such factoring is desired, factor_terms can be used first:

```
>>> factor_terms(x + z*(x + x*y)).coeff(x)
z*(y + 1) + 1
```

```
>>> n, m, o = symbols('n m o', commutative=False)
>>> n.coeff(n)
1
>>> (3*n).coeff(n)
3
>>> (n*m + m*n*m).coeff(n) # = (1 + m)*n*m
1 + m
>>> (n*m + m*n*m).coeff(n, right=True) # = (1 + m)*n*m
m
```

If there is more than one possible coefficient 0 is returned:

```
>>> (n*m + m*n).coeff(n)
0
```

If there is only one possible coefficient, it is returned:

```
>>> (n*m + x*m*n).coeff(m*n)
x
>>> (n*m + x*m*n).coeff(m*n, right=1)
1
```

collect (syms, func=None, evaluate=True, exact=False, distribute_order_term=True) See the collect function in diofant.simplify.
combsimp()
See the combsimp function in diofant.simplify.
compute_leading_term ($x, \log x=$ None $)$
as_leading_term is only allowed for results of .series() This is a wrapper to compute a series first.
conjugate()
Returns the complex conjugate of self.

See also:

diofant.functions.elementary. complexes.conjugate (page 287)
could_extract_minus_sign()
Canonical way to choose an element in the set $\{\mathrm{e},-\mathrm{e}\}$ where e is any expression. If the canonical element is e, we have e.could_extract_minus_sign() $==$ True, else e.could_extract_minus_sign() $==$ False.

For any expression, the set \{e.could_extract_minus_sign(), (-e). could_extract_minus_sign()\} must be \{True, False\}.

```
>>> (x-y).could_extract_minus_sign() != (y-x).could_extract_minus_sign()
True
```

count_ops (visual=None)
Wrapper for count_ops that returns the operation count.
diff(*args, **kwargs)
Alias for diff() (page 128).
equals (other, failing_expression=False)
Return True if self ==other, False if it doesn't, or None. If failing_expression is True then the expression which did not simplify to a 0 will be returned instead of None.
If self is a Number (or complex number) that is not zero, then the result is False.
If self is a number and has not evaluated to zero, evalf will be used to test whether the expression evaluates to zero. If it does so and the result has significance (i.e. the precision is either -1 , for a Rational result, or is greater than 1) then the evalf value will be used to return True or False.
expand (deep=True, modulus=None, power_base=True, power_exp=True, mul=True, $\log =$ True, multinomial=True, basic=True, **hints)
Expand an expression using hints.
See also:
diofant. core.function.expand (page 133)
extract_additively(c)
Return self - c if it's possible to subtract c from self and make all matching coefficients move towards zero, else return None.

Examples

```
>>> e = 2*x + 3
>>> e.extract_additively(x + 1)
x + 2
>>> e.extract_additively(3*x)
>>> e.extract additively(4)
>>> (y*(x + 1)).extract_additively(x + 1)
>>> ((x + 1)*(x + 2*y + 1) + 3).extract_additively(x + 1)
(x+1)*(x + 2*y) + 3
```

Sometimes auto-expansion will return a less simplified result than desired; gcd_terms might be used in such cases:

```
>>> (4*x*(y + 1) + y).extract_additively(x)
4*x*(y + 1) + x*(4*y + 3) - x*}(4*y + 4) + y
>>> gcd terms(_)
x*(4*y + 3) + y
```


See also:

extract_multiplicatively (page 69), coeff (page 66), as_coefficient (page 59)
extract_branch_factor (allow_half=False)
Try to write self as exp_polar(2*pi*I*n)*z in a nice way. Return (z, n).

```
>>> exp_polar(I*pi).extract_branch_factor()
(exp_polar(I*pi), 0)
>>> exp_polar(2*I*pi).extract branch factor()
(1, 1)
>>> exp polar(-pi*I).extract branch factor()
(exp_po\ar(I*pi), -1)
>>> exp_polar(3*pi*I + x).extract_branch_factor()
(exp po\ar(x + I*pi), 1)
>>> (y*exp_polar(-5*pi*I)*exp_polar(3*pi*I + 2*pi*x)).extract_branch_factor()
(y*exp polăr(2*pi*x), -1)
>>> exp_polar(-I*pi/2).extract_branch_factor()
(exp_polar(-I*pi/2), 0)
```

If allow_half is True, also extract exp_polar(I^{*} pi):

```
>>> exp polar(I*pi).extract branch factor(allow half=True)
(1, 1/2)
>>> exp_polar(2*I*pi).extract_branch_factor(allow_half=True)
(1, 1)
>>> exp_polar(3*I*pi).extract_branch_factor(allow_half=True)
(1, 3/2)
>>> exp_polar(-I*pi).extract_branch_factor(allow_half=True)
(1, -1/2)
```


extract_multiplicatively(c)

Return None if it's not possible to make self in the form c * something in a nice way, i.e. preserving the properties of arguments of self.

```
>>> x, y = symbols('x y', real=True)
```

```
>>> ((x*y)**3).extract_multiplicatively(x**2 * y)
x*y**2
```

>>> (($\left.\left.x^{*} y\right)^{* * 3}\right)$.extract_multiplicatively (x**4 * y)

```
>>> (2*x).extract_multiplicatively(2)
X
```

>>> (2*x).extract_multiplicatively(3)
>>> (Rational(1, 2)*x).extract_multiplicatively(3)
x/6
factor (*gens, **args)
See the factor() function in diofant.polys.polytools.

```
get0()
```

Returns the additive $\mathrm{O}(.$.$) symbol if there is one, else None.$
getn ()
Returns the order of the expression.
The order is determined either from the $\mathrm{O}(\ldots)$ term. If there is no $\mathrm{O}(\ldots)$ term, it returns None.

Examples

```
>>> (1 + x + 0(x**2)).getn()
2
>>> (1 + x).getn()
```

integrate (*args, **kwargs)
See the integrate function in diofant.integrals.
invert (g, *gens, **args)
Return the multiplicative inverse of self mod g where self (and g) may be symbolic expressions).

See also:

diofant.core.numbers.mod_inverse (page 93), diofant.polys.polytools. invert (page 613)
property is_algebraic
Test if self can have only values from the set of algebraic numbers.

References

- https://en.wikipedia.org/wiki/Algebraic_number

is_algebraic_expr(*syms)

This tests whether a given expression is algebraic or not, in the given symbols, syms. When syms is not given, all free symbols will be used. The rational function does not have to be in expanded or in any kind of canonical form.

This function returns False for expressions that are "algebraic expressions" with symbolic exponents. This is a simple extension to the is_rational_function, including rational exponentiation.

Examples

```
>>> x = Symbol('x', real=True)
>>> sqrt(1 + x).is_rational_function()
False
>>> sqrt(1 + x).is_algebraic_expr()
True
```

This function does not attempt any nontrivial simplifications that may result in an expression that does not appear to be an algebraic expression to become one.

```
>>> a = sqrt(exp(x)**2 + 2*exp(x) + 1)/(exp(x) + 1)
>>> a.is_algebraic_expr(x)
False
>>> factor(a).is_algebraic_expr()
True
```


See also:

is_rational_function (page 76)

References

- https://en.wikipedia.org/wiki/Algebraic_expression
property is_commutative
Test if self commutes with any other object wrt multiplication operation.
property is_comparable
Test if self can be computed to a real number with precision.

Examples

```
>>> (I*exp_polar(I*pi/2)).is_comparable
True
>>> (I*exp_polar(I*pi*2)).is_comparable
False
```

property is_complex
Test if self can have only values from the set of complex numbers.

See also:

is_real (page 77)
property is_composite
Test if self is a positive integer that has at least one positive divisor other than 1 or the number itself.

References

- https://en.wikipedia.org/wiki/Composite_number
is_constant (*wrt, **flags)
Return True if self is constant, False if not, or None if the constancy could not be determined conclusively.
If an expression has no free symbols then it is a constant. If there are free symbols it is possible that the expression is a constant, perhaps (but not necessarily) zero. To test such expressions, two strategies are tried:

1) numerical evaluation at two random points. If two such evaluations give two different values and the values have a precision greater than 1 then self is not constant. If the evaluations agree or could not be obtained with any precision, no decision is made. The numerical testing is done only if wrt is different than the free symbols.
2) differentiation with respect to variables in 'wrt' (or all free symbols if omitted) to see if the expression is constant or not. This will not always lead to an expression that is zero even though an expression is constant (see added test in test_expr.py). If all derivatives are zero then self is constant with respect to the given symbols.
If neither evaluation nor differentiation can prove the expression is constant, None is returned unless two numerical values happened to be the same and the flag failing_number is True - in that case the numerical value will be returned.

If flag simplify=False is passed, self will not be simplified; the default is True since self should be simplified before testing.

Examples

```
>>> x.is_constant()
False
>>> Integer(2).is_constant()
True
>>> Sum(x, (x, 1, 10)).is_constant()
True
>>> Sum(x, (x, 1, n)).is_constant()
False
>>> Sum(x, (x, 1, n)).is_constant(y)
True
>>> Sum(x, (x, 1, n)).is_constant(n)
False
>>> Sum(x, (x, 1, n)).is_constant(x)
True
>>> eq = a*cos(x)**2 + a*sin(x)**2 - a
>>> eq.is_constant()
True
>>> eq.subs({x: pi, a: 2}) == eq.subs({x: pi, a: 3}) == 0
True
```

```
>>> (0**x).is_constant()
False
>>> x.is_constant()
False
>>> (x**x).is_constant()
False
>>> one = cos(x)**2 + \operatorname{sin}(x)**2
```

```
>>> one.is_constant()
True
>>> ((one - 1)**(x + 1)).is_constant() in (True, False) # could be 0 or 1
True
```

property is_even
Test if self can have only values from the set of even integers.

See also:

is_odd (page 75)

References

- https://en.wikipedia.org/wiki/Parity_\(mathematics\)
property is_extended_real
Test if self can have only values on the extended real number line.

See also:

is_real (page 77)

References

- https://en.wikipedia.org/wiki/Extended_real_number_line
property is_finite
Test if self absolute value is bounded.

References

- https://en.wikipedia.org/wiki/Finite
is_hypergeometric (n)
Test if self is a hypergeometric term in n.
Term $a(n)$ is hypergeometric if it is annihilated by first order linear difference equations with polynomial coefficients or, in simpler words, if consecutive term ratio is a rational function.

See also:

diofant.simplify.simplify.hypersimp (page 682)
property is_imaginary
Test if self is an imaginary number.
I.e. that it can be written as a real number multiplied by the imaginary unit I.

References

- https://en.wikipedia.org/wiki/Imaginary_number
property is_infinite
Test if self absolute value can be arbitrarily large.

References

- math.isfinite()
- numpy.isfinite
property is_integer
Test if self can have only values from the set of integers.
property is_irrational
Test if self value cannot be represented exactly by Rational.

References

- https://en.wikipedia.org/wiki/Irrational_number

property is_negative

Test if self can have only negative values.

References

- https://en.wikipedia.org/wiki/Negative_number
property is_noninteger
Test if self can have only values from the subset of real numbers, that aren't integers.
property is_nonnegative
Test if self can have only nonnegative values.

See also:

is_negative (page 74)

References

- https://en.wikipedia.org/wiki/Negative_number
property is_nonpositive
Test if self can have only nonpositive values.
property is_nonzero
Test if self is nonzero.

See also:

is_zero (page 78)

property is_number

Returns True if 'self' has no free symbols.
It will be faster than if not self.free_symbols, however, since is_number will fail as soon as it hits a free symbol.

Examples

```
>>> x.is_number
False
>>> (2*x).is number
False
>>> (2 + log(2)).is_number
True
>>> (2 + Integral(2, x)).is_number
False
>>> (2 + Integral(2, (x, 1, 2))).is_number
True
```

property is_odd

Test if self can have only values from the set of odd integers.

See also:

```
is_even (page 73)
```


References

- https://en.wikipedia.org/wiki/Parity_\(mathematics\)

property is_polar

Test if self can have values from the Riemann surface of the logarithm.

See also:

diofant.functions.elementary.complexes.polar_lift (page 287), diofant. functions.elementary.complexes.principal_branch (page 288), diofant. functions.elementary. exponential.exp_polar (page 306)

is_polynomial (*syms)

Return True if self is a polynomial in syms and False otherwise.
This checks if self is an exact polynomial in syms. This function returns False for expressions that are "polynomials" with symbolic exponents. Thus, you should be able to apply polynomial algorithms to expressions for which this returns True, and Poly(expr, *syms) should work if and only if expr.is_polynomial(*syms) returns True. The polynomial does not have to be in expanded form. If no symbols are given, all free symbols in the expression will be used.
This is not part of the assumptions system. You cannot do Symbol('z', polynomial=True).

Examples

```
>>> ((x**2 + 1)**4).is_polynomial(x)
True
>>> ((x**2 + 1)**4).is_polynomial()
True
>>> (2**x + 1).is_polynomial(x)
False
```

```
>>> n = Symbol('n', nonnegative=True, integer=True)
>>> (x**n + 1).is polynomial(x)
False
```

This function does not attempt any nontrivial simplifications that may result in an expression that does not appear to be a polynomial to become one.

```
>>> y = Symbol('y', positive=True)
>>> a = sqrt(y**2 + 2*y + 1)
>>> a.is_polynomial(y)
False
>>> factor(a)
y + 1
>>> factor(a).is_polynomial(y)
True
```

```
>>> b = (y**2 + 2*y + 1)/(y + 1)
>>> b.is_polynomial(y)
False
>>> cancel(b)
y + 1
>>> cancel(b).is_polynomial(y)
True
```


See also:

is_rational_function (page 76)
property is_positive
Test if self can have only positive values.
property is_prime
Test if self is a natural number greater than 1 that has no positive divisors other than 1 and itself.

References

- https://en.wikipedia.org/wiki/Prime_number

property is_rational

Test if self can have only values from the set of rationals.

is_rational_function (*syms)

Test whether function is a ratio of two polynomials in the given symbols, syms. When syms is not given, all free symbols will be used. The rational function does not have to be in expanded or in any kind of canonical form.
This function returns False for expressions that are "rational functions" with symbolic exponents. Thus, you should be able to call .as_numer_denom() and apply polynomial algorithms to the result for expressions for which this returns True.

This is not part of the assumptions system. You cannot do Symbol('z', rational_function=True).

Examples

```
>>> (x/y).is_rational_function()
True
```

```
>>> (x**2).is_rational_function()
True
```

```
>>> (x/sin(y)).is_rational_function(y)
False
```

```
>>> n = Symbol('n', integer=True)
>> (x**n + 1).is_rational_function(x)
False
```

This function does not attempt any nontrivial simplifications that may result in an expression that does not appear to be a rational function to become one.

```
>>> y = Symbol('y', positive=True)
>>> a = sqrt(y**2 + 2*y + 1)/y
>>> a.is_rational_function(y)
False
>>> factor(a)
(y + 1)/y
>>> factor(a).is_rational_function(y)
True
```


See also:

is_algebraic_expr (page 70)
property is_real
Test if self can have only values from the set of real numbers.

See also:

is_complex (page 71)

References

- https://en.wikipedia.org/wiki/Real_number
property is_transcendental
Test if self can have only values from the set of transcendental numbers.

References

- https://en.wikipedia.org/wiki/Transcendental_number
property is_zero
Test if self is zero.

See also:

is_nonzero (page 74)
limit(x, xlim, dir='+')
Compute limit x ->xlim.
normal()
Canonicalize ratio, i.e. return numerator if denominator is 1 .
nseries ($x, n=6, \log x=$ None $)$
Calculate " n " terms of series in x around 0
This calculates n terms of series in the innermost expressions and then builds up the final series just by "cross-multiplying" everything out.
Advantage - it's fast, because we don't have to determine how many terms we need to calculate in advance.

Disadvantage - you may end up with less terms than you may have expected, but the $\mathrm{O}\left(\mathrm{x}^{* *} \mathrm{n}\right)$ term appended will always be correct and so the result, though perhaps shorter, will also be correct.

Parameters

- \mathbf{x} (Symbol) - variable for series expansion (positive and finite symbol)
- n (Integer, optional) - number of terms to calculate. Default is 6 .
- $\log \mathbf{x}$ (Symbol, optional) - This can be used to replace any $\log (\mathrm{x})$ in the returned series with a symbolic value to avoid evaluating $\log (\mathrm{x})$ at 0 .

See also:

series (page 80)

Examples

```
>>> sin(x).nseries(x)
x - x**3/6 + x**5/120 + 0(x**7)
>>> log(x + 1).nseries(x, 5)
x - x**2/2 + x**3/3 - x**4/4 + 0(x**5)
```

Handling of the logx parameter - in the following example the expansion fails since sin does not have an asymptotic expansion at -oo (the limit of $\log (x)$ as x approaches $0)$.

```
>>> e = sin(log(x))
>>> e.nseries(x)
Traceback (most recent call last):
PoleError: ...
>>> logx = Symbol('logx')
```

```
>>> e.nseries(x, logx=logx)
sin(logx)
```


Notes

This method call the helper method _eval_nseries. Such methods should be implemented in subclasses.

The series expansion code is an important part of the gruntz algorithm for determining limits. _eval_nseries has to return a generalized power series with coefficients in $C(\log (x), \log)$:

```
c_0*x**e_0 + ... (finitely many terms)
```

where e_i are numbers (not necessarily integers) and c_i involve only numbers, the function \log, and $\log (\mathrm{x})$. (This also means it must not contain $\log (\mathrm{x}(1+\mathrm{p})$), this has to be expanded to $\log (x)+\log (1+p)$ if p .is_positive.)
nsimplify (constants=[], tolerance=None, full=False)
See the nsimplify function in diofant.simplify.
powsimp (**args)
See the powsimp function in diofant.simplify.
primitive()
Return the positive Rational that can be extracted non-recursively from every term of self (i.e., self is treated like an Add). This is like the as_coeff_Mul() method but primitive always extracts a positive Rational (never a negative or a Float).

Examples

```
>>> (3*(x + 1)**2).primitive()
(3, (x + 1)**2)
>>> a = (6*x + 2)
>>> a.primitive()
(2, 3*x + 1)
>> b = (x/2 + 3)
>>> b.primitive()
(1/2, x + 6)
>>> (a*b).primitive()
(1,}(x/2+3)*(6*x+2)
```


radsimp (**kwargs)

See the radsimp function in diofant.simplify.
ratsimp()
See the ratsimp function in diofant.simplify.
remove0()
Removes the additive $\mathrm{O}(.$.$) symbol if there is one.$
round ($p=0$)
Return x rounded to the given decimal place.
If a complex number would results, apply round to the real and imaginary components of the number.

Examples

```
>>> Float(10.5).round()
11.
>>> pi.round()
3.
>>> pi.round(2)
3.14
>>> (2*pi + E*I).round()
6.0 + 3.0*I
```

The round method has a chopping effect:

```
>>> (2*pi + I/10).round()
6.
>>> (pi/10 + 2*I).round()
2.0*I
>>> (pi/10 + E*I).round(2)
0.31 + 2.72*I
```


Notes

Do not confuse the Python builtin function, round, with the Diofant method of the same name. The former always returns a float (or raises an error if applied to a complex value) while the latter returns either a Number or a complex number:

```
>>> isinstance(round(Integer(123), -2), Number)
False
>>> isinstance(Integer(123).round(-2), Number)
True
>>> isinstance((3*I).round(), Mul)
True
>>> isinstance((1 + 3*I).round(), Add)
True
```

series ($x=$ None, $x 0=0, n=6, \operatorname{dir}='+', \log x=$ None)
Series expansion of "self" around $\mathrm{x}=\mathrm{x} 0$ yielding either terms of the series one by one (the lazy series given when $n=$ None), else all the terms at once when $n!=$ None.
Returns the series expansion of "self" around the point $\mathrm{x}=\mathrm{x} 0$ with respect to x up to $0\left((\mathrm{x}-\mathrm{x} 0)^{* *} \mathrm{n}, \mathrm{x}, \mathrm{x} 0\right)$ (default n is 6).

If $x=$ None and sel f is univariate, the univariate symbol will be supplied, otherwise an error will be raised.

```
>>> cos(x).series()
1 - x**2/2 + x**4/24 + 0(x**6)
>>> cos(x).series(n=4)
1 - x**2/2 + 0(x**4)
>>> cos(x).series(x, x0=1, n=2)
cos(1) - (x - 1)*sin(1) + 0((x - 1)**2, (x, 1))
>> e = cos(x + exp(y))
>>> e.series(y, n=2)
cos(x + 1) - y*sin(x + 1) + 0(y**2)
>>> e.series(x, n=2)
cos(E**y) - x*sin(E**y) + 0(x**2)
```

If $n=$ None then a generator of the series terms will be returned.

```
>>> term = cos(x).series(n=None)
>>> [next(term) for i in range(2)]
[1, -x**2/2]
```

For dir=+ (default) the series is calculated from the right and for dir=- the series from the left. For smooth functions this flag will not alter the results.

```
>>> abs(x).series(dir='+')
x
>>> abs(x).series(dir=' -')
-x
```

For rational expressions this method may return original expression.

```
>>> (1/x).series(x, n=8)
1/x
```

simplify (ratio=1.7, measure=None)
See the simplify function in diofant.simplify.
sort_key (order=None)
Return a sort key.
taylor_term(n, x, *previous_terms)
General method for the taylor term.
This method is slow, because it differentiates n-times. Subclasses can redefine it to make it faster by using the "previous_terms".

together (*args, **kwargs)

See the together function in diofant.polys.
transpose()
Transpose self.
See also:
diofant.functions.elementary. complexes.transpose (page 289)
trigsimp(**args)
See the trigsimp function in diofant.simplify.

4.2.10 AtomicExpr

class diofant.core.expr.AtomicExpr(*args)
A parent class for object which are both atoms and Exprs.
For example: Symbol, Number, Rational, Integer, ... But not: Add, Mul, Pow, ...

Diofant Documentation, Release 0.13.0

4.2.11 symbol

Symbol

class diofant.core.symbol.Symbol(name, **assumptions) Symbol is a placeholder for atomic symbolic expression.

It has a name and a set of assumptions.

Parameters

- name (str) - The name for Symbol.
- **assumptions (dict) - Keyword arguments to specify assumptions for Symbol. Default assumption is commutative=True.

Examples

```
>> a, b = symbols('a b')
>>> bool(a*b == b*a)
True
```

You can override default assumptions:

```
>>> A, B = symbols('A B', commutative=False)
>>> bool(A*B != B*A)
True
>>> bool(A*B*2 == 2*A*B) is True # multiplication by scalars is commutative
True
```


See also:

diofant. core.assumptions (page 44), Dummy (page 83), Wild (page 82)

Wild
class diofant.core.symbol.Wild(name, exclude $=()$, properties $=(), *$ assumptions) A Wild symbol matches anything, whatever is not explicitly excluded.

Examples

```
>>> a = Wild('a')
>>> x.match(a)
{a: x}
>>> pi.match(a)
{a : pi}
>>> (3*x**2).match(a*x)
{a_: 3*x}
>>> cos(x).match(a)
{a_: cos(x)}
>>> b = Wild('b', exclude=[x])
>>> (3*x**2).match(b*x)
>> b.match(a)
{a: b }
>>> A = WildFunction('A')
>>> A.match(a)
{a_: A_}
```


Notes

When using Wild, be sure to use the exclude keyword to make the pattern more precise. Without the exclude pattern, you may get matches that are technically correct, but not what you wanted. For example, using the above without exclude:

```
>>> a, b = symbols('a b', cls=Wild)
>>> (2 + 3*y).match(a*x + b*y)
{a_: 2/x, b_: 3}
```

This is technically correct, because $(2 / \mathrm{x})^{*} \mathrm{x}+3 * \mathrm{y}==2+3 * \mathrm{y}$, but you probably wanted it to not match at all. The issue is that you really didn't want a and b to include x and y, and the exclude parameter lets you specify exactly this. With the exclude parameter, the pattern will not match.

```
>>> a = Wild('a', exclude=[x, y])
>>> b = Wild('b', exclude=[x, y])
>>> (2 + 3*y).match(a*x + b*y)
```

Exclude also helps remove ambiguity from matches.

```
>>> E = 2*x**3*y*z
>>> a, b = symbols('a b', cls=Wild)
>> E.match(a*b)
{a : 2*y*z, b : x**3}
>>> a = Wild('a', exclude=[x, y])
>>> E.match(a*b)
{a_: z, b_: 2*x**3*y}
>>> a = W\overline{i}ld('a', exclude=[x, y, z])
>>> E.match(a*b)
{a_: 2, b_: x**3*y*z}
```


See also:

Symbol (page 82)

Dummy

class diofant.core.symbol. Dummy (name=None, **assumptions)
Dummy symbols are each unique, identified by an internal count index:

```
>>> bool(Dummy('X') == Dummy('X')) is True
False
```

If a name is not supplied then a string value of the count index will be used. This is useful when a temporary variable is needed and the name of the variable used in the expression is not important.

```
>>> Dummy()
    Dummy_10
```


See also:

```
Symbol (page 82)
```


classmethod class_key()

Nice order of classes.
sort_key (order=None)
Return a sort key.

symbols

diofant.core.symbol.symbols(names, **args)
Transform strings into instances of Symbol (page 82) class.
symbols() (page 84) function returns a sequence of symbols with names taken from names argument, which can be a comma or whitespace delimited string, or a sequence of strings:

```
>>> a, b, c = symbols('a b c')
```

The type of output is dependent on the properties of input arguments:

```
>>> symbols('x')
x
>>> symbols('x,')
(x,)
>>> symbols('x,y')
(x, y)
>>> symbols(('a', 'b', 'c'))
(a, b, c)
>>> symbols(['a', 'b', 'c'])
[a, b, c]
>> symbols({'a', 'b', 'c'})
{a, b, c}
```

If an iterable container is needed for a single symbol, set the seq argument to True or terminate the symbol name with a comma:

```
>>> symbols('x', seq=True)
(x,)
```

To reduce typing, range syntax is supported to create indexed symbols. Ranges are indicated by a colon and the type of range is determined by the character to the right of the colon. If the character is a digit then all contiguous digits to the left are taken as the nonnegative starting value (or 0 if there is no digit left of the colon) and all contiguous digits to the right are taken as 1 greater than the ending value:

```
>>> symbols('x:10')
(x0, x1, x2, x3, x4, x5, x6, x7, x8, x9)
>>> symbols('x5:10')
(x5, x6, x7, x8, x9)
>>> symbols('x5(:2)')
(x50, x51)
>>> symbols('x5:10 y:5')
(x5, x6, x7, x8, x9, y0, y1, y2, y3, y4)
>>> symbols(('x5:10', 'y:5'))
((x5, x6, x7, x8, x9), (y0, y1, y2, y3, y4))
```

If the character to the right of the colon is a letter, then the single letter to the left (or ' a ' if there is none) is taken as the start and all characters in the lexicographic range through the letter to the right are used as the range:

```
>>> symbols('x:z')
(x, y, z)
>>> symbols('x:c') # null range
()
```

```
>>> symbols('x(:c)')
(xa, xb, xc)
>>> symbols(':c')
(a, b, c)
>>> symbols('a:d, x:z')
(a, b, c, d, x, y, z)
>>> symbols(('a:d', 'x:z'))
((a, b, c, d), (x, y, z))
```

Multiple ranges are supported; contiguous numerical ranges should be separated by parentheses to disambiguate the ending number of one range from the starting number of the next:

```
>>> symbols('x:2(1:3)')
(x01, x02, x11, x12)
>> symbols(':3:2') # parsing is from left to right
(00, 01, 10, 11, 20, 21)
```

Only one pair of parentheses surrounding ranges are removed, so to include parentheses around ranges, double them. And to include spaces, commas, or colons, escape them with a backslash:

```
>>> symbols('x((a:b))')
(x(a), x(b))
>>> symbols(r'x(:1\,:2)') # or 'x((:1)\,(:2))'
(x(0,0), x(0,1))
```

All newly created symbols have assumptions set according to args:

```
>>> a = symbols('a', integer=True)
>>> a.is_integer
True
>>> x, y, z = symbols('x y z', real=True)
>>> x.is_real and y.is_real and z.is_real
True
```

Despite its name, symbols() (page 84) can create symbol-like objects like instances of Function or Wild classes. To achieve this, set cls keyword argument to the desired type:

```
>>> symbols('f g h', cls=Function)
(f, g, h)
>>> type(_[0])
<class 'diofant.core.function.UndefinedFunction'>
```


var

diofant.core.symbol.var(names, **args)
Create symbols and inject them into the global namespace.
This calls symbols() (page 84) with the same arguments and puts the results into the global namespace. It's recommended not to use var() (page 86) in library code, where symbols() (page 84) has to be used.

Examples

```
>>> var('x')
x
>>> x
x
```

```
>>> var('a ab abc')
(a, ab, abc)
>>> abc
abc
```

```
>>> var('x y', real=True)
(x, y)
>>> x.is real and y.is real
True
```


See also:

symbols (page 84)

4.2.12 numbers

Number

class diofant.core.numbers.Number (*obj)
Represents any kind of number in diofant.
Floating point numbers are represented by the Float class. Integer numbers (of any size), together with rational numbers (again, there is no limit on their size) are represented by the Rational class.

```
as_coeff_Add(rational=False)
```

Efficiently extract the coefficient of a summation.
as_coeff_Mul (rational=False)
Efficiently extract the coefficient of a product.
as_coeff_add(*deps)
Return the tuple (c, args) where self is written as an Add.
See also:
diofant.core.expr.Expr.as_coeff_add (page 58)
as_coeff_mul (*deps, **kwargs)
Return the tuple (c, args) where self is written as a Mul.

See also:

diofant.core.expr.Expr.as_coeff_mul (page 59)
classmethod class_key()
Nice order of classes.
cofactors(other)
Compute GCD and cofactors of self and other.
gcd (other)
Compute GCD of self and other.
is_constant (*wrt, **flags)
Return True if self is constant.

See also:

diofant.core.expr.Expr.is_constant (page 72)
lcm(other)
Compute LCM of self and other.
sort_key (order=None)
Return a sort key.

Float

class diofant.core.numbers.Float(num, $d p s=$ None)
Represent a floating-point number of arbitrary precision.

Examples

```
>>> Float(3.5)
3.50000000000000
>>> Float(3)
3.
```

Creating Floats from strings (and Python int type) will give a minimum precision of 15 digits, but the precision will automatically increase to capture all digits entered.

```
>>> Float(1)
1.
>>> Float(10**20)
100000000000000000000.
>>> Float('1e20')
1.e+20
```

However, floating-point numbers (Python float types) retain only 15 digits of precision:

```
>>> Float(1e20)
1.00000000000000e+20
>>> Float(1.23456789123456789)
1.23456789123457
```

It may be preferable to enter high-precision decimal numbers as strings:

```
>>> Float('1.23456789123456789')
1.23456789123456789
```

The desired number of digits can also be specified:

```
>>> Float('1e-3', 3)
0.00100
>>> Float(100, 4)
100.0
```

Float can automatically count significant figures if decimal precision argument is omitted. (Auto-counting is only allowed for strings and ints).

```
>>> Float('12e-3')
0.012
>>> Float(3)
3.
>>> Float('60.e2') # 2 digits significant
6.0e+3
>>> Float('6000.') # 4 digits significant
6000.
>>> Float('600e-2') # 3 digits significant
6 . 0 0
```


Notes

Floats are inexact by their nature unless their value is a binary-exact value.

```
>>> approx, exact = Float(.1, 1), Float(.125, 1)
```

For calculation purposes, you can change the precision of Float, but this will not increase the accuracy of the inexact value. The following is the most accurate 5-digit approximation of a value of 0.1 that had only 1 digit of precision:

```
>>> Float(approx, 5)
0.099609
```

Please note that you can't increase precision with evalf:

```
>>> approx.evalf(5)
Traceback (most recent call last):
PrecisionExhausted: ...
```

By contrast, 0.125 is exact in binary (as it is in base 10) and so it can be passed to Float constructor to obtain an arbitrary precision with matching accuracy:

```
>>> Float(exact, 5)
0.12500
>>> Float(exact, 20)
0.12500000000000000000
```

Trying to make a high-precision Float from a float is not disallowed, but one must keep in mind that the underlying float (not the apparent decimal value) is being obtained with high precision. For example, 0.3 does not have a finite binary representation. The closest rational is the fraction $5404319552844595 / 2^{* *} 54$. So if you try to obtain a Float of 0.3 to 20 digits of precision you will not see the same thing as 0.3 followed by 19 zeros:

```
>>> Float(0.3, 20)
0.29999999999999998890
```

If you want a 20 -digit value of the decimal 0.3 (not the floating point approximation of 0.3) you should send the 0.3 as a string. The underlying representation is still binary but a higher precision than Python's float is used:

```
>>> Float('0.3', 20)
0.30000000000000000000
```

Although you can increase the precision of an existing Float using Float it will not increase the accuracy - the underlying value is not changed:

```
>>> def show(f): # binary rep of Float
.". from diofant import Mul, Pow
# s, m, e, b = f._mpf
# V = Mul(int(m), - Pow(2, int(e), evaluate=False), evaluate=False)
... print(f'{v} at prec={f._prec}')
>>> t = Float('0.3', 3)
>>> show(t)
4915/2**14 at prec=13
>>> show(Float(t, 20)) # higher prec, not higher accuracy
4915/2**14 at prec=70
>>> show(Float(t, 2)) # lower prec
307/2**10 at prec=10
```

ceiling()
Compute ceiling of self.
epsilon_eq(other, epsilon='1e-15')
Test approximate equality.
floor()
Compute floor of self.
property num
Return mpmath representation.

Rational

class diofant.core.numbers.Rational($p, q=1$)
Represents integers and rational numbers (p / q) of any size.

Examples

```
>>> Rational(3)
3
>>> Rational(1, 2)
1/2
```

Rational is unprejudiced in accepting input. If a float is passed, the underlying value of the binary representation will be returned:

```
>>> Rational(.5)
1/2
>>> Rational(.2)
3602879701896397/18014398509481984
```

If the simpler representation of the float is desired then consider limiting the denominator to the desired value or convert the float to a string (which is roughly equivalent to limiting the denominator to $10 * * 12$):

```
>>> Rational(str(.2))
1/5
>>> Rational(.2).limit_denominator(10**12)
1/5
```

An arbitrarily precise Rational is obtained when a string literal is passed:

```
>>> Rational('1.23')
123/100
>>> Rational('1e-2')
1/100
>>> Rational('.1')
1/10
```

The conversion of floats to expressions or simple fractions can be handled with nsimplify:

```
>>> nsimplify(.3) # numbers that have a simple form
3/10
```

But if the input does not reduce to a literal Rational, an error will be raised:

```
>>> Rational(pi)
Traceback (most recent call last):
TypeError: invalid input: pi
```

Low-level access numerator and denominator:

```
>>> r = Rational(3, 4)
>>> r
3/4
>>> r.numerator
3
>>> r.denominator
4
```

Note that these properties return integers (not Diofant Integers) so some care is needed when using them in expressions:

```
>>> r.numerator/r.denominator
0.75
```


See also:

diofant.core.sympify.sympify (page 41), diofant.simplify.simplify.nsimplify (page 683)

```
as_content_primitive(radical=False)
```

Return the tuple (R , self/R) where R is the positive Rational extracted from self.

Examples

```
>>> Rational(-3, 2).as_content_primitive()
(3/2, -1)
```

See also:
diofant.core.expr.Expr.as_content_primitive (page 60)
factors (limit=None, use_trial=True, use_rho=False, use_pm1=False, verbose=False, visual=False)
A wrapper to factorint which return factors of self that are smaller than limit (or cheap to compute). Special methods of factoring are disabled by default so that only trial division is used.
gcd (other)
Compute GCD of self and other.
lcm(other)
Compute LCM of self and other.
limit_denominator (max_denominator=1000000)
Closest Rational to self with denominator at most max_denominator.

```
>>> Rational('3.141592653589793').limit_denominator(10)
22/7
>>> Rational('3.141592653589793').limit_denominator(100)
311/99
```


Integer

class diofant.core.numbers.Integer(i)
Represents integer numbers.
property is_composite
Test if self is a positive integer that has at least one positive divisor other than 1 or the number itself.

References

- https://en.wikipedia.org/wiki/Composite_number

property is_even

Test if self can have only values from the set of even integers.

See also:

is_odd (page 92)

References

- https://en.wikipedia.org/wiki/Parity_\(mathematics\)
property is_imaginary
Test if self is an imaginary number.
I.e. that it can be written as a real number multiplied by the imaginary unit I.

References

- https://en.wikipedia.org/wiki/Imaginary_number
property is_nonzero
Test if self is nonzero.
See also:
is_zero (page 92)
property is_odd
Test if self can have only values from the set of odd integers.

See also:

is_even (page 91)

References

- https://en.wikipedia.org/wiki/Parity_\(mathematics\)
property is_prime
Test if self is a natural number greater than 1 that has no positive divisors other than 1 and itself.

References

- https://en.wikipedia.org/wiki/Prime_number
property is_zero
Test if self is zero.

See also:

is_nonzero (page 92)

NumberSymbol

class diofant.core.numbers.NumberSymbol
Base class for symbolic numbers.
approximation_interval(number_cls)
Return an interval with number_cls endpoints that contains the value of NumberSymbol. If not implemented, then return None.

mod_inverse

diofant.core.numbers.mod_inverse(a, m)
Return the number c such that, (a * c) \% m == 1 where c has the same sign as a. If no such value exists, a ValueError is raised.

Examples

Suppose we wish to find multiplicative inverse x of 3 modulo 11 . This is the same as finding x such that $3 * x=1(\bmod 11)$. One value of x that satisfies this congruence is 4 . Because $3 * 4=12$ and $12=1 \bmod (11)$. This is the value return by mod_inverse:

```
>>> mod_inverse(3, 11)
4
>>> mod_inverse(-3, 11)
-4
```

When there is a common factor between the numerators of a and m the inverse does not exist:

```
>>> mod inverse(2, 4)
Tracebačk (most recent call last):
ValueError: inverse of 2 mod 4 does not exist
```

```
>>> mod_inverse(Integer(2)/7, Integer(5)/2)
```

7/2

References

- https://en.wikipedia.org/wiki/Modular_multiplicative_inverse
- https://en.wikipedia.org/wiki/Extended_Euclidean_algorithm

integer_digits

diofant.core.numbers.integer_digits(n, b)
Gives a list of the base b digits in the integer n.

Zero

class diofant.core.numbers.Zero(*args, **kwargs)
The number zero.
Zero is a singleton, and can be accessed by S. Zero

Diofant Documentation, Release 0.13.0

Examples

```
>>> Integer(0) is S.Zero
True
>>> 1/S.Zero
ZOO
```


References

- https://en.wikipedia.org/wiki/Zero

One

class diofant.core.numbers.One(*args, **kwargs)
The number one.
One is a singleton, and can be accessed by S.One.

Examples

```
>>> Integer(1) is S.One
True
```


References

- https://en.wikipedia.org/wiki/1_\(number\)

NegativeOne

class diofant.core.numbers.NegativeOne(*args, **kwargs)
The number negative one.
NegativeOne is a singleton, and can be accessed by S.NegativeOne.

Examples

```
>>> Integer(-1) is S.NegativeOne
```

True

See also:

```
One (page 94)
```


References

- https://en.wikipedia.org/wiki/\�\�\�1_\(number\)

Half

class diofant.core.numbers.Half(*args, **kwargs)
The rational number 1/2.
Half is a singleton, and can be accessed by S.Half.

Examples

```
>>> Rational(1, 2) is S.Half
```

True

References

- https://en.wikipedia.org/wiki/One_half

NaN

class diofant.core.numbers.NaN(*args, **kwargs)
Not a Number.
This serves as a place holder for numeric values that are indeterminate. Most operations on NaN, produce another NaN. Most indeterminate forms, such as $0 / 0$ or oo - oo` produce NaN . Two exceptions are \({ }^{`}{ }^{`} 0 * * 0\) and $00 * * 0$, which all produce 1 (this is consistent with Python's float).
NaN is loosely related to floating point nan, which is defined in the IEEE 754 floating point standard, and corresponds to the Python float('nan'). Differences are noted below.
NaN is mathematically not equal to anything else, even NaN itself. This explains the initially counter-intuitive results with Eq and $==$ in the examples below.
NaN is not comparable so inequalities raise a TypeError. This is in constrast with floating point nan where all inequalities are false.
NaN is a singleton, and can be accessed by nan.

Examples

```
>>> nan is nan
True
>>> 00 - 00
nan
>>> nan + 1
nan
>>> Eq(nan, nan) # mathematical equality
false
>>> nan == nan # structural equality
True
```


References

- https://en.wikipedia.org/wiki/NaN

Infinity

class diofant.core.numbers.Infinity(*args, **kwargs)
Positive infinite quantity.
In real analysis the symbol ∞ denotes an unbounded limit: $x \rightarrow \infty$ means that x grows without bound.

Infinity is often used not only to define a limit but as a value in the affinely extended real number system. Points labeled $+\infty$ and $-\infty$ can be added to the topological space of the real numbers, producing the two-point compactification of the real numbers. Adding algebraic properties to this gives us the extended real numbers.
Infinity is a singleton, and can be accessed by oo, or can be imported as 00 .

Examples

```
>>> 1 + 00
00
>>> 42/00
0
>>> limit(exp(x), x, oo)
OO
```


See also:

```
NegativeInfinity (page 97), NaN (page 95)
```


References

- https://en.wikipedia.org/wiki/Infinity

NegativeInfinity

class diofant. core. numbers.NegativeInfinity(*args, **kwargs)
Negative infinite quantity.
NegativeInfinity is a singleton, and can be accessed by -oo.

See also:

Infinity (page 96)

ComplexInfinity

class diofant.core.numbers.ComplexInfinity (*args, **kwargs)
Complex infinity.
In complex analysis the symbol $\tilde{\infty}$, called "complex infinity", represents a quantity with infinite magnitude, but undetermined complex phase.
ComplexInfinity is a singleton, and can be accessed by as zoo.

Examples

```
>>> zoo + 42
zoo
>>> 42/zoo
0
>>> zOO + zOO
nan
>>> z00*zoo
zoo
```


See also:

Infinity (page 96)

Exp1
class diofant.core.numbers.Exp1 (*args, **kwargs)
The e constant.
The transcendental number $e=2.718281828 \ldots$ is the base of the natural logarithm and of the exponential function, $e=\exp (1)$. Sometimes called Euler's number or Napier's constant.
Exp1 is a singleton, and can be imported as E .

Examples

```
>>> E is exp(1)
True
>>> log(E)
1
```


References

- https://en.wikipedia.org/wiki/E_\(mathematical_constant\)

ImaginaryUnit

class diofant.core.numbers.ImaginaryUnit (*args, **kwargs)
The imaginary unit, $i=\sqrt{-1}$.
I is a singleton, and can be imported as I.

Examples

```
>>> sqrt(-1)
I
>>> I*I
-1
>>> 1/I
-I
```


References

- https://en.wikipedia.org/wiki/Imaginary_unit

Pi
class diofant.core.numbers.Pi(*args, **kwargs)
The π constant.
The transcendental number $\pi=3.141592654 \ldots$ represents the ratio of a circle's circumference to its diameter, the area of the unit circle, the half-period of trigonometric functions, and many other things in mathematics.

Pi is a singleton, and can be imported as pi.

Examples

```
>>> pi > 3
true
>>> pi.is_irrational
True
>>> sin(x + 2*pi)
sin(x)
>>> integrate(exp(-x**2), (x, -00, 00))
sqrt(pi)
```


References

- https://en.wikipedia.org/wiki/Pi

EulerGamma

class diofant. core. numbers.EulerGamma (*args, **kwargs)
The Euler-Mascheroni constant.
$\gamma=0.5772157 \ldots$ (also called Euler's constant) is a mathematical constant recurring in analysis and number theory. It is defined as the limiting difference between the harmonic series and the natural logarithm:

$$
\gamma=\lim _{n \rightarrow \infty}\left(\sum_{k=1}^{n} \frac{1}{k}-\ln n\right)
$$

Examples

```
>>> EulerGamma.is_irrational
>>> EulerGamma > \overline{0}
true
>>> EulerGamma > 1
false
```


References

- https://en.wikipedia.org/wiki/Euler\�\�\�Mascheroni_constant

Catalan

class diofant. core. numbers. Catalan (*args, **kwargs)
Catalan's constant.
$K=0.91596559 \ldots$ is given by the infinite series

$$
K=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k+1)^{2}}
$$

Examples

```
>>> Catalan.is_irrational
>>> Catalan > \overline{0}
true
>>> Catalan > 1
false
```


References

- https://en.wikipedia.org/wiki/Catalan\'s_constant

GoldenRatio

class diofant.core.numbers.GoldenRatio(*args, **kwargs)
The golden ratio, ϕ.
$\phi=\frac{1+\sqrt{5}}{2}$ is algebraic number. Two quantities are in the golden ratio if their ratio is the same as the ratio of their sum to the larger of the two quantities, i.e. their maximum.

Examples

```
>>> GoldenRatio > 1
true
>>> GoldenRatio.expand(func=True)
1/2 + sqrt(5)/2
>>> GoldenRatio.is_irrational
True
```


References

- https://en.wikipedia.org/wiki/Golden_ratio

4.2.13 power

Pow

class diofant.core.power. Pow (b, e, evaluate $=$ None)
Defines the expression $\mathrm{x}^{* *} \mathrm{y}$ as " x raised to a power y ".
For complex numbers x and y, Pow gives the principal value of $\exp (y * \log (x))$.
Singleton definitions involving ($0,1,-1$, oo, $-00, \mathrm{I},-\mathrm{I}$):

expr	value reason	
$\mathrm{z}^{* *} 0$	1	Although arguments over 0**0 exist, see [2].
$\mathrm{z}^{* *} 1$	z	
$\begin{aligned} & (-\mathrm{oo})^{* *}(- \\ & 1) \end{aligned}$	0	
(-1)**-1	-1	
0**-1	zoo	This is not strictly true, as $0^{* *}-1$ may be undefined, but is convenient in some contexts where the base is assumed to be positive.
1**-1	1	
Oo**-1	0	
$0^{* *}$ oo	0	Because for all complex numbers z near 0, $\mathrm{z}^{* *} \mathrm{Oo}->0$.
0**-oo	zoo	This is not strictly true, as $0^{* *}$ oo may be oscillating between positive and negative values or rotating in the complex plane. It is convenient, however, when the base is positive.
$\begin{aligned} & \hline 1^{* *} \mathrm{oO} \\ & 1^{* *}-\mathrm{oo} \end{aligned}$	nan	Because there are various cases where $\lim (x(t), t)=1, \lim (y(t), t)=00$ (or -oo), but $\lim (\mathrm{x}(\mathrm{t}) * * \mathrm{y}(\mathrm{t}), \mathrm{t})!=1$. See [3].
$\mathrm{z}^{* *} \mathrm{zoo}$	nan	No limit for $\mathrm{z}^{* *}$ t for $\mathrm{t}->\mathrm{zoo}$.
$\begin{aligned} & (-1)^{* *} \mathrm{oo} \\ & (-1)^{* *}(- \\ & \mathrm{oo}) \\ & \hline \end{aligned}$	nan	Because of oscillations in the limit.
Oo**00	OO	
Oo**-00	0	
$\begin{aligned} & \hline(- \\ & \text { oo })^{* *}{ }^{*} \\ & (-\mathrm{oo})^{* *-} \\ & \text { oo } \end{aligned}$	nan	
$\begin{aligned} & \mathrm{oo}^{* *} \mathrm{I} \\ & \mathrm{oo})^{* *} \mathrm{I} \end{aligned}$	nan	oo**e could probably be best thought of as the limit of $\mathrm{x}^{* *}$ e for real x as x tends to oo. If e is I , then the limit does not exist and nan is used to indicate that.
$\begin{aligned} & \mathrm{oo}^{* *}(1+\mathrm{I}) \\ & (- \\ & \mathrm{oo})^{* *}(1+\mathrm{I}) \end{aligned}$	zoo	If the real part of e is positive, then the limit of $\operatorname{abs}\left(\mathrm{x}^{* *} \mathrm{e}\right)$ is oo. So the limit value is zoo.
$\begin{aligned} & \hline \mathrm{oo}^{* *}(- \\ & 1+\mathrm{I}) \\ & -\mathrm{oo} * *(- \\ & 1+\mathrm{I}) \\ & \hline \end{aligned}$	0	If the real part of e is negative, then the limit is 0 .

Because symbolic computations are more flexible that floating point calculations and we prefer to never return an incorrect answer, we choose not to conform to all IEEE 754 conventions. This helps us avoid extra test-case code in the calculation of limits.

See also:

diofant.core.numbers.Infinity (page 96), diofant.core.numbers.NaN (page 95)

References

- https://en.wikipedia.org/wiki/Exponentiation
- https://en.wikipedia.org/wiki/Zero_to_the_power_of_zero
- https://en.wikipedia.org/wiki/Indeterminate_forms
as_base_exp()
Return base and exp of self.
If base is $1 /$ Integer, then return Integer, -exp. If this extra processing is not needed, the base and exp properties will give the raw arguments

Examples

```
>>> p = Pow(Rational(1, 2), 2, evaluate=False)
>>> p.as_base_exp()
(2, -2)
>>> p.args
(1/2, 2)
```

as_content_primitive(radical=False)

Return the tuple (R, self/R) where R is the positive Rational extracted from self.

Examples

```
>>> sqrt(4 + 4*sqrt(2)).as_content_primitive()
(2, sqrt(1 + sqrt(2)))
>>> sqrt(3 + 3*sqrt(2)).as_content_primitive()
(1, sqrt(3)*sqrt(1 + sqrt(\overline{2})))
```

```
>>> ((2*x + 2)**2).as_content_primitive()
(4, (x + 1)**2)
>>> (4**((1 + y)/2)).as_content_primitive()
(2, 4**(y/2))
>>> (3**((1 + y)/2)).as_content_primitive()
(1, 3**((y + 1)/2))
>>> (3**((5 + y)/2)).as_content_primitive()
(9, 3**((y + 1)/2))
>>> eq = 3**(2 + 2*x)
>>> powsimp(eq) == eq
True
>>> eq.as_content_primitive()
(9, 3**(2*x))
>>> powsimp(Mul(*_))
3**(2*x + 2)
```

```
>>> eq = (2 + 2*x)**y
>>> s = expand_power_base(eq)
>>> s.is_Mul, s
(False, (2*x + 2)**y)
>>> eq.as_content_primitive()
(1, (2*(x- + 1))**\overline{y})
>>> s = expand_power_base(_[1])
>>> s.is_Mul, s
(True, 2**y*(x + 1)**y)
```


See also:

diofant.core.expr.Expr.as_content_primitive (page 60)
as_real_imag (deep=True, **hints)
Returns real and imaginary parts of self

See also:

diofant.core.expr.Expr.as_real_imag (page 64)
property base
Returns base of the power expression.
classmethod class_key()
Nice order of classes.
property exp
Returns exponent of the power expression.

integer_nthroot

diofant.core.power.integer_nthroot (y, n)
Return a tuple containing $x=$ floor $\left(y^{* *}(1 / \mathrm{n})\right)$ and a boolean indicating whether the result is exact (that is, whether $\mathrm{x}^{* *} \mathrm{n}==\mathrm{y}$).

```
>>> integer_nthroot(16, 2)
(4, True)
>>> integer_nthroot(26, 2)
(5, False)
```


4.2.14 mul

Mul

class diofant.core.mul.Mul(*args, **options)
Symbolic multiplication class.
as_base_exp()
Return base and exp of self.
See also:
diofant.core.expr.Expr.as_base_exp (page 58)
as_coeff_Mul (rational=False)
Efficiently extract the coefficient of a product.
as_coeff_mul (*deps, **kwargs)
Return the tuple (c, args) where self is written as a Mul.

See also:

diofant.core.expr.Expr.as_coeff_mul (page 59)
as_content_primitive (radical=False)
Return the tuple (R, self/R) where R is the positive Rational extracted from self.

Examples

```
>>> (-3*sqrt(2)*(2 - 2*sqrt(2))).as_content_primitive()
```

(6, -sqrt(2)*(-sqrt(2) +1))

See also:

diofant. core.expr.Expr.as_content_primitive (page 60)
as_ordered_factors(order=None)
Transform an expression into an ordered list of factors.

Examples

```
>>> (2*x*y*sin(x)*cos(x)).as_ordered_factors()
```

$[2, x, y, \sin (x), \cos (x)]$
as_powers_dict()

Return self as a dictionary of factors with each factor being treated as a power.
See also:
diofant.core.expr.Expr.as_powers_dict (page 64)
as_real_imag (deep=True, **hints)
Returns real and imaginary parts of self

See also:

diofant.core. expr.Expr.as_real_imag (page 64)
as_two_terms()
Return head and tail of self.
This is the most efficient way to get the head and tail of an expression.

- if you want only the head, use self.args[0];
- if you want to process the arguments of the tail then use self.as_coef_mul() which gives the head and a tuple containing the arguments of the tail when treated as a Mul.
- if you want the coefficient when self is treated as an Add then use self.as_coeff_add()[0]

```
>>> (3*x*y).as_two_terms()
(3, x*y)
```

classmethod class_key()
Nice order of classes.
classmethod flatten(seq)
Return commutative, noncommutative and order arguments by combining related terms.

Notes

- In an expression like $\mathrm{a}^{*}{ }^{\mathrm{b}} \mathrm{c}$, python process this through diofant as Mul (Mul (a, b), c). This can have undesirable consequences.
- Sometimes terms are not combined as one would like: \{c.f. https://github. com/sympy/sympy/issues/4596\}

```
>>> 2*(x + 1) # this is the 2-arg Mul behavior
2*x + 2
>>> y*(x + 1)*2
2*y*(x + 1)
>>> 2*(x + 1)*y # 2-arg result will be obtained first
y*(2*x + 2)
>>> Mul(2, x + 1, y) # all 3 args simultaneously processed
2*y*(x + 1)
>>> 2*((x + 1)*y) # parentheses can control this behavior
2*y*(x + 1)
```

Powers with compound bases may not find a single base to combine with unless all arguments are processed at once. Post-processing may be necessary in such cases. \{c.f. https://github.com/sympy/sympy/issues/5728\}

```
>>> a = sqrt(x*sqrt(y))
>>> a**3
(x*sqrt(y))**(3/2)
>>> Mul(a, a, a)
(x*sqrt(y))**(3/2)
>>> a*a*a
x*sqrt(y)*sqrt(x*sqrt(y))
>>> _.subs({a.base: z}).subs({z: a.base})
(x*sq
```

- If more than two terms are being multiplied then all the previous terms will be re-processed for each new argument. So if each of a, b and c were Mul (page 103) expression, then $\mathrm{a}^{*} \mathrm{~b}^{*} \mathrm{c}$ (or building up the product with ${ }^{*}=$) will process all the arguments of a and b twice: once when $a * b$ is computed and again when c is multiplied.
Using $\operatorname{Mul}(a, b, c)$ will process all arguments once.
- The results of Mul are cached according to arguments, so flatten will only be called once for Mul ($a, ~ b, ~ c$). If you can structure a calculation so the arguments are most likely to be repeats then this can save time in computing the answer. For example, say you had a Mul, M, that you wished to divide by d[i] and multiply by n [i] and you suspect there are many repeats in n. It would be better to compute $M * n[i] / d[i]$ rather than $M / d[i] * n[i]$ since every time $n[i]$ is a repeat, the product, M^{*} [i] will be returned without flattening - the cached value will be returned. If you divide by the $\mathrm{d}[\mathrm{i}]$ first (and those are more unique than the $n[i])$ then that will create a new Mul, M/d[i] the args of which will be traversed again when it is multiplied by n [i].

\{c.f. https://github.com/sympy/sympy/issues/5706\}

This consideration is moot if the cache is turned off.
The validity of the above notes depends on the implementation details of Mul and flatten which may change at any time. Therefore, you should only consider them when your code is highly performance sensitive.

4.2.15 add

Add

class diofant.core.add.Add(*args, **options)
Symbolic addition class.
as_coeff_Add (rational=False)
Efficiently extract the coefficient of a summation.
as_coeff_add (*deps)
Returns a tuple (coeff, args) where self is treated as an Add and coeff is the Number term and args is a tuple of all other terms.

Examples

```
>>> (7 + 3*x).as_coeff_add()
(7, (3*x,))
>>> (7*x).as_coeff_add()
(0, (7*x,))
```

as_coefficients_dict()
Return a dictionary mapping terms to their Rational coefficient.
Since the dictionary is a defaultdict, inquiries about terms which were not present will return a coefficient of 0 . If an expression is not an Add it is considered to have a single term.

Examples

```
>>> (3*x + x*y + 4).as_coefficients_dict()
{1: 4, x: 3, x*y: 1}
>>> _[y]
0
>>> (3*y*x).as_coefficients_dict()
{x*y: 3}
```

as_content_primitive(radical=False)
Return the tuple (R , self/R) where R is the positive Rational extracted from self. If radical is True (default is False) then common radicals will be removed and included as a factor of the primitive expression.

Examples

```
>>> (3 + 3*sqrt(2)).as_content_primitive()
(3, 1 + sqrt(2))
```

Radical content can also be factored out of the primitive:

```
>>> (2*sqrt(2) + 4*sqrt(10)).as_content_primitive(radical=True)
(2, sqrt(2)*(1 + 2*sqrt(5)))
```


See also:

diofant.core.expr.Expr.as_content_primitive (page 60)
as_real_imag (deep=True, **hints)
Returns a tuple representing a complex number.

Examples

```
>>> (7 + 9*I).as_real_imag()
(7, 9)
>> ((1 + I)/(1 - I)).as_real_imag()
(0, 1)
>>> ((1 + 2*I)*(1 + 3*I)).as_real_imag()
(-5, 5)
```

as_two_terms()
Return head and tail of self.
This is the most efficient way to get the head and tail of an expression.

- if you want only the head, use self.args[0];
- if you want to process the arguments of the tail then use self.as_coef_add() which gives the head and a tuple containing the arguments of the tail when treated as an Add.
- if you want the coefficient when self is treated as a Mul then use self.as_coeff_mul()[0]

```
>>> (3*x*y).as two terms()
```

(3, $x^{*} y$)
classmethod class_key()
Nice order of classes.
extract_leading_order (symbols)
Returns the leading term and its order.

Examples

```
>>> (x + 1 + 1/x**5).extract_leading_order(x)
((x**(-5), 0(x**(-5))),)
>>> (1 + x).extract_leading_order(x)
((1, 0(1)),)
>>> (x + x**2).extract_leading_order(x)
((x, 0(x)),)
```


classmethod flatten(seq)

Takes the sequence "seq" of nested Adds and returns a flatten list.
Returns: (commutative_part, noncommutative_part, order_symbols)
Applies associativity, all terms are commutable with respect to addition.

See also:

diofant. core.mul.Mul.flatten (page 104)
get0()
Returns the additive O(..) symbol.

See also:

diofant. core. expr. Expr.get0 (page 70)
primitive()
Return (R, self/R) where R is the Rational GCD of self.
R is collected only from the leading coefficient of each term.

Examples

```
>>> (2*x + 4*y).primitive()
(2, x + 2*y)
>>> (2*x/3+4*y/9).primitive()
(2/9, 3*x + 2*y)
>>> (2*x/3 + 4.2*y).primitive()
(1/3, 2*x + 12.6*y)
```

No subprocessing of term factors is performed:

```
>>> ((2 + 2*x)*x + 2).primitive()
(1, x*(2*x + 2) + 2)
```

Recursive subprocessing can be done with the as_content_primitive() method:

```
>>> ((2 + 2*x)*x + 2).as_content_primitive()
(2, x* (x + 1) + 1)
```


See also:

diofant.polys.polytools.primitive (page 614)
remove0()
Removes the additive O(..) symbol.

See also:

diofant. core. expr.Expr. remove0 (page 79)

4.2 .16 mod

Mod

class diofant.core.mod. $\operatorname{Mod}(p, q)$
Represents a modulo operation on symbolic expressions.
Receives two arguments, dividend p and divisor q.
The convention used is the same as Python's: the remainder always has the same sign as the divisor.

Examples

```
>>> x**2 % y
x**2%y
>>> _.subs({x: 5, y: 6})
1
```


4.2.17 relational

Rel

```
diofant.core.relational.Rel
```

 alias of diofant. core.relational.Relational (page 110)

Eq

diofant. core.relational.Eq alias of diofant. core.relational. Equality (page 111)

Ne
diofant.core.relational.Ne alias of diofant. core.relational. Unequality (page 117)

Lt

diofant. core.relational.Lt alias of diofant. core.relational.StrictLessThan (page 121)

Le
diofant.core.relational.Le alias of diofant. core.relational. LessThan (page 115)

Gt
diofant.core.relational.Gt alias of diofant. core.relational.StrictGreaterThan (page 118)

Ge

diofant.core.relational.Ge
alias of diofant. core. relational. GreaterThan (page 112)

Relational

class diofant.core.relational.Relational(lhs, rhs, rop=None, **assumptions)
Base class for all relation types.
Subclasses of Relational should generally be instantiated directly, but Relational can be instantiated with a valid rop value to dispatch to the appropriate subclass.

Parameters rop (str or None) - Indicates what subclass to instantiate. Valid values can be found in the keys of Relational.ValidRelationalOperator.

Examples

```
>>> Rel(y, x+x**2, '==')
Eq(y, x**2 + x)
```

as_set()
Rewrites univariate inequality in terms of real sets

Examples

```
>>> (x > 0).as_set()
(0, oo]
>>> Eq(x, 0).as_set()
{0}
```

property canonical
Return a canonical form of the relational.
The rules for the canonical form, in order of decreasing priority are:

1) Number on right if left is not a Number;
2) Symbol on the left;
3) $\mathrm{Gt} / \mathrm{Ge}$ changed to $\mathrm{Lt} / \mathrm{Le}$;
4) $\mathrm{Lt} / \mathrm{Le}$ are unchanged;
5) Eq and Ne get ordered args.
equals (other, failing_expression=False)
Return True if the sides of the relationship are mathematically identical and the type of relationship is the same. If failing_expression is True, return the expression whose truth value was unknown.
property lhs
The left-hand side of the relation.
property reversed
Return the relationship with sides (and sign) reversed.

Examples

```
>>> Eq(x, 1)
Eq(x, 1)
>>> _.reversed
Eq(1, x)
>>> x < 1
x < 1
>>> _.reversed
1>
```

property rhs
The right-hand side of the relation.

Equality

class diofant. core. relational.Equality(lhs, rhs, **options)
An equal relation between two objects.
Represents that two objects are equal. If they can be easily shown to be definitively equal (or unequal), this will reduce to True (or False). Otherwise, the relation is maintained as an unevaluated Equality object. Use the simplify function on this object for more nontrivial evaluation of the equality relation.
As usual, the keyword argument evaluate=False can be used to prevent any evaluation.

Examples

```
>>> Eq(y, x + x**2)
Eq(y, x**2 + x)
>> Eq(2, 5)
false
>> Eq(2, 5, evaluate=False)
Eq(2, 5)
>>> _.doit()
false
>> Eq(exp(x), exp(x).rewrite(cos))
Eq(E**x, sinh(x) + cosh(x))
>>> simplify(_)
true
```


See also:

diofant. Logic.boolalg.Equivalent (page 499) for representing equality between two boolean expressions

Notes

This class is not the same as the == operator. The == operator tests for exact structural equality between two expressions; this class compares expressions mathematically.
If either object defines $\mathrm{an}_{e} v a l_{E} q$ method, it can be used in place of the default algorithm. If $l h s .{ }_{e} v a l_{E} q(r h s)$ or $r h s .{ }_{e} v a l_{E} q(l h s)$ returns anything other than None, that return value will be substituted for the Equality. If None is returned by ${ }_{e} v a l_{E} q$, an Equality object will be created as usual.

GreaterThan

class diofant.core.relational.GreaterThan(lhs, rhs, **options)
Class representations of inequalities.
The *Than classes represent unequal relationships, where the left-hand side is generally bigger or smaller than the right-hand side. For example, the GreaterThan class represents an unequal relationship where the left-hand side is at least as big as the right side, if not bigger. In mathematical notation:
lhs $>=$ rhs
In total, there are four *Than classes, to represent the four inequalities:

Class Name	Symbol
GreaterThan	$(>=)$
LessThan	$(<=)$
StrictGreaterThan	$(>)$
StrictLessThan	$(<)$

All classes take two arguments, lhs and rhs.

Signature Example	Math equivalent
GreaterThan(lhs, rhs)	lhs $>=$ rhs
LessThan(lhs, rhs)	lhs $<=$ rhs
StrictGreaterThan(lhs, rhs)	lhs $>$ rhs
StrictLessThan(lhs, rhs)	lhs $<$ rhs

In addition to the normal .lhs and .rhs of Relations, *Than inequality objects also have the .lts and .gts properties, which represent the "less than side" and "greater than side" of the operator. Use of .lts and .gts in an algorithm rather than .lhs and .rhs as an assumption of inequality direction will make more explicit the intent of a certain section of code, and will make it similarly more robust to client code changes:

```
>>> e = GreaterThan(x, 1)
>>> e
x >= 1
>>> f'{e.gts} >= {e.lts} is the same as {e.lts} <= {e.gts}'
'x >= 1 is the same as 1 <= x'
```


Examples

One generally does not instantiate these classes directly, but uses various convenience methods:

```
>>> el = Ge(x, 2) # Ge is a convenience wrapper
>>> print(el)
x >= 2
```

```
>> rels = Ge(x, 2), Gt(x, 2), Le(x, 2), Lt(x, 2)
>>> print('%s\n%s\n%s\n%s' % rels)
x >= 2
x > 2
x <= 2
x < 2
```

Another option is to use the Python inequality operators ($>=,>,<=,<$) directly. Their main advantage over the $\mathrm{Ge}, \mathrm{Gt}, \mathrm{Le}$, and Lt counterparts, is that one can write a more "mathematical looking" statement rather than littering the math with oddball function calls. However there are certain (minor) caveats of which to be aware (search for 'gotcha', below).

```
>>> e2 = x >= 2
>>> print(e2)
x >= 2
>>> print('e1: %s, e2: %s' % (e1, e2))
e1: x >= 2, e2: x >= 2
>>> el == e2
True
```

However, it is also perfectly valid to instantiate a *Than class less succinctly and less conveniently:

```
>>> rels = Rel(x, 1, '>='), Relational(x, 1, '>='), GreaterThan(x, 1)
>>> print('%s\n%s\n%s' % rels)
x >= 1
x >= 1
x >= 1
```

```
>>> rels = Rel(x, 1, '>'), Relational(x, 1, '>'), StrictGreaterThan(x, 1)
>>> print('%s\n%s\n%s' % rels)
x > 1
x > 1
x > 1
```

```
>>> rels = Rel(x, 1, '<='), Relational(x, 1, '<='), LessThan(x, 1)
>>> print('%s\n%s\n%s' % rels)
x <= 1
x <= 1
x <= 1
```

```
>> rels = Rel(x, 1, '<'), Relational(x, 1, '<'), StrictLessThan(x, 1)
>>> print('%s\n%s\n%s' % rels)
x < 1
x < 1
x<1
```


Notes

There are a couple of "gotchas" when using Python's operators.
The first enters the mix when comparing against a literal number as the lhs argument. Due to the order that Python decides to parse a statement, it may not immediately find two objects comparable. For example, to evaluate the statement ($1<x$), Python will first recognize the number 1 as a native number, and then that x is not a native number. At this point, because a native Python number does not know how to compare itself with a Diofant object Python will try the reflective operation, ($x>1$). Unfortunately, there is no way available to Diofant to recognize this has happened, so the statement ($1<\mathrm{x}$) will turn silently into ($\mathrm{x}>1$).

```
>>> el = x > 1
>>> e2 = x >= 1
>>> e3 = x < 1
>>> e4 = x <= 1
>>> e5 = 1 > x
>>> e6 = 1 >= x
>>> e7 = 1 < x
>>> e8 = 1 <= x
>>> print('%s %s\n'*4 % (e1, e2, e3, e4, e5, e6, e7, e8))
x > 1 x >= 1
x<1 x <= 1
x < 1 X <= 1
x > 1 x >= 1
```

If the order of the statement is important (for visual output to the console, perhaps), one can work around this annoyance in a couple ways: (1) "sympify" the literal before comparison, (2) use one of the wrappers, or (3) use the less succinct methods described above:

```
>>> el = Integer(1) > x
>>> e2 = Integer(1) >= x
>>> e3 = Integer(1) < x
>>> e4 = Integer(1) <= x
>>> e5 = Gt(1, x)
>>> e6 = Ge(1, x)
>>> e7 = Lt(1, x)
>>> e8 = Le(1, x)
>>> print('%s %S\n'*4 % (e1, e2, e3, e4, e5, e6, e7, e8))
1 > x 1 >= x
1<x 1<= x
1>x 1 >= x
1<x 1 <= x
```

The other gotcha is with chained inequalities. Occasionally, one may be tempted to write statements like:

```
>>> x < y < z
Traceback (most recent call last):
TypeError: symbolic boolean expression has no truth value.
```

Due to an implementation detail or decision of Python, to create a chained inequality, the only method currently available is to make use of And:

```
>>> And(x < y, y < z)
(x<y)& (y<z)
```


LessThan

class diofant. core.relational. LessThan(lhs, rhs, **options)
Class representations of inequalities.
The *Than classes represent unequal relationships, where the left-hand side is generally bigger or smaller than the right-hand side. For example, the GreaterThan class represents an unequal relationship where the left-hand side is at least as big as the right side, if not bigger. In mathematical notation:
lhs $>=$ rhs
In total, there are four *Than classes, to represent the four inequalities:

Class Name	Symbol
GreaterThan	$(>=)$
LessThan	$(<=)$
StrictGreaterThan	$(>)$
StrictLessThan	$(<)$

All classes take two arguments, lhs and rhs.

Signature Example	Math equivalent
GreaterThan(lhs, rhs)	lhs $>=$ rhs
LessThan(lhs, rhs)	lhs $<=$ rhs
StrictGreaterThan(lhs, rhs)	lhs $>$ rhs
StrictLessThan(lhs, rhs)	lhs $<$ rhs

In addition to the normal .lhs and .rhs of Relations, *Than inequality objects also have the .lts and .gts properties, which represent the "less than side" and "greater than side" of the operator. Use of .lts and .gts in an algorithm rather than .lhs and .rhs as an assumption of inequality direction will make more explicit the intent of a certain section of code, and will make it similarly more robust to client code changes:

```
>>> e = GreaterThan(x, 1)
>>> e
x >= 1
>>> f'{e.gts} >= {e.lts} is the same as {e.lts} <= {e.gts}'
'x >= 1 is the same as 1 <= x'
```


Examples

One generally does not instantiate these classes directly, but uses various convenience methods:

```
>>> el=Ge(x, 2) # Ge is a convenience wrapper
>>> print(e1)
x >= 2
```

```
>>> rels = Ge(x, 2), Gt(x, 2), Le(x, 2), Lt(x, 2)
>>> print('%s\n%s\n%s\n%s' % rels)
x >= 2
x > 2
x<= 2
x<2
```

Another option is to use the Python inequality operators ($>=,>,<=,<$) directly. Their main advantage over the $\mathrm{Ge}, \mathrm{Gt}, \mathrm{Le}$, and Lt counterparts, is that one can write a more "mathematical looking" statement rather than littering the math with oddball function calls. However there are certain (minor) caveats of which to be aware (search for 'gotcha', below).

```
>>> e2 = x >= 2
>>> print(e2)
x >= 2
>>> print('e1: %S, e2: %s' % (e1, e2))
e1: x >= 2, e2: x >= 2
>>> el == e2
True
```

However, it is also perfectly valid to instantiate a *Than class less succinctly and less conveniently:

```
>>> rels = Rel(x, 1, '>='), Relational(x, 1, '>='), GreaterThan(x, 1)
>>> print('%s\n%s\n%s' % rels)
x >= 1
x >= 1
x >= 1
```

>>> rels $=\operatorname{Rel}\left(x, 1,{ }^{\prime}>\right.$ '), Relational(x, 1, '>'), StrictGreaterThan(x, 1)
>>> print(${ }^{\prime} \%$ S $\backslash \mathbf{n} \%$ S $\backslash \mathbf{n} \% S^{\prime} \%$ rels)
$x>1$
$x>1$
x > 1

```
>>> rels = Rel(x, 1, '<='), Relational(x, 1, '<='), LessThan(x, 1)
>>> print('%S\n%s\n%s' % rels)
x<= 1
x <= 1
x <= 1
```

```
>>> rels = Rel(x, 1, '<'), Relational(x, 1, '<'), StrictLessThan(x, 1)
>>> print('%S\n%s\n%s' % rels)
x<1
x}<
x < 1
```


Notes

There are a couple of "gotchas" when using Python's operators.
The first enters the mix when comparing against a literal number as the lhs argument. Due to the order that Python decides to parse a statement, it may not immediately find two objects comparable. For example, to evaluate the statement ($1<x$), Python will first recognize the number 1 as a native number, and then that x is not a native number. At this point, because a native Python number does not know how to compare itself with a Diofant object Python will try the reflective operation, ($x>1$). Unfortunately, there is no way available to Diofant to recognize this has happened, so the statement ($1<\mathrm{x}$) will turn silently into ($\mathrm{x} \gg 1$).

```
>>> el = x > 1
>>> e2 = x >= 1
>>> e3 = x < 1
>>> e4 = x <= 1
```

```
>>> e5 = 1 > x
>>> e6 = 1 >= x
>>> e7 = 1 < x
>>> e8 = 1 <= x
>>> print('%s %s\n'*4 % (e1, e2, e3, e4, e5, e6, e7, e8))
x > 1 x >= 1
x<1 x<= 1
x<1 x <= 1
x > 1 x >= 1
```

If the order of the statement is important (for visual output to the console, perhaps), one can work around this annoyance in a couple ways: (1) "sympify" the literal before comparison, (2) use one of the wrappers, or (3) use the less succinct methods described above:

```
>>> el = Integer(1) > x
>>> e2 = Integer(1) >= x
>>> e3 = Integer(1) < x
>>> e4 = Integer(1) <= x
>>> e5 = Gt(1, x)
>>> e6 = Ge(1, x)
>>> e7 = Lt(1, x)
>>> e8 = Le(1, x)
>>> print('%s %s\n'*4 % (e1, e2, e3, e4, e5, e6, e7, e8))
1>x 1 >= x
1<x l <= x
1>x 1 >= x
1<x 1<= x
```

The other gotcha is with chained inequalities. Occasionally, one may be tempted to write statements like:

```
>>> x < y < z
Traceback (most recent call last):
TypeError: symbolic boolean expression has no truth value.
```

Due to an implementation detail or decision of Python, to create a chained inequality, the only method currently available is to make use of And:

```
>>> And(x < y, y < z)
(x<y)& (y< z)
```


Unequality

class diofant.core.relational.Unequality (lhs, rhs, **options)
An unequal relation between two objects.
Represents that two objects are not equal. If they can be shown to be definitively equal, this will reduce to False; if definitively unequal, this will reduce to True. Otherwise, the relation is maintained as an Unequality object.

Examples

```
>>> Ne(y, x+x**2)
```

$\mathrm{Ne}(\mathrm{y}, \mathrm{x} * * 2+\mathrm{x})$

See also:

Equality (page 111)

Notes

This class is not the same as the != operator. The != operator tests for exact structural equality between two expressions; this class compares expressions mathematically.
This class is effectively the inverse of Equality. As such, it uses the same algorithms, including any available ${ }_{e} v a l_{E} q$ methods.

StrictGreaterThan

class diofant.core.relational.StrictGreaterThan(lhs, rhs, **options)
Class representations of inequalities.
The *Than classes represent unequal relationships, where the left-hand side is generally bigger or smaller than the right-hand side. For example, the GreaterThan class represents an unequal relationship where the left-hand side is at least as big as the right side, if not bigger. In mathematical notation:
lhs $>=$ rhs
In total, there are four *Than classes, to represent the four inequalities:

Class Name	Symbol
GreaterThan	$(>=)$
LessThan	$(<=)$
StrictGreaterThan	$(>)$
StrictLessThan	$(<)$

All classes take two arguments, lhs and rhs.

Signature Example	Math equivalent
GreaterThan(lhs, rhs)	lhs >= rhs
LessThan(lhs, rhs)	lhs <= rhs
StrictGreaterThan(lhs, rhs)	lhs > rhs
StrictLessThan(lhs, rhs)	lhs $<$ rhs

In addition to the normal .lhs and .rhs of Relations, *Than inequality objects also have the .lts and .gts properties, which represent the "less than side" and "greater than side" of the operator. Use of .lts and .gts in an algorithm rather than . l hs and .rhs as an assumption of inequality direction will make more explicit the intent of a certain section of code, and will make it similarly more robust to client code changes:

```
>>> e = GreaterThan(x, 1)
>>> e
x >= 1
>> f'{e.gts} >= {e.lts} is the same as {e.lts} <= {e.gts}'
'x >= 1 is the same as 1 <= x'
```


Examples

One generally does not instantiate these classes directly, but uses various convenience methods:

```
>>> el = Ge(x, 2) # Ge is a convenience wrapper
>>> print(el)
x >= 2
```

```
>> rels = Ge(x, 2), Gt(x, 2), Le(x, 2), Lt(x, 2)
>>> print('%s\n%s\n%s\n%s' % rels)
x >= 2
x > 2
x<=2
x < 2
```

Another option is to use the Python inequality operators ($>=,>,<=,<$) directly. Their main advantage over the Ge, Gt, Le , and Lt counterparts, is that one can write a more "mathematical looking" statement rather than littering the math with oddball function calls. However there are certain (minor) caveats of which to be aware (search for 'gotcha', below).

```
>>> e2 = x >= 2
>>> print(e2)
x >= 2
>>> print('e1: %s, e2: %s' % (e1, e2))
e1: x >= 2, e2: x >= 2
>>> e1 == e2
True
```

However, it is also perfectly valid to instantiate a *Than class less succinctly and less conveniently:

```
>>> rels = Rel(x, 1, '>='), Relational(x, 1, '>='), GreaterThan(x, 1)
>>> print('%s\n%s\n%s' % rels)
x >= 1
x >= 1
x >= 1
```

```
>>> rels = Rel(x, 1, '>'), Relational(x, 1, '>'), StrictGreaterThan(x, 1)
```

>>> print(${ }^{\prime} \% \mathrm{~s} \backslash \mathrm{n} \% \mathrm{~s} \backslash \mathrm{n} \% \mathrm{~s}^{\prime} \%$ rels)
$x>1$
$x>1$
$x>1$

```
>>> rels = Rel(x, 1, '<='), Relational(x, 1, '<='), LessThan(x, 1)
>>> print('%s\n%s\n%s' % rels)
x <= 1
x <= 1
x <= 1
```

```
>>> rels = Rel(x, 1, '<'), Relational(x, 1, '<'), StrictLessThan(x, 1)
>>> print('%s\n%s\n%s' % rels)
x < 1
x<1
x < 1
```


Notes

There are a couple of "gotchas" when using Python's operators.
The first enters the mix when comparing against a literal number as the lhs argument. Due to the order that Python decides to parse a statement, it may not immediately find two objects comparable. For example, to evaluate the statement ($1<x$), Python will first recognize the number 1 as a native number, and then that x is not a native number. At this point, because a native Python number does not know how to compare itself with a Diofant object Python will try the reflective operation, ($x>1$). Unfortunately, there is no way available to Diofant to recognize this has happened, so the statement ($1<\mathrm{x}$) will turn silently into ($x>1$).

```
>>> el = x > 1
>>> e2 = x >= 1
>>> e3 = x < 1
>>> e4 = x <= 1
>>> e5 = 1 > x
>>> e6 = 1 >= x
>>> e7 = 1 < x
>>> e8 = 1 <= x
>>> print('%s %s\n'*4 % (e1, e2, e3, e4, e5, e6, e7, e8))
x > 1 x >= 1
x<1 x <= 1
x<1 x <= 1
x > 1 x >= 1
```

If the order of the statement is important (for visual output to the console, perhaps), one can work around this annoyance in a couple ways: (1) "sympify" the literal before comparison, (2) use one of the wrappers, or (3) use the less succinct methods described above:

```
>>> el = Integer(1) > x
>>> e2 = Integer(1) >= x
>>> e3 = Integer(1) < x
>>> e4 = Integer(1) <= x
>>> e5 = Gt(1, x)
>>> e6 = Ge(1, x)
>>> e7 = Lt(1, x)
>>> e8 = Le(1, x)
>>> print('%s %s\n'*4 % (e1, e2, e3, e4, e5, e6, e7, e8))
1>x 1 >= x
1<x 1<= x
1>x 1 >= x
1<x 1<= x
```

The other gotcha is with chained inequalities. Occasionally, one may be tempted to write statements like:

```
>>> x < y < z
Traceback (most recent call last):
TypeError: symbolic boolean expression has no truth value.
```

Due to an implementation detail or decision of Python, to create a chained inequality, the only method currently available is to make use of And:

```
>>> And(x < y, y < z)
(x<y)& (y<z)
```


StrictLessThan

class diofant.core. relational.StrictLessThan(lhs, rhs, **options)
Class representations of inequalities.
The *Than classes represent unequal relationships, where the left-hand side is generally bigger or smaller than the right-hand side. For example, the GreaterThan class represents an unequal relationship where the left-hand side is at least as big as the right side, if not bigger. In mathematical notation:
lhs $>=$ rhs
In total, there are four *Than classes, to represent the four inequalities:

Class Name	Symbol
GreaterThan	$(>=)$
LessThan	$(<=)$
StrictGreaterThan	$(>)$
StrictLessThan	$(<)$

All classes take two arguments, lhs and rhs.

Signature Example	Math equivalent
GreaterThan(lhs, rhs)	lhs $>=$ rhs
LessThan(lhs, rhs)	lhs $<=$ rhs
StrictGreaterThan(lhs, rhs)	lhs $>$ rhs
StrictLessThan(lhs, rhs)	lhs $<$ rhs

In addition to the normal .lhs and .rhs of Relations, *Than inequality objects also have the .lts and .gts properties, which represent the "less than side" and "greater than side" of the operator. Use of .lts and .gts in an algorithm rather than .lhs and .rhs as an assumption of inequality direction will make more explicit the intent of a certain section of code, and will make it similarly more robust to client code changes:

```
>>> e = GreaterThan(x, 1)
>>> e
x >= 1
>>> f'{e.gts} >= {e.lts} is the same as {e.lts} <= {e.gts}'
'x >= 1 is the same as 1 <= x'
```


Examples

One generally does not instantiate these classes directly, but uses various convenience methods:

```
>>> el = Ge(x, 2) # Ge is a convenience wrapper
>>> print(el)
x >= 2
```

```
>>> rels = Ge(x, 2), Gt(x, 2), Le(x, 2), Lt(x, 2)
>>> print('%s\n%s\n%s\n%s' % rels)
x >= 2
x > 2
x <= 2
x < 2
```

Another option is to use the Python inequality operators ($>=,>,<=,<$) directly. Their main advantage over the $\mathrm{Ge}, \mathrm{Gt}, \mathrm{Le}$, and Lt counterparts, is that one can write a more "mathematical looking" statement rather than littering the math with oddball function calls. However there are certain (minor) caveats of which to be aware (search for 'gotcha', below).

```
>>> e2 = x >= 2
>>> print(e2)
x >= 2
>>> print('e1: %s, e2: %s' % (e1, e2))
e1: x >= 2, e2: x >= 2
>>> e1 == e2
True
```

However, it is also perfectly valid to instantiate a *Than class less succinctly and less conveniently:

```
>>> rels = Rel(x, 1, '>='), Relational(x, 1, '>='), GreaterThan(x, 1)
>>> print('%s\n%s\n%s' % rels)
x >= 1
x >= 1
x >= 1
```

```
>>> rels = Rel(x, 1, '>'), Relational(x, 1, '>'), StrictGreaterThan(x, 1)
>>> print('%s\n%s\n%s' % rels)
x > 1
x > 1
x > 1
```

```
>>> rels = Rel(x, 1, '<='), Relational(x, 1, '<='), LessThan(x, 1)
>>> print('%s\n%s\n%s' % rels)
x <= 1
x <= 1
x <= 1
```

```
>> rels = Rel(x, 1, '<'), Relational(x, 1, '<'), StrictLessThan(x, 1)
>>> print('%s\n%s\n%s' % rels)
x < 1
x < 1
x<1
```


Notes

There are a couple of "gotchas" when using Python's operators.
The first enters the mix when comparing against a literal number as the lhs argument. Due to the order that Python decides to parse a statement, it may not immediately find two objects comparable. For example, to evaluate the statement ($1<x$), Python will first recognize the number 1 as a native number, and then that x is not a native number. At this point, because a native Python number does not know how to compare itself with a Diofant object Python will try the reflective operation, ($x>1$). Unfortunately, there is no way available to Diofant to recognize this has happened, so the statement ($1<\mathrm{x}$) will turn silently into ($x>1$).

```
>> el = x > 1
>>> e2 = x >= 1
>> e3 = x < 1
>>> e4 = x <= 1
>> e5 = 1 > x
>>> e6 = 1 >= x
>> e7 = 1 < x
>> e8=1<= x
>>> print('%s %s\n'*4 % (e1, e2, e3, e4, e5, e6, e7, e8))
x > 1 x >= 1
x<1 }x<=
x<1 x <= 1
x>1 
```

If the order of the statement is important (for visual output to the console, perhaps), one can work around this annoyance in a couple ways: (1) "sympify" the literal before comparison, (2) use one of the wrappers, or (3) use the less succinct methods described above:

```
>>> el = Integer(1) > x
>>> e2 = Integer(1) >= x
>> e3 = Integer(1) < x
>>> e4 = Integer(1) <= x
>> e5 = Gt(1, x)
>>> e6 = Ge(1, x)
>>> e7 = Lt(1, x)
>>> e8 = Le(1, x)
>>print('%s %s\n'*4 % (e1, e2, e3, e4, e5, e6, e7, e8))
1 > x 1 >= x
1<x 1 <= x
1>x 1 >= x
1<x 1 <= x
```

The other gotcha is with chained inequalities. Occasionally, one may be tempted to write statements like:

```
>>> X < y < z
Traceback (most recent call last):
TypeError: symbolic boolean expression has no truth value.
```

Due to an implementation detail or decision of Python, to create a chained inequality, the only method currently available is to make use of And:

```
>>> And(x < y, y < z)
(x<y) & (y< z)
```


4.2.18 multidimensional

vectorize

class diofant.core.multidimensional.vectorize(*mdargs)
Generalizes a function taking scalars to accept multidimensional arguments.

Examples

```
>>> @vectorize(0)
... def vsin(x):
... return sin(x)
```

```
>>> vsin([1, x, y])
[sin(1), sin(x), sin(y)]
```

>>> @vectorize(0, 1)
... def vdiff(f, y):
... return $\operatorname{diff(f,y)}$

```
>>> vdiff([f(x,y), g(x,y)], [x,y])
[[Derivative(f(x,y), x), Derivative(f(x, y), y)],
    [Derivative(g(x, y), x), Derivative(g(x, y), y)]]
```


4.2.19 function

Lambda

class diofant.core.function. Lambda(variables, expr)
Lambda(x, expr) represents a lambda function similar to Python's 'lambda x: expr'. A function of several variables is written as Lambda(($\mathrm{x}, \mathrm{y}, \ldots$...), expr).
A simple example:

```
>>> f = Lambda(x, x**2)
>> f(4)
16
```

For multivariate functions, use:

```
>>> f2 = Lambda((x, y, z, t), x + y**z + t**z)
>>> f2(1, 2, 3, 4)
73
```

A handy shortcut for lots of arguments:

```
>>> p = x, y, z
>>> f = Lambda(p, x + y*z)
>>> f(*p)
x + y*z
```


property expr

The return value of the function.
property free_symbols
Return from the atoms of self those which are free symbols.
See also:
diofant.core.basic.Basic.free_symbols (page 48)
property variables
The variables used in the internal representation of the function.

WildFunction

class diofant.core.function. WildFunction(*args)
A WildFunction function matches any function (with its arguments).

Examples

```
>>> F = WildFunction('F')
>>> F.nargs
Naturals0()
>>> x.match(F)
>>> F.match(F)
{F_: F_}
>>> f(\overline{x}).match(F)
{F_: f(x)}
>>> cos(x).match(F)
{F_: cos(x)}
>> f(x, y).match(F)
{F_: f(x, y)}
```

To match functions with a given number of arguments, set nargs to the desired value at instantiation:

```
>>> F = WildFunction('F', nargs=2)
>>> F.nargs
{2}
>>> f(x).match(F)
>> f(x, y).match(F)
{F_: f(x, y)}
```

To match functions with a range of arguments, set nargs to a tuple containing the desired number of arguments, e.g. if nargs $=(1,2)$ then functions with 1 or 2 arguments will be matched.

```
>>> F = WildFunction('F', nargs=(1, 2))
>>> F.nargs
{1, 2}
>>> f(x).match(F)
{F_: f(x)}
>> f(x, y).match(F)
{F_: f(x, y)}
>>> f(x, y, 1).match(F)
```


Derivative

class diofant.core.function. Derivative(expr, *args, **assumptions)
Carries out differentiation of the given expression with respect to symbols.
expr must define ._eval_derivative(symbol) method that returns the differentiation result. This function only needs to consider the non-trivial case where expr contains symbol and it should call the diff() method internally (not _eval_derivative); Derivative should be the only one to call _eval_derivative.
Simplification of high-order derivatives:
Because there can be a significant amount of simplification that can be done when multiple differentiations are performed, results will be automatically simplified in a fairly conservative fashion unless the keyword simplify is set to False.

```
>>> e = sqrt((x + 1)**2 + x)
>>> diff(e, (x, 5), simplify=False).count_ops()
136
>>> diff(e, (x, 5)).count_ops()
30
```

Ordering of variables:
If evaluate is set to True and the expression can not be evaluated, the list of differentiation symbols will be sorted, that is, the expression is assumed to have continuous derivatives up to the order asked. This sorting assumes that derivatives wrt Symbols commute, derivatives wrt non-Symbols commute, but Symbol and non-Symbol derivatives don't commute with each other.

Derivative wrt non-Symbols:
This class also allows derivatives wrt non-Symbols that have _diff_wrt set to True, such as Function and Derivative. When a derivative wrt a non- Symbol is attempted, the nonSymbol is temporarily converted to a Symbol while the differentiation is performed.

Note that this may seem strange, that Derivative allows things like $f(g(x))$.diff $(g(x))$, or even $\mathrm{f}(\cos (\mathrm{x}))$. diff $(\cos (\mathrm{x})$). The motivation for allowing this syntax is to make it easier to work with variational calculus (i.e., the Euler-Lagrange method). The best way to understand this is that the action of derivative with respect to a non-Symbol is defined by the above description: the object is substituted for a Symbol and the derivative is taken with respect to that. This action is only allowed for objects for which this can be done unambiguously, for example Function and Derivative objects. Note that this leads to what may appear to be mathematically inconsistent results. For example:

```
>>> (2*\operatorname{cos}(x)).diff(cos(x))
2
>>> (2*sqrt(1 - sin(x)**2)).diff(cos(x))
0
```

This appears wrong because in fact $2 * \cos (\mathrm{x})$ and $2 * \operatorname{sqrt}(1-\sin (\mathrm{x}) * * 2)$ are identically equal. However this is the wrong way to think of this. Think of it instead as if we have something like this:

```
>>> from diofant.abc import s
>>> def f(u):
... return 2*u
...
>>> def g(u):
... return 2*sqrt(1 - u**2)
```

```
>>> f(cos(x))
2*}\operatorname{cos}(x
>>> g(sin(x))
2*sqrt(-sin(x)**2 + 1)
>>> f(c).diff(c)
2
>>> f(c).diff(c)
2
>>> g(s).diff(c)
0
>>> g(sin(x)).diff(\operatorname{cos}(x))
0
```

Here, the Symbols c and s act just like the functions $\cos (\mathrm{x})$ and $\sin (\mathrm{x})$, respectively. Think of $2 * \cos (\mathrm{x})$ as $\mathrm{f}(\mathrm{c})$.subs ($\{\mathrm{c}: \cos (\mathrm{x})\}$) (or $\mathrm{f}(\mathrm{c})$ at $\mathrm{c}=\cos (\mathrm{x})$) and $2^{*} \operatorname{sqrt}\left(1-\sin (\mathrm{x})^{* *} 2\right)$ as $\mathrm{g}(\mathrm{s}) . \operatorname{subs}(\{\mathrm{s}: \sin (\mathrm{x})\})($ or $\mathrm{g}(\mathrm{s})$ at $\mathrm{s}=\sin (\mathrm{x}))$, where $\mathrm{f}(\mathrm{u})==2 * \mathrm{u}$ and $\mathrm{g}(\mathrm{u})==2 * \operatorname{sqrt}(1-$ $u^{* *} 2$). Here, we define the function first and evaluate it at the function, but we can actually unambiguously do this in reverse in Diofant, because expr.subs(\{Function: Symbol\}) is well-defined: just structurally replace the function everywhere it appears in the expression.

This is the same notational convenience used in the Euler-Lagrange method when one says $F\left(t, f(t), f^{\prime}(t)\right)$.diff($\left.\mathrm{f}(\mathrm{t})\right)$. What is actually meant is that the expression in question is represented by some $F(t, u, v)$ at $u=f(t)$ and $v=f^{\prime}(t)$, and $F\left(t, f(t), f^{\prime}(t)\right)$.diff $(f(t))$ simply means $F(t, u, v)$.diff(u) at $u=f(t)$.
We do not allow derivatives to be taken with respect to expressions where this is not so well defined. For example, we do not allow expr.diff($\mathrm{x}^{*} \mathrm{y}$) because there are multiple ways of structurally defining where $x * y$ appears in an expression, some of which may surprise the reader (for example, a very strict definition would have that ($\mathrm{x}^{*} \mathrm{y}^{*} \mathrm{z}$). diff($\mathrm{x}^{*} \mathrm{y}$) $==0$).

```
>>> (x*y*z).diff(x*y)
Traceback (most recent call last):
ValueError: Can't differentiate wrt the variable: x*y, 1
```

Note that this definition also fits in nicely with the definition of the chain rule. Note how the chain rule in Diofant is defined using unevaluated Subs objects:

```
>>> f,g = symbols('f g', cls=Function)
>> f(2*g(x)).diff(x)
2*Derivative(g(x), x)*Subs(Derivative(f(_xi_1), _xi_1), (_xi_1, 2*g(x)))
>>> f(g(x)).diff(x)
Derivative(g(x), x)*Subs(Derivative(f(_xi_1), _xi_1), (_xi_1, g(x)))
```

Finally, note that, to be consistent with variational calculus, and to ensure that the definition of substituting a Function for a Symbol in an expression is well-defined, derivatives of functions are assumed to not be related to the function. In other words, we have:

```
>>> diff(f(x), x).diff(f(x))
```

0

The same is true for derivatives of different orders:

```
>>> diff(f(x), (x, 2)).diff(diff(f(x), (x, 1)))
0
>>> diff(f(x), (x, 1)).diff(diff(f(x), (x, 2)))
0
```

Note, any class can allow derivatives to be taken with respect to itself.

Examples

Some basic examples:

```
>>> Derivative(x**2, x, evaluate=True)
2*x
>>> Derivative(Derivative(f(x, y), x), y)
Derivative(f(x, y), x, y)
>>> Derivative(f(x), (x, 3))
Derivative(f(x), x, x, x)
>>> Derivative(f(x, y), y, x, evaluate=True)
Derivative(f(x, y), x, y)
```

Now some derivatives wrt functions:

```
>>> Derivative(f(x)**2, f(x), evaluate=True)
2*f(x)
>>> Derivative(f(g(x)), x, evaluate=True)
Derivative(g(x), x)*Subs(Derivative(f(_xi_1), _xi_1), (_xi_1, g(x)))
```

doit (**hints)

Evaluate objects that are not evaluated by default.

See also:

diofant.core.basic.Basic.doit (page 48)
doit_numerically $(z 0)$
Evaluate the derivative at z numerically.
When we can represent derivatives at a point, this should be folded into the normal evalf. For now, we need a special method.
property expr
Return expression.
property free_symbols
Return from the atoms of self those which are free symbols.
See also:
diofant.core.basic.Basic.free_symbols (page 48)
property variables
Return tuple of symbols, wrt derivative is taken.
diff
diofant.core.function.diff(f, *args, **kwargs)
Differentiate f with respect to symbols.
This is just a wrapper to unify . diff() and the Derivative class; its interface is similar to that of integrate(). You can use the same shortcuts for multiple variables as with Derivative. For example, $\operatorname{diff}(\mathrm{f}(\mathrm{x}), \mathrm{x}, \mathrm{x}, \mathrm{x})$ and $\operatorname{diff}(\mathrm{f}(\mathrm{x}),(\mathrm{x}, 3))$ both return the third derivative of $\mathrm{f}(\mathrm{x})$.
You can pass evaluate $=$ False to get an unevaluated Derivative class. Note that if there are 0 symbols (such as $\operatorname{diff}(f(x),(x, 0)$), then the result will be the function (the zeroth derivative), even if evaluate $=$ False.

Examples

```
>>> diff(sin(x), x)
cos(x)
>>> diff(f(x), x, x, x)
Derivative(f(x), x, x, x)
>>> diff(f(x), (x, 3))
Derivative(f(x), x, x, x)
>>> diff(sin(x)*\operatorname{cos}(y), (x, 2), (y, 2))
sin(x)*\operatorname{cos(y)}
```

```
>>> type(diff(sin(x), x))
COS
>>> type(diff(sin(x), x, evaluate=False))
<class 'diofant.core.function.Derivative'>
>>> type(diff(sin(x), (x, 0)))
sin
>>> type(diff(sin(x), (x, 0), evaluate=False))
sin
```

>>> diff(sin(x))
$\cos (x)$
>>> $\operatorname{diff}\left(\sin \left(x^{*} y\right)\right)$
Traceback (most recent call last):
ValueError: specify differentiation variables to differentiate sin(x*y)

Note that $\operatorname{diff}(\sin (x))$ syntax is meant only for convenience in interactive sessions and should be avoided in library code.

References

- https://reference.wolfram.com/legacy/v5_2/Built-inFunctions/ AlgebraicComputation/Calculus/D.html

See also:

Derivative (page 126)
diofant.geometry.util.idiff (page 408) computes the derivative implicitly

FunctionClass

class diofant.core.function. FunctionClass(*args, **kwargs)
Base class for function classes. FunctionClass is a subclass of type.
Use Function('<function name>' [, signature]) to create undefined function classes.
property nargs
Return a set of the allowed number of arguments for the function.

Examples

If the function can take any number of arguments, the set of whole numbers is returned:

```
>>> Function('f').nargs
Naturals0()
```

If the function was initialized to accept one or more arguments, a corresponding set will be returned:

```
>>> Function('f', nargs=1).nargs
{1}
>>> Function('f', nargs=(2, 1)).nargs
{1, 2}
```

The undefined function, after application, also has the nargs attribute; the actual number of arguments is always available by checking the args attribute:

```
>>> f(1).nargs
Naturals0()
>>> len(f(1).args)
1
```


Function

class diofant.core.function. Function (*args)
Base class for applied mathematical functions.
It also serves as a constructor for undefined function classes.

Examples

First example shows how to use Function as a constructor for undefined function classes:

```
>> g = g(x)
>>
f
>>> f(x)
f(x)
>>> g
g(x)
>>> f(x).diff(x)
Derivative(f(x), x)
>>> g.diff(x)
Derivative(g(x), x)
```

In the following example Function is used as a base class for MyFunc that represents a mathematical function MyFunc. Suppose that it is well known, that MyFunc(0) is 1 and MyFunc at infinity goes to 0 , so we want those two simplifications to occur automatically. Suppose also that $\operatorname{MyFunc}(x)$ is real exactly when x is real. Here is an implementation that honours those requirements:

```
>>> class MyFunc(Function):
|.
... @classmethod
... def eval(cls, x):
```

```
#. if x.is_Number:
... if \overline{x}== 0:
#. return Integer(1)
... elif x is oo:
#. return Integer(0)
"". def eval is real(self):
# return
>>> MyFunc(0) + sin(0)
1
>>> MyFunc(oo)
0
>>> MyFunc(3.54).evalf() # Not yet implemented for MyFunc.
MyFunc(3.54)
>>> MyFunc(I).is_real
False
```

In order for MyFunc to become useful, several other methods would need to be implemented. See source code of some of the already implemented functions for more complete examples.
Also, if the function can take more than one argument, then nargs must be defined, e.g. if MyFunc can take one or two arguments then,

```
>>> class MyFunc(Function):
#nargs = (1, 2)
*"
>>>
```


as_base_exp()

Returns the method as the 2 -tuple (base, exponent).
classmethod class_key()
Nice order of classes.
fdiff(argindex=1)
Returns the first derivative of the function.

Note: Not all functions are the same
Diofant defines many functions (like cos and factorial). It also allows the user to create generic functions which act as argument holders. Such functions are created just like symbols:

```
>>> f = Function('f')
>>> f(2) + f(x)
f(2) + f(x)
```

If you want to see which functions appear in an expression you can use the atoms method:

```
>>> e = (f(x) + cos(x) + 2)
>>> e.atoms(Function)
{f(x), cos(x)}
```

If you just want the function you defined, not Diofant functions, the thing to search for is AppliedUndef:

```
>>> from diofant.core.function import AppliedUndef
>>> e.atoms(AppliedUndef)
{f(x)}
```


Subs

class diofant.core.function.Subs(expr, *args, **assumptions)
Represents unevaluated substitutions of an expression.
Subs receives at least 2 arguments: an expression, a pair of old and new expression to substitute or several such pairs.
Subs objects are generally useful to represent unevaluated derivatives calculated at a point.
The variables may be expressions, but they are subjected to the limitations of subs(), so it is usually a good practice to use only symbols for variables, since in that case there can be no ambiguity.

There's no automatic expansion - use the method .doit() to effect all possible substitutions of the object and also of objects inside the expression.
When evaluating derivatives at a point that is not a symbol, a Subs object is returned. One is also able to calculate derivatives of Subs objects - in this case the expression is always expanded (for the unevaluated form, use Derivative()).

Examples

```
>>> e = Subs(f(x).diff(x), (x, y))
>>> e.subs({y: 0})
Subs(Derivative(f(x), x), (x, 0))
>>> e.subs({f: sin}).doit()
cos(y)
```

```
>> Subs(f(x)*sin(y) + z, (x, 0), (y, 1))
Subs(z + f(x)*sin(y), (x, 0), (y, 1))
>>> _.doit()
z + \overline{f}(0)*sin(1)
```

doit (**hints)

Evaluate objects that are not evaluated by default.

See also:

diofant.core.basic.Basic.doit (page 48)
evalf(dps=15, **options)
Evaluate the given formula to an accuracy of dps decimal digits.

See also:

diofant.core.evalf.EvalfMixin.evalf (page 142)
property expr
The expression on which the substitution operates.
property free_symbols
Return from the atoms of self those which are free symbols.
See also:
diofant.core.basic.Basic.free_symbols (page 48)
$\mathbf{n}\left(d p s=15,{ }^{* *}\right.$ options $)$
property point
The values for which the variables are to be substituted.
property variables
The variables to be evaluated.

expand

diofant.core.function.expand (e, deep=True, modulus=None, power_base=True, power_exp=True, mul=True, $\log =$ True, multinomial $=$ True, basic=True, **hints)
Expand an expression using methods given as hints.
Hints evaluated unless explicitly set to False are: basic, log, multinomial, mul, power_base, and power_exp. The following hints are supported but not applied unless set to True: complex, func, and trig. In addition, the following meta-hints are supported by some or all of the other hints: frac, numer, denom, modulus, and force. deep is supported by all hints. Additionally, subclasses of Expr may define their own hints or meta-hints.

Parameters

- basic (boolean, optional) - This hint is used for any special rewriting of an object that should be done automatically (along with the other hints like mul) when expand is called. This is a catch-all hint to handle any sort of expansion that may not be described by the existing hint names.
- deep (boolean, optional) - If deep is set to True (the default), things like arguments of functions are recursively expanded. Use deep=False to only expand on the top level.
- mul (boolean, optional) - Distributes multiplication over addition (${ }^{`}$):

```
>>> (y*(x + z)).expand(mul=True)
x*y + y*z
```

- multinomial (boolean, optional) - Expand ($\mathrm{x}+\mathrm{y}+\ldots)^{* *} \mathrm{n}$ where n is a positive integer.

```
>>> ((x + y + z)**2).expand(multinomial=True)
x**2 + 2*x*y + 2*x*z + y**2 + 2*y*z + z**2
```

- power_exp (boolean, optional) - Expand addition in exponents into multiplied bases.

```
>>> exp(x + y).expand(power_exp=True)
E**x*E**y
>>> (2**(x + y)).expand(power_exp=True)
2**x*2**y
```

- power_base (boolean, optional) - Split powers of multiplied bases.

This only happens by default if assumptions allow, or if the force metahint is used:

```
>>> ((x*y)**z).expand(power_base=True)
(x*y)**z
>>> ((x*y)**z).expand(power_base=True, force=True)
x**z*y**z
>>> ((2*y)**z).expand(power_base=True)
2**z*y**z
```

Note that in some cases where this expansion always holds, Diofant performs it automatically:

```
>>>(x*y)**2
x**2*y**2
```

- $\boldsymbol{\operatorname { l o g }}$ (boolean, optional) - Pull out power of an argument as a coefficient and split logs products into sums of logs.
Note that these only work if the arguments of the log function have the proper assumptions-the arguments must be positive and the exponents must be real-or else the force hint must be True:

```
>>> log(x**2*y).expand(log=True)
log(x**2*y)
>>> log(x**2*y).expand(log=True, force=True)
2*log(x) + log(y)
>>> x, y = symbols('x y', positive=True)
>>> log(x**2*y).expand(log=True)
2*log(x) + log(y)
```

- complex (boolean, optional) - Split an expression into real and imaginary parts.

```
>>> x, y = symbols('x y')
>>> (x + y).expand(complex=True)
re(x) + re(y) + I*im(x) + I*im(y)
>>> cos(x).expand(complex=True)
-I*sin(re(x))*sinh(im(x)) + cos(re(x))*\operatorname{cosh(im(x))}
```

Note that this is just a wrapper around as_real_imag(). Most objects that wish to redefine _eval_expand_complex() should consider redefining as_real_imag() instead.

- func (boolean : optional) - Expand other functions.

```
>>> gamma(x + 1).expand(func=True)
x*gamma(x)
```

- trig (boolean, optional) - Do trigonometric expansions.

```
>>> cos(x + y).expand(trig=True)
- sin}(x)*\operatorname{sin}(y)+\operatorname{cos}(x)*\operatorname{cos}(y
>>> sin(2*x).expand(trig=True)
2*}\operatorname{sin}(x)*\operatorname{cos}(x
```

Note that the forms of $\sin \left(n^{*} x\right)$ and $\cos \left(n^{*} x\right)$ in terms of $\sin (x)$ and $\cos (\mathrm{x})$ are not unique, due to the identity $\sin ^{2}(x)+\cos ^{2}(x)=1$. The current implementation uses the form obtained from Chebyshev polynomials, but this may change.

- force (boolean, optional) - If the force hint is used, assumptions about variables will be ignored in making the expansion.

Notes

- You can shut off unwanted methods:

```
>>> (exp (x + y)*(x + y)).expand()
E**x*E**y*x + E****E**y*y
>>> (exp(x + y)*(x + y)).expand(power_exp=False)
E**}(x+y)*x+E**(x+y)*
>> (exp(x+y)*(x + y)).expand(mul=False)
E**x*E**'y*}(\textrm{x}+\textrm{y}
```

- Use deep=False to only expand on the top level:

```
>>> exp(x + exp(x + y)).expand()
E**x*E**(E**x*E**y)
>>> exp(x + exp(x + y)).expand(deep=False)
E**(E** (x + y))*E**x
```

- Hints are applied in an arbitrary, but consistent order (in the current implementation, they are applied in alphabetical order, except multinomial comes before mul, but this may change). Because of this, some hints may prevent expansion by other hints if they are applied first. For example, mul may distribute multiplications and prevent log and power_base from expanding them. Also, if mul is applied before multinomial, the expression might not be fully distributed. The solution is to use the various expand_hint helper functions or to use hint=False to this function to finely control which hints are applied. Here are some examples:

```
>>> x, y, z = symbols('x y z', positive=True)
>>> expand(log(x*}(y+z))
log(x) + log(y + z)
```

Here, we see that log was applied before mul. To get the mul expanded form, either of the following will work:

```
>>> expand_mul(log(x*(y + z)))
log(x*y + 栳z)
>>> expand(log(x*(y + z)), log=False)
log(x*y + x*z)
```

A similar thing can happen with the power_base hint:

```
>>> expand((x*(y + z))**x)
(x*y + x*z)**x
```

To get the power_base expanded form, either of the following will work:

```
>>> expand((x*(y + z))**x, mul=False)
x**x*}(\textrm{y}+\textrm{z})**
>>> expand_power_base((x*(y + z))**x)
x**x*}(\textrm{y}+\overline{\textrm{z}}\mp@subsup{)}{}{**}\textrm{x
>>> expand(( }x+y)*y/x
y + y**2/x
```

The parts of a rational expression can be targeted:

```
>>> expand((x+y)*y/x/(x + 1), frac=True)
(x*y + y**2)/(x**2 + x)
>>> expand((x+y)*y/x/(x+1), numer=True)
(x*y + y**2)/(x*(x + 1))
>>> expand((x+y)*y/x/(x + 1), denom=True)
y*}(x+y)/(\mp@subsup{x}{}{**2 + x )
```

- The modulus meta-hint can be used to reduce the coefficients of an expression postexpansion:

```
>>> expand((3*x + 1)**2)
9*x**2 + 6*x + 1
>>> expand((3*x + 1)**2, modulus=5)
4*x**2 + x + 1
```

- Either expand() the function or . expand() the method can be used. Both are equivalent:

```
>>> expand((x + 1)**2)
x**2 + 2*x + 1
>>> ((x+1)**2).expand()
x**2 + 2*x + 1
```

- Objects can define their own expand hints by defining _eval_expand_hint(). The function should take the form:

```
def _eval_expand_hint(self, **hints):
    # Only apply the method to the top-level expression
```

See also the example below. Objects should define _eval_expand_hint() methods only if hint applies to that specific object. The generic _eval_expand_hint() method defined in Expr will handle the no-op case.

Each hint should be responsible for expanding that hint only. Furthermore, the expansion should be applied to the top-level expression only. expand() takes care of the recursion that happens when deep=True.
You should only call _eval_expand_hint() methods directly if you are 100\% sure that the object has the method, as otherwise you are liable to get unexpected AttributeError's. Note, again, that you do not need to recursively apply the hint to args of your object: this is handled automatically by expand(). _eval_expand_hint() should generally not be used at all outside of an _eval_expand_̄̄int() method. If you want to apply a specific expansion from within another method, use the public expand() function, method, or expand_hint() functions.
In order for expand to work, objects must be rebuildable by their args, i.e., obj. func(*obj.args) == obj must hold.

Expand methods are passed **hints so that expand hints may use 'metahints'hints that control how different expand methods are applied. For example, the force=True hint described above that causes expand (log=True) to ignore assumptions is such a metahint. The deep meta-hint is handled exclusively by expand() and is not passed to _eval_expand_hint() methods.
Note that expansion hints should generally be methods that perform some kind of 'expansion'. For hints that simply rewrite an expression, use the .rewrite() API.

Examples

```
>>> class MyClass(Expr):
... def __new__(cls, *args):
... }\overline{\mathrm{ args = sympify(args)}
... return Expr.__new__(cls, *args)
... def _eval_expand_double(self, **hints):
... # Doubles the args of MyClass.
... # If there more than four args, doubling is not performed,
... # unless force=True is also used (False by default).
... force = hints.pop('force', False)
... if not force and len(self.args) > 4:
... return self
... return self.func(*(self.args + self.args))
#
>>> a = MyClass(1, 2, MyClass(3, 4))
>>> a
MyClass(1, 2, MyClass(3, 4))
>>> a.expand(double=True)
MyClass(1, 2, MyClass(3, 4, 3, 4), 1, 2, MyClass(3, 4, 3, 4))
>>> a.expand(double=True, deep=False)
MyClass(1, 2, MyClass(3, 4), 1, 2, MyClass(3, 4))
```

```
>>> b = MyClass(1, 2, 3, 4, 5)
>>> b.expand(double=True)
MyClass(1, 2, 3, 4, 5)
>>> b.expand(double=True, force=True)
MyClass(1, 2, 3, 4, 5, 1, 2, 3, 4, 5)
```


See also:

expand_log (page 139), expand_mul (page 139), expand_multinomial (page 140), expand_complex (page 140), expand_trig (page 140), expand_power_base (page 141), expand_power_exp (page 141), expand_func (page 139), diofant.simplify. hyperexpand.hyperexpand (page 702)

References

- https://mathworld.wolfram.com/Multiple-AngleFormulas.html

PoleError

class diofant.core.function. PoleError
Raised when an expansion pole is encountered.

count_ops

diofant.core.function.count_ops (expr, visual=False)
Return a representation (integer or expression) of the operations in expr.
If visual is False (default) then the sum of the coefficients of the visual expression will be returned.

If visual is True then the number of each type of operation is shown with the core class types (or their virtual equivalent) multiplied by the number of times they occur.

If expr is an iterable, the sum of the op counts of the items will be returned.

Examples

Although there isn't a SUB object, minus signs are interpreted as either negations or subtractions:

```
>>> (x - y).count_ops(visual=True)
SUB
>>> (-x).count_ops(visual=True)
NEG
```

Here, there are two Adds and a Pow:

```
>>> (1 + a + b**2).count_ops(visual=True)
2*ADD + POW
```

In the following, an Add, Mul, Pow and two functions:

```
>> (sin(x)*x+\operatorname{sin}(x)**2).count_ops(visual=True)
ADD + MUL + POW + 2*SIN
```

for a total of 5:

```
>>> (sin(x)*x + sin(x)**2).count_ops(visual=False)
```

5

Note that "what you type" is not always what you get. The expression $1 / \mathrm{x} / \mathrm{y}$ is translated by diofant into $1 /\left(\mathrm{x}^{*} \mathrm{y}\right)$ so it gives a DIV and MUL rather than two DIVs:

```
>>> (1/x/y).count_ops(visual=True)
DIV + MUL
```

The visual option can be used to demonstrate the difference in operations for expressions in different forms. Here, the Horner representation is compared with the expanded form of a polynomial:

```
>>> eq = x*(1 + x*(2 + x*(3 + x)))
>>> count_ops(eq.expand(), visual=True) - count_ops(eq, visual=True)
-MUL + 3*\overline{P}OW
```

The count_ops function also handles iterables:

```
>>> count ops([x, sin(x), None, True, x + 2], visual=False)
2
>>> count_ops([x, sin(x), None, True, x + 2], visual=True)
ADD + SIN
>> count ops({x: sin(x), x + 2: y + 1}, visual=True)
2*ADD + S\overline{IN}
```

expand_mul
diofant.core.function.expand_mul(expr, deep=True)
Wrapper around expand that only uses the mul hint. See the expand docstring for more information.

Examples

```
>>> x, y = symbols('x y', positive=True)
>>> expand_mul(exp(x+y)*(x+y)*log(x*y**2))
E**}(x+y\mp@subsup{)}{}{*}\mp@subsup{x}{}{*}\operatorname{log}(\mp@subsup{x}{}{*}\mp@subsup{y}{***}{*})+\mp@subsup{E}{}{**}(x+y)*y*\operatorname{log}(\mp@subsup{x}{}{*}\mp@subsup{y}{***2)}{
```


expand_log

diofant.core.function.expand_log(expr, deep=True, force=False)
Wrapper around expand that only uses the log hint. See the expand docstring for more information.

Examples

```
>>> x, y = symbols('x y', positive=True)
>> expand_log(exp(x+y)*(x+y)*log(x*y**2))
E**}(x+y\mp@subsup{)}{}{*}(x+y\mp@subsup{)}{}{*}(\operatorname{log}(x)+2*\operatorname{log}(y)
```

expand_func
diofant.core.function.expand_func (expr, deep=True)
Wrapper around expand that only uses the func hint. See the expand docstring for more information.

Examples

```
>>> expand_func(gamma(x + 2))
x*(x + 1)*gamma(x)
```

expand_trig
diofant.core.function.expand_trig(expr, deep=True)
Wrapper around expand that only uses the trig hint. See the expand docstring for more information.

Examples

```
>>> expand_trig(sin}(x+y)*(x+y)
(x + y)*(sin}(x)*\operatorname{cos}(y)+\operatorname{sin}(y)*\operatorname{cos}(x)
```

expand_complex
diofant.core.function.expand_complex (expr, deep=True)
Wrapper around expand that only uses the complex hint. See the expand docstring for more information.

Examples

```
>>> expand_complex(exp(z))
E**re(z)*I*}\operatorname{sin}(im(z)) + E**re(z)*\operatorname{cos(im(z))
>>> expand_complex(sqrt(I))
sqrt(2)/2 ¢ sqrt(2)*I/2
```


See also:

diofant.core.expr.Expr.as_real_imag (page 64)

expand_multinomial

diofant.core.function.expand_multinomial (expr, deep=True)
Wrapper around expand that only uses the multinomial hint. See the expand docstring for more information.

Examples

```
>>> x, y = symbols('x y', positive=True)
>> expand_multinomial((x + exp(x + 1))**2)
2*E** (x + \overline{1})*x + E** (2*x + 2) + x**2
```


expand_power_exp

diofant.core.function.expand_power_exp (expr, deep=True)
Wrapper around expand that only uses the power_exp hint.

Examples

```
>>> expand_power_exp(x**(y + 2))
x**2*x**y
```


See also:

```
expand (page 133)
```

expand_power_base
diofant.core.function.expand_power_base(expr, deep=True, force=False)
Wrapper around expand that only uses the power_base hint.
A wrapper to expand(power_base=True) which separates a power with a base that is a Mul into a product of powers, without performing any other expansions, provided that assumptions about the power's base and exponent allow.
deep=False (default is True) will only apply to the top-level expression.
force=True (default is False) will cause the expansion to ignore assumptions about the base and exponent. When False, the expansion will only happen if the base is nonnegative or the exponent is an integer.

```
>>> (x*y)**2
x**2*y**2
```

```
>>> (2*x)**y
```

>>> (2*x)**y
(2*x)**y
(2*x)**y
>>> expand_power_base(_)
>>> expand_power_base(_)
2**y*x**y

```
2**y*x**y
```

```
>>> expand_power_base((x*y)**z)
(x*y)**z
>>> expand_power_base((x*y)**z, force=True)
x**z*y**z
>>> expand_power_base(sin((x*y)**z), deep=False)
sin((x*y)**z)
>>> expand_power_base(sin((x*y)**z), force=True)
sin(x**z*y**z)
```

```
>>> expand power_base((2*sin(x))**y + (2*\operatorname{cos}(x))**y)
2**y*\operatorname{sin}(x)**y+-2**y*
```

```
>>> expand_power_base((2*exp(y))**x)
2**x*(E**y)**x
```

```
>>> expand_power_base((2*}\operatorname{cos}(x))**y
2**y*}\operatorname{cos}(x)**
```

Notice that sums are left untouched. If this is not the desired behavior, apply full expand() to the expression:

```
>>> expand power base(((x+y)*z)**2)
z**2*(x + y )**2
>>> (((x+y)*z)**2). expand()
x**2*z**2 + 2*x*y*z**2 + y**2*z**2
>>> expand_power_base((2*y)**(1+z))
2**(z + 1)*y**(z + 1)
>>> ((2*y)**(1+z)). expand()
2*2**z*y*y**z
```


See also:

expand (page 133)

nfloat

diofant.core.function.nfloat (expr, $n=15$, exponent=False)
Make all Rationals in expr Floats except those in exponents (unless the exponents flag is set to True).

Examples

```
>>> nfloat(x**4 + x/2 + cos(pi/3) + 1 + sqrt(y))
x**4 + 0.5*x + sqrt(y) + 1.5
>>> nfloat(x**4 + sqrt(y), exponent=True)
x**4.0 + y**0.5
```


4.2.20 evalf

class diofant.core.evalf.EvalfMixin
Mixin class adding evalf capability.
evalf $(d p s=15$, subs $=$ None, maxn $=110$, chop=False, strict=True, quad=None)
Evaluate the given formula to an accuracy of dps decimal digits. Optional keyword arguments:
subs $=<\boldsymbol{d i c t}>$ Substitute numerical values for symbols, e.g. $\operatorname{subs}=\{x: 3$, $\mathrm{y}: 1+\mathrm{pi}\}$. The substitutions must be given as a dictionary.
maxn=<integer> Allow a maximum temporary working precision of maxn digits (default=110)
chop=<bool> Replace tiny real or imaginary parts in subresults by exact zeros (default=False)
strict=<bool> Raise PrecisionExhausted if any subresult fails to evaluate to full accuracy, given the available maxprec (default=True)
quad=<str> Choose algorithm for numerical quadrature. By default, tanhsinh quadrature is used. For oscillatory integrals on an infinite interval, try quad='osc'.

PrecisionExhausted

class diofant.core.evalf. PrecisionExhausted
Raised when precision is exhausted.

N

diofant.core.evalf.N($x, d p s=15, * *$ options $)$
Calls x.evalf(dps, **options).

Examples

```
>>> Sum(1/k**k, (k, 1, oo))
Sum(k**(-k), (k, 1, oo))
>>> N(_, 4)
1.291
```


See also:

diofant. core.evalf.EvalfMixin.evalf (page 142)

4.2.21 containers

Tuple

class diofant.core.containers.Tuple(*args)
Wrapper around the builtin tuple object
The Tuple is a subclass of Basic, so that it works well in the Diofant framework. The wrapped tuple is available as self.args, but you can also access elements or slices with [:] syntax.

```
>>> Tuple(a, b, c)[1:]
(b, c)
>>> Tuple(a, b, c).subs({a: d})
(d, b, c)
```

index (value, start=None, stop=None)
Return first index of value.
Raises ValueError if the value is not present.
tuple_count (value)
T.count(value) -> int - return number of occurrences of value.

Dict

class diofant.core.containers.Dict(*args)
Wrapper around the builtin dict object
The Dict is a subclass of Basic, so that it works well in the Diofant framework. Because it is immutable, it may be included in sets, but its values must all be given at instantiation and cannot be changed afterwards. Otherwise it behaves identically to the Python dict.

```
>>> D = Dict({1: 'one', 2: 'two'})
>>> for key in D:
... if key == 1:
#.: print(f'{key} {D[key]}')
1 one
```

The args are sympified so the 1 and 2 are Integers and the values are Symbols. Queries automatically sympify args so the following work:

```
>>> 1 in D
True
>>> D.has('one') # searches keys and values
True
>>> 'one' in D # not in the keys
False
>>> D[1]
one
```

```
property args
```

Returns a tuple of arguments of 'self'.

See also:

diofant.core.basic.Basic.args (page 46)
get (key, default=None)
Return the value for key if key is in the dictionary, else default.

```
items()
```

Returns a set-like object providing a view on Dict's items.

```
keys()
```

Returns a set-like object providing a view on Dict's keys.

```
values()
```

Returns a set-like object providing a view on Dict's values.

4.2.22 compatibility

Reimplementations of constructs introduced in later versions of Python than we support. Also some functions that are needed Diofant-wide and are located here for easy import.
class diofant.core.compatibility. NotIterable
Use this as mixin when creating a class which is not supposed to return true when iterable() is called on its instances. I.e. avoid infinite loop when calling e.g. list() on the instance
diofant.core.compatibility.as_int(n)
Convert the argument to a builtin integer.
The return value is guaranteed to be equal to the input. ValueError is raised if the input has a non-integral value.

Examples

```
>>> 3.0
3.0
>>> as_int(3.0) # convert to int and test for equality
3
>>> int(sqrt(10))
3
>>> as_int(sqrt(10))
Tracebāck (most recent call last):
ValueError: ... is not an integer
```

diofant.core.compatibility.is_sequence(i,include=None)
Return a boolean indicating whether i is a sequence in the Diofant sense. If anything that fails the test below should be included as being a sequence for your application, set 'include' to that object's type; multiple types should be passed as a tuple of types.

Note: although generators can generate a sequence, they often need special handling to make sure their elements are captured before the generator is exhausted, so these are not included by default in the definition of a sequence.

See also:

iterable (page 145)

Examples

```
>>> from types import GeneratorType
>>> is_sequence([])
True
>>> is_sequence(set())
False
>>> is_sequence('abc')
False
>>> is sequence('abc', include=str)
True
>>> generator = (c for c in 'abc')
>>> is_sequence(generator)
False
>>> is_sequence(generator, include=(str, GeneratorType))
True
```

diofant.core.compatibility.iterable(i, exclude=(<class 'str'>, <class 'dict'>, <class 'diofant.core.compatibility.NotIterable'>))
Return a boolean indicating whether i is Diofant iterable. True also indicates that the iterator is finite, i.e. you e.g. call list(...) on the instance.

When Diofant is working with iterables, it is almost always assuming that the iterable is not a string or a mapping, so those are excluded by default. If you want a pure Python definition, make exclude=None. To exclude multiple items, pass them as a tuple.

See also:

is_sequence (page 145)

Examples

```
>>> things = [[1], (1,), {1}, Tuple(1), (j for j in [1, 2]), {1: 2}, '1', 1]
>>> for i in things:
... print(f'{iterable(i)} {type(i)}')
True <... 'list'>
True <... 'tuple'>
True <... 'set'>
True <class 'diofant.core.containers.Tuple'>
True <... 'generator'>
False <... 'dict'>
False <... 'str'>
False <... 'int'>
```

```
>>> iterable({}, exclude=None)
True
>>> iterable({}, exclude=str)
True
>>> iterable('no', exclude=str)
False
```


4.2.23 exprtools

gcd_terms
diofant.core.exprtools.gcd_terms(terms, isprimitive $=$ False, clear=True, fraction=True)
Compute the GCD of terms and put them together.
terms can be an expression or a non-Basic sequence of expressions which will be handled as though they are terms from a sum.
If isprimitive is True the _gcd_terms will not run the primitive method on the terms.
clear controls the removal of integers from the denominator of an Add expression. When True (default), all numerical denominator will be cleared; when False the denominators will be cleared only if all terms had numerical denominators other than 1.
fraction, when True (default), will put the expression over a common denominator.

Examples

```
>>> gcd_terms((x + 1)**2*y + (x + 1)*y**2)
y*(x + \overline{1})*(x + y + 1)
>>> gcd_terms(x/2 + 1)
(x+2)/2
>>> gcd_terms(x/2 + 1, clear=False)
x/2 + 1
>>> gcd_terms(x/2 + y/2, clear=False)
(x + y)/2
>>> gcd_terms(x/2 + 1/x)
(x**2 +-2)/(2*x)
>>> gcd terms(x/2 + 1/x, fraction=False)
(x + 2/\overline{x})/2
>>> gcd_terms(x/2 + 1/x, fraction=False, clear=False)
x/2 + 1/\x
```

```
>>> gcd_terms(x/2/y + 1/x/y)
(x**2 + 2)/(2*x*y)
>> gcd_terms(x/2/y + 1/x/y, fraction=False, clear=False)
(x + 2/\overline{x})/(2*y)
```

The clear flag was ignored in this case because the returned expression was a rational expression, not a simple sum.

See also:

factor_terms (page 147), diofant.polys.polytools.terms_gcd (page 617)

factor_terms

diofant.core.exprtools.factor_terms(expr, radical=False, clear=False, fraction=False, sign=True)
Remove common factors from terms in all arguments without changing the underlying structure of the expr. No expansion or simplification (and no processing of noncommutatives) is performed.
If radical=True then a radical common to all terms will be factored out of any Add subexpressions of the expr.
If clear=False (default) then coefficients will not be separated from a single Add if they can be distributed to leave one or more terms with integer coefficients.
If fraction=True (default is False) then a common denominator will be constructed for the expression.
If sign=True (default) then even if the only factor in common is a -1 , it will be factored out of the expression.

Examples

```
>>> factor_terms(x + x*(2 + 4*y)**3)
x*(8*(2*y 〒 1)**3 + 1)
>>> A = Symbol('A', commutative=False)
>> factor terms(x*A + x*A + x*y*A)
x*(y*A + 2**A)
```

When clear is False, a rational will only be factored out of an Add expression if all terms of the Add have coefficients that are fractions:

```
>>> factor_terms(x/2 + 1, clear=False)
x/2 + 1
>>> factor_terms(x/2 + 1, clear=True)
(x + 2)/2
```

This only applies when there is a single Add that the coefficient multiplies:

```
>>> factor terms(x*y/2 + y, clear=True)
y*(x + 2)/\overline{2}
>>> factor_terms(x*y/2 + y, clear=False) ==
True
```

If $\mathrm{a}-1$ is all that can be factored out, to not factor it out, the flag sign must be False:

```
>>> factor_terms(-x - y)
-(x + y)
>>> factor_terms(-x - y, sign=False)
-x - y
>>> factor_terms(-2*x - 2*y, sign=False)
-2*(x + y)
```


See also:

gcd_terms (page 146), diofant.polys.polytools.terms_gcd (page 617)

4.3 Combinatorics

4.3.1 Partitions

class diofant.combinatorics.partitions.Partition(*partition)

This class represents an abstract partition.
A partition is a set of disjoint sets whose union equals a given set.

See also:

diofant.utilities.iterables.partitions (page 895), diofant.utilities. iterables.multiset_partitions (page 890)
property RGS
Returns the "restricted growth string" of the partition.
The RGS is returned as a list of indices, L , where L[i] indicates the block in which element i appears. For example, in a partition of 3 elements (a, b, c) into 2 blocks ($[\mathrm{c}],[\mathrm{a}, \mathrm{b}]$) the RGS is $[1,1,0]$: " a " is in block 1 , " b " is in block 1 and " c " is in block 0 .

Examples

```
>>> a = Partition([1, 2], [3], [4, 5])
>>> a.members
(1, 2, 3, 4, 5)
>>> a.RGS
(0, 0, 1, 2, 2)
>>> a + 1
{{3}, {4}, {5}, {1, 2}}
>>> .RGS
(0, \overline{0}, 1, 2, 3)
```

classmethod from_rgs(rgs, elements)
Creates a set partition from a restricted growth string.
The indices given in rgs are assumed to be the index of the element as given in elements as provided (the elements are not sorted by this routine). Block numbering starts from 0. If any block was not referenced in rgs an error will be raised.

Examples

```
>>> Partition.from_rgs([0, 1, 2, 0, 1], list('abcde'))
{{c}, {a, d}, {b, e}}
>>> Partition.from_rgs([0, 1, 2, 0, 1], list('cbead'))
{{e}, {a, c}, {b, d}}
>>> a = Partition([1, 4], [2], [3, 5])
>>> Partition.from rgs(a.RGS, a.members)
{{2}, {1, 4}, {3, 5}}
```

property partition
Return partition as a sorted list of lists.

Examples

```
>>> Partition([1], [2, 3]).partition
```

[[1], [2, 3]]
property rank
Gets the rank of a partition.

Examples

```
>>> a = Partition([1, 2], [3], [4, 5])
```

>>> a.rank
13
sort_key (order=None)
Return a canonical key that can be used for sorting.
Ordering is based on the size and sorted elements of the partition and ties are broken with the rank.

Examples

```
>>> a = Partition([1, 2])
>>> b = Partition([3, 4])
>>> c = Partition([1, x])
>>> d = Partition(list(range(4)))
>> l = [d, b, a + 1, a, c]
>>> l.sort(key=default_sort_key)
>>> l
[{{1, 2}}, {{1}, {2}}, {{1, x}}, {{3, 4}}, {{0, 1, 2, 3}}]
```

class diofant.combinatorics.partitions.IntegerPartition(partition, integer=None) This class represents an integer partition.

In number theory and combinatorics, a partition of a positive integer, n, also called an integer partition, is a way of writing n as a list of positive integers that sum to n . Two partitions that differ only in the order of summands are considered to be the same partition; if order matters then the partitions are referred to as compositions. For example, 4 has five partitions: [4], [3, 1], [2, 2], [2, 1, 1], and [1, 1, 1, 1]; the compositions [1, 2, $1]$ and $[1,1,2]$ are the same as partition [2, 1, 1].

See also:

diofant.utilities.iterables.partitions (page 895), diofant.utilities. iterables.multiset_partitions (page 890)

References

- https://en.wikipedia.org/wiki/Partition_\(number_theory\)
as_dict()
Return the partition as a dictionary whose keys are the partition integers and the values are the multiplicity of that integer.

Examples

>>> IntegerPartition([1]*3 + [2] + [3]*4).as_dict()
\{1: 3, 2: 1, 3: 4\}
as_ferrers(char='\#')
Prints the ferrer diagram of a partition.

Examples

```
>>> print(IntegerPartition([1, 1, 5]).as_ferrers())
#####
#
#
```

property conjugate
Computes the conjugate partition of itself.

Examples

```
>>> a = IntegerPartition([6, 3, 3, 2, 1])
>>> a.conjugate
[5, 4, 3, 1, 1, 1]
```

next_lex()
Return the next partition of the integer, n, in lexical order, wrapping around to [n] if the partition is $[1, \ldots, 1]$.

Examples

```
>>> p = IntegerPartition([3, 1])
>>> print(p.next_lex())
[4]
>>> p.partition < p.next_lex().partition
True
```

prev_lex()

Return the previous partition of the integer, n , in lexical order, wrapping around to [$1, \ldots, 1$] if the partition is [n].

Examples

```
>>> p = IntegerPartition([4])
>>> print(p.prev_lex())
[3, 1]
>>> p.partition > p.prev_lex().partition
True
```

diofant.combinatorics.partitions.random_integer_partition(n, seed=None)
Generates a random integer partition summing to n as a list of reverse-sorted integers.

Examples

For the following, a seed is given so a known value can be shown; in practice, the seed would not be given.

```
>>> random_integer partition(100, seed=[1, 1, 12, 1, 2, 1, 85, 1])
[85, 12, 2, 1]
>>> random_integer_partition(10, seed=[1, 2, 3, 1, 5, 1])
[5, 3, 1, \overline{1}]
>>> random_integer_partition(1)
[1]
```

diofant.combinatorics.partitions.RGS_generalized (m)
Computes the $m+1$ generalized unrestricted growth strings and returns them as rows in matrix.

Examples

```
>>> RGS_generalized(6)
Matrix([
[ 1, 1, 1, 1, 1, 1, 1],
[ 1, 2, 3, 4, 5, 6, 0],
[ 2, 5, 10, 17, 26, 0, 0],
[ 5, 15, 37, 77, 0, 0, 0],
[ 15, 52, 151, 0, 0, 0, 0],
[ 52, 203, 0, 0, 0, 0, 0],
[203, 0, 0, 0, 0, 0, 0]])
```

diofant.combinatorics.partitions.RGS_enum(m)
RGS_enum computes the total number of restricted growth strings possible for a superset of size m.

Examples

```
>>> RGS_enum(4)
15
>>> RGS_enum(5)
52
>>> RGS_enum(6)
203
```

We can check that the enumeration is correct by actually generating the partitions. Here, the 15 partitions of 4 items are generated:

```
>>> a = Partition(list(range(4)))
>>> s = set()
>>> for i in range(20):
... s.add(a)
#. a += 1
>>> assert len(s) == 15
```

diofant.combinatorics.partitions.RGS_unrank (rank, m)
Gives the unranked restricted growth string for a given superset size.

Examples

```
>>> RGS unrank(14, 4)
[0, 1, \overline{2, 3]}
>>> RGS_unrank(0, 4)
[0, 0, \overline{0, 0]}
```

diofant. combinatorics.partitions.RGS_rank(rgs)
Computes the rank of a restricted growth string.

Examples

```
>>> RGS_rank([0, 1, 2, 1, 3])
42
>>> RGS_rank(RGS_unrank(4, 7))
4
```


4.3.2 Permutations

class diofant.combinatorics.permutations.Permutation(*args, **kwargs)
A permutation, alternatively known as an 'arrangement number' or 'ordering' is an arrangement of the elements of an ordered list into a one-to-one mapping with itself. The permutation of a given arrangement is given by indicating the positions of the elements after re-arrangement. For example, if one started with elements [x, y, a, b] (in that order) and they were reordered as $[x, y, b, a]$ then the permutation would be $[0,1,3,2]$. Notice that (in Diofant) the first element is always referred to as 0 and the permutation uses the indices of the elements in the original ordering, not the elements (a, b, etc...) themselves.

```
>>> Permutation.print_cyclic = False
```


Notes

Permutations Notation

Permutations are commonly represented in disjoint cycle or array forms.

Array Notation and 2-line Form

In the 2 -line form, the elements and their final positions are shown as a matrix with 2 rows:
[0 $12 \ldots \mathrm{n}-1][\mathrm{p}(0) \mathrm{p}(1) \mathrm{p}(2) \ldots \mathrm{p}(\mathrm{n}-1)$]
Since the first line is always range(n), where n is the size of p, it is sufficient to represent the permutation by the second line, referred to as the "array form" of the permutation. This is entered in brackets as the argument to the Permutation class:

```
>>> p = Permutation([0, 2, 1])
>>> p
Permutation([0, 2, 1])
```

Given i in range(p.size), the permutation maps ito $\mathrm{i}^{\wedge} \mathrm{p}$

```
>>> [i ^ p for i in range(p.size)]
[0, 2, 1]
```

The composite of two permutations $p^{*} q$ means first apply p, then q, so $i^{\wedge}\left(p^{*} q\right)=\left(i^{\wedge} p\right)^{\wedge} q$ which is $\mathrm{i}^{\wedge} \mathrm{p}^{\wedge} \mathrm{q}$ according to Python precedence rules:

```
>>> q = Permutation([2, 1, 0])
>>> [i ^ p ^ q for i in range(3)]
[2, 0, 1]
>>> [i ^ (p*q) for i in range(3)]
[2, 0, 1]
```

One can use also the notation $\mathrm{p}(\mathrm{i})=\mathrm{i}^{\wedge} \mathrm{p}$, but then the composition rule is $\left(\mathrm{p}^{*} \mathrm{q}\right)(\mathrm{i})=$ $q(p(i))$, not $p(q(i))$:

```
>>> [(p*q)(i) for i in range(p.size)]
[2, 0, 1]
>>> [q(p(i)) for i in range(p.size)]
[2, 0, 1]
>>> [p(q(i)) for i in range(p.size)]
[1, 2, 0]
```


Disjoint Cycle Notation

In disjoint cycle notation, only the elements that have shifted are indicated. In the above case, the 2 and 1 switched places. This can be entered in two ways:

```
>>> Permutation(1, 2) == Permutation([[1, 2]]) == p
True
```

Only the relative ordering of elements in a cycle matter:

```
>>> Permutation(1, 2, 3) == Permutation(2, 3, 1) == Permutation(3, 1, 2)
True
```

The disjoint cycle notation is convenient when representing permutations that have several cycles in them:

```
>>> Permutation(1, 2)(3, 5) == Permutation([[1, 2], [3, 5]])
True
```

It also provides some economy in entry when computing products of permutations that are written in disjoint cycle notation:

```
>>> Permutation(1, 2)(1, 3)(2, 3)
Permutation([0, 3, 2, 1])
>>>- == Permutation([[1, 2]])*Permutation([[1, 3]])*Permutation([[2, 3]])
True
```

Entering a singleton in a permutation is a way to indicate the size of the permutation. The size keyword can also be used.
Array-form entry:

```
>>> Permutation([[1, 2], [9]])
Permutation([0, 2, 1], size=10)
>>> Permutation([[1, 2]], size=10)
Permutation([0, 2, 1], size=10)
```

Cyclic-form entry:

```
>>> Permutation(1, 2, size=10)
Permutation([0, 2, 1], size=10)
>>> Permutation(9)(1, 2)
Permutation([0, 2, 1], size=10)
```

Caution: no singleton containing an element larger than the largest in any previous cycle can be entered. This is an important difference in how Permutation and Cycle handle the call__ syntax. A singleton argument at the start of a Permutation performs instantiation of the Permutation and is permitted:

```
>>> Permutation(5)
Permutation([], size=6)
```

A singleton entered after instantiation is a call to the permutation - a function call - and if the argument is out of range it will trigger an error. For this reason, it is better to start the cycle with the singleton:
The following fails because there is is no element 3:

```
>>> Permutation(1, 2)(3)
Traceback (most recent call last):
IndexError: list index out of range
```

This is ok: only the call to an out of range singleton is prohibited; otherwise the permutation autosizes:

```
>>> Permutation(3)(1, 2)
Permutation([0, 2, 1, 3])
>>> Permutation(1, 2)(3, 4) == Permutation(3, 4)(1, 2)
True
```


Equality testing

The array forms must be the same in order for permutations to be equal:

```
>>> Permutation([1, 0, 2, 3]) == Permutation([1, 0])
False
```


Identity Permutation

The identity permutation is a permutation in which no element is out of place. It can be entered in a variety of ways. All the following create an identity permutation of size 4:

```
>>> I = Permutation([0, 1, 2, 3])
>>> all(p == I for p in [Permutation(3), Permutation(range(4)),
#". Permutation([], size=4), Permutation(size=4)])
True
```

Watch out for entering the range inside a set of brackets (which is cycle notation):

```
>>> I == Permutation([range(4)])
False
```


Permutation Printing

There are a few things to note about how Permutations are printed.

1) If you prefer one form (array or cycle) over another, you can set that with the print_cyclic flag.
```
>>> Permutation(1, 2)(4, 5)(3, 4)
Permutation([0, 2, 1, 4, 5, 3])
>>> p =
```

```
>>> Permutation.print_cyclic = True
>>> p
Permutation(1, 2)(3, 4, 5)
>>> Permutation.print_cyclic = False
```

2) Regardless of the setting, a list of elements in the array for cyclic form can be obtained and either of those can be copied and supplied as the argument to Permutation:
```
>>> p.array_form
[0, 2, 1, 4, 5, 3]
>>> p.cyclic_form
[[1, 2], [3, 4, 5]]
>>> Permutation(_) == p
True
```

3) Printing is economical in that as little as possible is printed while retaining all information about the size of the permutation:
```
>>> Permutation([1, 0, 2, 3])
Permutation([1, 0, 2, 3])
>>> Permutation([1, 0, 2, 3], size=20)
Permutation([1, 0], size=20)
>>> Permutation([1, 0, 2, 4, 3, 5, 6], size=20)
Permutation([1, 0, 2, 4, 3], size=20)
```

```
>>> p = Permutation([1, 0, 2, 3])
>>> Permutation.print_cyclic = True
>> p
Permutation(3)(0, 1)
>>> Permutation.print_cyclic = False
```

The 2 was not printed but it is still there as can be seen with the array_form and size methods:

```
>>> p.array form
[1, 0, 2, 3]
```

(continued from previous page)

```
>>> p.size
4
```

Short introduction to other methods
The permutation can act as a bijective function, telling what element is located at a given position

```
>>> q = Permutation([5, 2, 3, 4, 1, 0])
>>> q.array_form[1] # the hard way
2
>>> q(1) # the easy way
2
>>> {i: q(i) for i in range(q.size)} # showing the bijection
{0: 5, 1: 2, 2: 3, 3: 4, 4: 1, 5: 0}
```

The full cyclic form (including singletons) can be obtained:

```
>>> p.full_cyclic_form
[[0, 1], [\overline{2}], [3]]
```

Any permutation can be factored into transpositions of pairs of elements:

```
>>> Permutation([[1, 2], [3, 4, 5]]).transpositions()
[(1, 2), (3, 5), (3, 4)]
>>> Permutation.rmul(*[Permutation([ti], size=6) for ti in _]).cyclic_form
[[1, 2], [3, 4, 5]]
```

The number of permutations on a set of n elements is given by n ! and is called the cardinality.

```
>>> p.size
4
>>> p.cardinality
24
```

A given permutation has a rank among all the possible permutations of the same elements, but what that rank is depends on how the permutations are enumerated. (There are a number of different methods of doing so.) The lexicographic rank is given by the rank method and this rank is used to increment a permutation with addition/subtraction:

```
>>> p.rank()
6
>>> p + 1
Permutation([1, 0, 3, 2])
>>> p.next_lex()
Permutation([1, 0, 3, 2])
>>> _.rank()
7
>>> p.unrank lex(p.size, rank=7)
Permutation([1, 0, 3, 2])
```

The product of two permutations p and q is defined as their composition as functions, $\left(p^{*} q\right)(i)=q(p(i))$.

```
>>> p = Permutation([1, 0, 2, 3])
>> q = Permutation([2, 3, 1, 0])
>>> list(q*p)
[2, 3, 0, 1]
>>> list(p*q)
```

```
[3, 2, 1, 0]
>>> [q(p(i)) for i in range(p.size)]
[3, 2, 1, 0]
```

The permutation can be 'applied' to any list-like object, not only Permutations:

```
>>> p(['zero', 'one', 'four', 'two'])
    ['one', 'zero', 'four', 'two']
>>> p('zo42')
['o', 'z', '4', '2']
```

If you have a list of arbitrary elements, the corresponding permutation can be found with the from_sequence method:

```
>>> Permutation.from_sequence('SymPy')
Permutation([1, 3, 2, 0, 4])
```


See also:

Cycle (page 173)

References

- Skiena, S. 'Permutations.’ 1.1 in Implementing Discrete Mathematics Combinatorics and Graph Theory with Mathematica. Reading, MA: Addison-Wesley, pp. 3-16, 1990.
- Knuth, D. E. The Art of Computer Programming, Vol. 4: Combinatorial Algorithms, 1st ed. Reading, MA: Addison-Wesley, 2011.
- Wendy Myrvold and Frank Ruskey. 2001. Ranking and unranking permutations in linear time. Inf. Process. Lett. 79, 6 (September 2001), 281-284. DOI $=10.1016 /$ S0020-0190(01)00141-7
- D. L. Kreher, D. R. Stinson 'Combinatorial Algorithms' CRC Press, 1999
- Graham, R. L.; Knuth, D. E.; and Patashnik, O. Concrete Mathematics: A Foundation for Computer Science, 2nd ed. Reading, MA: Addison-Wesley, 1994.
- https://en.wikipedia.org/wiki/Permutation
- https://en.wikipedia.org/wiki/Lehmer_code
property array_form
Return a copy of the attribute _array_form .. rubric:: Examples

```
>>> Permutation.print_cyclic = False
>>> p = Permutation([[2, 0], [3, 1]])
>> p.array form
[2, 3, 0, 1]
>>> Permutation([[2, 0, 3, 1]]).array_form
[3, 2, 0, 1]
>>> Permutation([2, 0, 3, 1]).array_form
[2, 0, 3, 1]
>>> Permutation([[1, 2], [4, 5]]).array_form
[0, 2, 1, 3, 5, 4]
```

ascents()
Returns the positions of ascents in a permutation, ie, the location where $\mathrm{p}[\mathrm{i}]<\mathrm{p}[\mathrm{i}+1$]

Examples

```
>>> p = Permutation([4, 0, 1, 3, 2])
>>> p.ascents()
[1, 2]
```


See also:

descents (page 160), inversions (page 163), min (page 167), max (page 167)
atoms()
Returns all the elements of a permutation

Examples

```
>>> Permutation([0, 1, 2, 3, 4, 5]).atoms()
{0, 1, 2, 3, 4, 5}
>> Permutation([[0, 1], [2, 3], [4, 5]]).atoms()
{0, 1, 2, 3, 4, 5}
```


property cardinality

Returns the number of all possible permutations.

Examples

```
>>> p = Permutation([0, 1, 2, 3])
>>> p.cardinality
24
```


See also:

length (page 166), order (page 168), rank (page 169), size (page 171)

commutator (x)

Return the commutator of self and $x: \sim x^{*} \sim s e l f * x^{*}$ self
If f and g are part of a group, G, then the commutator of f and g is the group identity iff f and g commute, i.e. $\mathrm{fg}==\mathrm{gf}$.

Examples

```
>>> Permutation.print_cyclic = False
>>> p = Permutation([\overline{0}, 2, 3, 1])
>>> x = Permutation([2, 0, 3, 1])
>>> c = p.commutator(x)
>>> C
Permutation([2, 1, 3, 0])
>>> c == ~x*~p*x*p
True
```

```
>>> I = Permutation(3)
>>> p = [I + i for i in range(6)]
>>> for i in range(len(p)):
.." for j in range(len(p)):
#.. c = p[i].commutator(p[j])
#.. if p[i]*p[j] == p[j]*p[i]:
```

```
.." assert c == I
... else:
* . -
    assert c != I
```


References

https://en.wikipedia.org/wiki/Commutator
commutes_with (other)
Checks if the elements are commuting.

Examples

```
>>> a = Permutation([1, 4, 3, 0, 2, 5])
>>> b = Permutation([0, 1, 2, 3, 4, 5])
>>> a.commutes_with(b)
True
>>> b = Permutation([2, 3, 5, 4, 1, 0])
>>> a.commutes with(b)
False
```

property cycle_structure
Return the cycle structure of the permutation as a dictionary indicating the multiplicity of each cycle length.

Examples

```
>>> Permutation.print_cyclic = True
>>> Permutation(3).cycle_structure
{1: 4}
>>> Permutation(0, 4, 3)(1, 2)(5, 6).cycle_structure
{2: 2, 3: 1}
```

property cycles

Returns the number of cycles contained in the permutation (including singletons).

Examples

```
>>> Permutation([0, 1, 2]).cycles
3
>>> Permutation([0, 1, 2]).full_cyclic_form
[[0], [1], [2]]
>>> Permutation(0, 1)(2, 3).cycles
2
```


See also:

diofant.functions. combinatorial.numbers.stirling (page 327)
property cyclic_form
This is used to convert to the cyclic notation from the canonical notation. Singletons are omitted.

Examples

```
>>> Permutation.print cyclic = False
>>> p = Permutation([\overline{0, 3, 1, 2])}
>>> p.cyclic_form
[[1, 3, 2]]
>> Permutation([1, 0, 2, 4, 3, 5]).cyclic_form
[[0, 1], [3, 4]]
```


See also:

array_form (page 157), full_cyclic_form (page 160)
descents()
Returns the positions of descents in a permutation, ie, the location where $\mathrm{p}[\mathrm{i}]>$ $\mathrm{p}[\mathrm{i}+1$]

Examples

```
>>> p = Permutation([4, 0, 1, 3, 2])
>> p.descents()
[0, 3]
```


See also:

ascents (page 157), inversions (page 163), min (page 167), max (page 167)
classmethod from_inversion_vector (inversion)
Calculates the permutation from the inversion vector.

Examples

```
>>> Permutation.print cyclic = False
>>> Permutation.from_inversion_vector([3, 2, 1, 0, 0])
Permutation([3, 2, 1, 0, 4, 5])
```

classmethod from_sequence (i, key=None)
Return the permutation needed to obtain i from the sorted elements of i. If custom sorting is desired, a key can be given.

Examples

>>> Permutation.print_cyclic = True

```
>>> Permutation.from_sequence('SymPy')
Permutation(4)(0, 1, 3)
>>> (sorted('SymPy'))
['S', 'y', 'm', 'P', 'y']
>>> Permutation.from sequence('SymPy', key=lambda x: x.lower())
Permutation(4)(0, 2)(1, 3)
```

property full_cyclic_form
Return permutation in cyclic form including singletons.

Examples

>>> Permutation([0, 2, 1]).full_cyclic_form
[[0], [1, 2]]
get_adjacency_distance (other)
Computes the adjacency distance between two permutations.
This metric counts the number of times a pair i, j of jobs is adjacent in both p and p^{\prime}. If $n_{_}$adj is this quantity then the adjacency distance is $n-n_{-}$adj - 1 [1]
[1] Reeves, Colin R. Landscapes, Operators and Heuristic search, Annals of Operational Research, 86, pp 473-490. (1999)

Examples

```
>>> p = Permutation([0, 3, 1, 2, 4])
>>> q = Permutation.josephus(4, 5, 2)
>>> p.get_adjacency_distance(q)
3
>>> r = Permutation([0, 2, 1, 4, 3])
>>> p.get_adjacency_distance(r)
4
```


See also:

get_precedence_matrix (page 162), get precedence_distance (page 162), get adjacency matrix (page 161)
get_adjacency_matrix()
Computes the adjacency matrix of a permutation.
If job i is adjacent to job j in a permutation p then we set $m[i, j]=1$ where m is the adjacency matrix of p.

Examples

```
>>> p = Permutation.josephus(3, 6, 1)
>>> p.get adjacency matrix()
Matrix([
[0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0],
[0, 0, 0, 0, 0, 1],
[0, 1, 0, 0, 0, 0],
[1, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 0, 0]])
>> q = Permutation([0, 1, 2, 3])
>>> q.get_adjacency_matrix()
Matrix([
[0, 1, 0, 0],
[0, 0, 1, 0],
[0, 0, 0, 1],
[0, 0, 0, 0]])
```


See also:

get_precedence_matrix (page 162), get precedence_distance (page 162), get_adjacency_distance (page 161)
get_positional_distance(other)
Computes the positional distance between two permutations.

Examples

```
>>> p = Permutation([0, 3, 1, 2, 4])
>>> q = Permutation.josephus(4, 5, 2)
>> r = Permutation([3, 1, 4, 0, 2])
>>> p.get_positional_distance(q)
12
>>> p.get_positional_distance(r)
12
```


See also:

get_precedence_distance (page 162), get_adjacency_distance (page 161)
get_precedence_distance(other)
Computes the precedence distance between two permutations.
Suppose pand p' represent n jobs. The precedence metric counts the number of times a job j is preceded by job i in both p and p^{\prime}. This metric is commutative.

Examples

```
>>> p = Permutation([2, 0, 4, 3, 1])
>>> q = Permutation([3, 1, 2, 4, 0])
>>> p.get_precedence_distance(q)
7
>>> q.get_precedence_distance(p)
7
```


See also:

get_precedence_matrix (page 162), get_adjacency_matrix (page 161), get_adjacency_distance (page 161)
get_precedence_matrix()
Gets the precedence matrix. This is used for computing the distance between two permutations.

Examples

```
>>> p = Permutation.josephus(3, 6, 1)
>>> Permutation.print_cyclic = False
>>> p
Permutation([2, 5, 3, 1, 4, 0])
>>> p.get_precedence_matrix()
Matrix([
[0, 0, 0, 0, 0, 0],
[1, 0, 0, 0, 1, 0],
[1, 1, 0, 1, 1, 1],
[1, 1, 0, 0, 1, 0],
[1, 0, 0, 0, 0, 0],
[1, 1, 0, 1, 1, 0]])
```


See also:

get_precedence_distance (page 162), get_adjacency_matrix (page 161), get_adjacency_distance (page 161)
index ()
Returns the index of a permutation.
The index of a permutation is the sum of all subscripts j such that $\mathrm{p}[\mathrm{j}]$ is greater than $\mathrm{p}[\mathrm{j}+1]$.

Examples

```
>>> p = Permutation([3, 0, 2, 1, 4])
>>> p.index()
2
```

inversion_vector()
Return the inversion vector of the permutation.
The inversion vector consists of elements whose value indicates the number of elements in the permutation that are lesser than it and lie on its right hand side.
The inversion vector is the same as the Lehmer encoding of a permutation.

Examples

```
>>> p = Permutation([4, 8, 0, 7, 1, 5, 3, 6, 2])
>>> p.inversion_vector()
[4, 7, 0, 5, 0, 2, 1, 1]
>>> p = Permutation([3, 2, 1, 0])
>>> p.inversion_vector()
[3, 2, 1]
```

The inversion vector increases lexicographically with the rank of the permutation, the -ith element cycling through 0..i.

```
>>> p = Permutation(2)
>>> Permutation.print_cyclic = False
>>> while p:
... print(f'{p} {p.inversion_vector()} {p.rank()}')
# p = p.next_lex()
Permutation([0, 1, 2]) [0, 0] 0
Permutation([0, 2, 1]) [0, 1] 1
Permutation([1, 0, 2]) [1, 0] 2
Permutation([1, 2, 0]) [1, 1] 3
Permutation([2, 0, 1]) [2, 0] 4
Permutation([2, 1, 0]) [2, 1] 5
```


See also:

from_inversion_vector (page 160)

inversions()

Computes the number of inversions of a permutation.
An inversion is where $\mathrm{i}>\mathrm{j}$ but $\mathrm{p}[\mathrm{i}]<\mathrm{p}[\mathrm{j}]$.

For small length of p, it iterates over all i and j values and calculates the number of inversions. For large length of p, it uses a variation of merge sort to calculate the number of inversions.

References

- https://www.cp.eng.chula.ac.th/~prabhas//teaching/algo/algo2008/count-inv. htm

Examples

```
>>> p = Permutation([0, 1, 2, 3, 4, 5])
>>> p.inversions()
0
>>> Permutation([3, 2, 1, 0]).inversions()
6
```


See also:

descents (page 160), ascents (page 157), min (page 167), max (page 167)
property is_Empty
Checks to see if the permutation is a set with zero elements

Examples

```
>>> Permutation([]).is Empty
True
>>> Permutation([0]).is_Empty
False
```


See also:

is_Singleton (page 165)
property is_Identity
Returns True if the Permutation is an identity permutation.

Examples

```
>>> p = Permutation([])
>>> p.is_Identity
True
>>> p = Permutation([[0], [1], [2]])
>>> p.is_Identity
True
>>> p = Permutation([0, 1, 2])
>>> p.is_Identity
True
>>> p = Permutation([0, 2, 1])
>>> p.is_Identity
False
```


See also:

order (page 168)
property is_Singleton
Checks to see if the permutation contains only one number and is thus the only possible permutation of this set of numbers

Examples

```
>>> Permutation([0]).is_Singleton
True
>>> Permutation([0, 1]).is_Singleton
False
```


See also:

is_Empty (page 164)
property is_even
Checks if a permutation is even.

Examples

```
>>> p = Permutation([0, 1, 2, 3])
>>> p.is_even
True
>>> p = Permutation([3, 2, 1, 0])
>>> p.is_even
True
```


See also:

is_odd (page 165)
property is_odd
Checks if a permutation is odd.

Examples

```
>>> p = Permutation([0, 1, 2, 3])
>>> p.is_odd
False
>>> p = Permutation([3, 2, 0, 1])
>>> p.is_odd
True
```


See also:

is_even (page 165)
classmethod josephus ($m, n, s=1$)
Return as a permutation the shuffling of range(n) using the Josephus scheme in which every m-th item is selected until all have been chosen. The returned permutation has elements listed by the order in which they were selected.
The parameter s stops the selection process when there are s items remaining and these are selected by continuing the selection, counting by 1 rather than by m.
Consider selecting every 3rd item from 6 until only 2 remain:

choices	chosen
012345	
01345	2
0134	25
014	253
04	2531
0	25314
	253140

Examples

```
>>> Permutation.josephus(3, 6, 2).array_form
```

[2, 5, 3, 1, 4, 0]

References

- https://en.wikipedia.org/wiki/Flavius_Josephus
- https://en.wikipedia.org/wiki/Josephus_problem
length()
Returns the number of integers moved by a permutation.

Examples

```
>>> Permutation([0, 3, 2, 1]).length()
2
>>> Permutation([[0, 1], [2, 3]]).length()
4
```


See also:

min (page 167), max (page 167), support (page 172), cardinality (page 158), order (page 168), rank (page 169), size (page 171)
list (size=None)
Return the permutation as an explicit list, possibly trimming unmoved elements if size is less than the maximum element in the permutation; if this is desired, setting size=-1 will guarantee such trimming.

Examples

```
>>> Permutation.print_cyclic = False
>>> p = Permutation(2, 3)(4, 5)
>>> p.list()
[0, 1, 3, 2, 5, 4]
>>> p.list(10)
[0, 1, 3, 2, 5, 4, 6, 7, 8, 9]
```

Passing a length too small will trim trailing, unchanged elements in the permutation:

```
>>> Permutation(2, 4)(1, 2, 4).list(-1)
[0, 2, 1]
>>> Permutation(3).list(-1)
[]
```

$\max ()$
The maximum element moved by the permutation.

Examples

```
>>> p = Permutation([1, 0, 2, 3, 4])
>>> p.max()
1
```


See also:

min (page 167), descents (page 160), ascents (page 157), inversions (page 163)
$\min ()$
The minimum element moved by the permutation.

Examples

```
>>> p = Permutation([0, 1, 4, 3, 2])
>>> p.min()
2
```


See also:

max (page 167), descents (page 160), ascents (page 157), inversions (page 163)

```
mul_inv(other)
```

 other*~self, self and other have _array_form
 next_lex()

Returns the next permutation in lexicographical order. If self is the last permutation in lexicographical order it returns None. See [4] section 2.4.

Examples

```
>>> p = Permutation([2, 3, 1, 0])
>>> p = Permutation([2, 3, 1, 0])
>>> p.rank()
17
>>> p = p.next_lex()
>>> p.rank()
18
```


See also:

rank (page 169), unrank_lex (page 172)

next_nonlex()

Returns the next permutation in nonlex order [3]. If self is the last permutation in this order it returns None.

Examples

```
>>> Permutation.print_cyclic = False
>>> p = Permutation([\overline{2, 0, 3, 1])}
>>> p.rank_nonlex()
5
>>> p = p.next_nonlex()
>>> p
Permutation([3, 0, 1, 2])
>>> p.rank_nonlex()
6
```


See also:

rank_nonlex (page 169), unrank_nonlex (page 173)
next_trotterjohnson()
Returns the next permutation in Trotter-Johnson order. If self is the last permutation it returns None. See [4] section 2.4.

Examples

```
>>> Permutation.print_cyclic = False
>>> p = Permutation([\overline{3}, 0, 2, 1])
>>> p.rank_trotterjohnson()
4
>>> p = p.next_trotterjohnson()
>>> p
Permutation([0, 3, 2, 1])
>>> p.rank_trotterjohnson()
5
```


See also:

rank_trotterjohnson (page 170), unrank_trotterjohnson (page 173)
order()
Computes the order of a permutation.
When the permutation is raised to the power of its order it equals the identity permutation.

Examples

```
>>> Permutation.print cyclic = False
>>> p = Permutation([3, 1, 5, 2, 4, 0])
>>> p.order()
4
>>> (p**(p.order()))
Permutation([], size=6)
```


See also:

is_Identity (page 164), cardinality (page 158), length (page 166), rank (page 169), size (page 171)
parity()
Computes the parity of a permutation.

The parity of a permutation reflects the parity of the number of inversions in the permutation, i.e., the number of pairs of x and y such that $x>y$ but $p[x]<p[y]$.

Examples

```
>>> p = Permutation([0, 1, 2, 3])
>>> p.parity()
0
>>> p = Permutation([3, 2, 0, 1])
>>> p.parity()
1
```


See also:

af_parity (page 175)
classmethod random(n)
Generates a random permutation of length n.
Uses the underlying Python pseudo-random number generator.

Examples

>>> Permutation.random(2) in (Permutation([1, 0]), Permutation([0, 1]))
True
rank()
Returns the lexicographic rank of the permutation.

Examples

```
>>> p = Permutation([0, 1, 2, 3])
>>> p.rank()
0
>>> p = Permutation([3, 2, 1, 0])
>>> p.rank()
23
```


See also:

next_lex (page 167), unrank_lex (page 172), cardinality (page 158), length (page 166), order (page 168), size (page 171)
rank_nonlex (inv_perm=None)
This is a linear time ranking algorithm that does not enforce lexicographic order [3].

Examples

```
>>> p = Permutation([0, 1, 2, 3])
```

\gg p.rank_nonlex ()
23

See also:

next_nonlex (page 167), unrank_nonlex (page 173)
rank_trotterjohnson()
Returns the Trotter Johnson rank, which we get from the minimal change algorithm.
See [4] section 2.4.

Examples

```
>>> p = Permutation([0, 1, 2, 3])
>>> p.rank_trotterjohnson()
0
>>> p = Permutation([0, 2, 1, 3])
>>> p.rank_trotterjohnson()
7
```


See also:

unrank_trotterjohnson (page 173), next_trotterjohnson (page 168)
static rmul(*args)
Return product of Permutations [a, b, c, ...] as the Permutation whose ith value is $\mathrm{a}(\mathrm{b}(\mathrm{c}(\mathrm{i}))$).
a, b, c, ... can be Permutation objects or tuples.

Examples

```
>>> Permutation.print_cyclic = False
```

```
>> a, b = [1, 0, 2], [0, 2, 1]
>>> a = Permutation(a)
>>> b = Permutation(b)
>>> list(Permutation.rmul(a, b))
[1, 2, 0]
>>> [a(b(i)) for i in range(3)]
[1, 2, 0]
```

This handles the operands in reverse order compared to the * operator:

```
>>> a = Permutation(a)
>>> b = Permutation(b)
>>> list(a*b)
[2, 0, 1]
>>> [b(a(i)) for i in range(3)]
[2, 0, 1]
```


Notes

All items in the sequence will be parsed by Permutation as necessary as long as the first item is a Permutation:

```
>>> Permutation.rmul(a, [0, 2, 1]) == Permutation.rmul(a, b)
True
```

The reverse order of arguments will raise a TypeError.
static rmul_with_af(*args)
Same as rmul, but the elements of args are Permutation objects which have _array_form.
runs()
Returns the runs of a permutation.
An ascending sequence in a permutation is called a run [5].

Examples

```
>>> p = Permutation([2, 5, 7, 3, 6, 0, 1, 4, 8])
>> p.runs()
[[2, 5, 7], [3, 6], [0, 1, 4, 8]]
>>> q = Permutation([1, 3, 2, 0])
>>> q.runs()
[[1, 3], [2], [0]]
```

signature()
Gives the signature of the permutation needed to place the elements of the permutation in canonical order.
The signature is calculated as $(-1)^{\wedge}<$ number of inversions>

Examples

```
>>> p = Permutation([0, 1, 2])
>>> p.inversions()
0
>>> p.signature()
1
>>> q = Permutation([0, 2, 1])
>>> q.inversions()
1
>>> q.signature()
-1
```


See also:

inversions (page 163)
property size
Returns the number of elements in the permutation.

Diofant Documentation, Release 0.13.0

Examples

```
>>> Permutation([[3, 2], [0, 1]]).size
```

4

See also:

cardinality (page 158), length (page 166), order (page 168), rank (page 169)
support()
Return the elements in permutation, P , for which $\mathrm{P}[\mathrm{i}]$!= i.

Examples

```
>>> p = Permutation([[3, 2], [0, 1], [4]])
>>> p.array form
[1, 0, 3, 2, 4]
>>> p.support()
[0, 1, 2, 3]
```


transpositions()

Return the permutation decomposed into a list of transpositions.
It is always possible to express a permutation as the product of transpositions, see [1]

Examples

```
>>> p = Permutation([[1, 2, 3], [0, 4, 5, 6, 7]])
>>> t = p.transpositions()
>>> t
[(0, 7), (0, 6), (0, 5), (0, 4), (1, 3), (1, 2)]
>>> print(''.join(str(c) for c in t))
(0, 7)(0, 6)(0, 5)(0, 4) (1, 3) (1, 2)
>>> Permutation.rmul(*[Permutation([ti], size=p.size) for ti in t]) == p
True
```


References

1. https://en.wikipedia.org/wiki/Transposition_\(mathematics\)\#Properties
classmethod unrank_lex (size, rank)
Lexicographic permutation unranking.

Examples

```
>>> Permutation.print_cyclic = False
>>> a = Permutation.unrank_lex(5, 10)
>>> a.rank()
10
>>> a
Permutation([0, 2, 4, 1, 3])
```


See also:

rank (page 169), next_lex (page 167)
classmethod unrank_nonlex (n, r)
This is a linear time unranking algorithm that does not respect lexicographic order [3].

Examples

```
>>> Permutation.print_cyclic = False
>>> Permutation.unrank nonlex(4, 5)
Permutation([2, 0, 3, \overline{1])}
>>> Permutation.unrank_nonlex(4, -1)
Permutation([0, 1, 2, \overline{3])}
```


See also:

next_nonlex (page 167), rank_nonlex (page 169)
classmethod unrank_trotterjohnson (size, rank)
Trotter Johnson permutation unranking. See [4] section 2.4.

Examples

```
>>> Permutation.unrank trotterjohnson(5, 10)
Permutation([0, 3, 1, 产, 4])
```


See also:

rank_trotterjohnson (page 170), next_trotterjohnson (page 168)
class diofant. combinatorics.permutations.Cycle(*args)
Wrapper around dict which provides the functionality of a disjoint cycle.
A cycle shows the rule to use to move subsets of elements to obtain a permutation. The Cycle class is more flexible than Permutation in that 1) all elements need not be present in order to investigate how multiple cycles act in sequence and 2) it can contain singletons:

A Cycle will automatically parse a cycle given as a tuple on the rhs:

```
>>> Cycle(1, 2)(2, 3)
Cycle(1, 3, 2)
```

The identity cycle, Cycle(), can be used to start a product:

```
>>> Cycle()(1, 2)(2, 3)
Cycle(1, 3, 2)
```

The array form of a Cycle can be obtained by calling the list method (or passing it to the list function) and all elements from 0 will be shown:

```
>>> a = Cycle(1, 2)
>>> a.list()
[0, 2, 1]
>>> list(a)
[0, 2, 1]
```

If a larger (or smaller) range is desired use the list method and provide the desired size - but the Cycle cannot be truncated to a size smaller than the largest element that is out of place:

```
>>> b = Cycle(2, 4)(1, 2)(3, 1, 4)(1, 3)
>>> b.list()
[0, 2, 1, 3, 4]
>>> b.list(b.size + 1)
[0, 2, 1, 3, 4, 5]
>>> b.list(-1)
[0, 2, 1]
```

Singletons are not shown when printing with one exception: the largest element is always shown - as a singleton if necessary:

```
>>> Cycle(1, 4, 10)(4, 5)
Cycle(1, 5, 4, 10)
>>> Cycle(1, 2)(4)(5)(10)
Cycle(1, 2)(10)
```

The array form can be used to instantiate a Permutation so other properties of the permutation can be investigated:

```
>>> Perm(Cycle(1, 2)(3, 4).list()).transpositions()
[(1, 2), (3, 4)]
```


Notes

The underlying structure of the Cycle is a dictionary and although the _iter__ method has been redefined to give the array form of the cycle, the underlying dictionary items are still available with the such methods as items():

```
>>> list(Cycle(1, 2).items())
[(1, 2), (2, 1)]
```


See also:

Permutation (page 152)

list (size=None)
Return the cycles as an explicit list starting from 0 up to the greater of the largest value in the cycles and size.
Truncation of trailing unmoved items will occur when size is less than the maximum element in the cycle; if this is desired, setting size=-1 will guarantee such trimming.

Examples

```
>>> Permutation.print_cyclic = False
>> p = Cycle(2, 3)(4, 5)
>>> p.list()
[0, 1, 3, 2, 5, 4]
>>> p.list(10)
[0, 1, 3, 2, 5, 4, 6, 7, 8, 9]
```

Passing a length too small will trim trailing, unchanged elements in the permutation:

```
>>> Cycle(2, 4)(1, 2, 4).list(-1)
[0, 2, 1]
```

diofant.combinatorics.permutations._af_parity(pi)
Computes the parity of a permutation in array form.
The parity of a permutation reflects the parity of the number of inversions in the permutation, i.e., the number of pairs of x and y such that $x>y$ but $p[x]<p[y]$.

Examples

```
>>> af_parity([0, 1, 2, 3])
0
>>> _af_parity([3, 2, 0, 1])
1
```


See also:

Permutation (page 152)

Generators

generators.symmetric()
Generates the symmetric group of order n, Sn.

Examples

```
>>> Permutation.print_cyclic = True
>>> list(symmetric(3))
[Permutation(2), Permutation(1, 2), Permutation(2)(0, 1),
    Permutation(0, 1, 2), Permutation(0, 2, 1), Permutation(0, 2)]
```

generators.cyclic()

Generates the cyclic group of order n, Cn.

Examples

```
>>> Permutation.print_cyclic = True
>>> list(cyclic(5))
[Permutation(4), Permutation(0, 1, 2, 3, 4), Permutation(0, 2, 4, 1, 3),
Permutation(0, 3, 1, 4, 2), Permutation(0, 4, 3, 2, 1)]
```


See also:

dihedral (page 176)

generators.alternating()

Generates the alternating group of order n, An.

Examples

```
>>> Permutation.print_cyclic = True
>>> list(alternating(\overline{3))}
[Permutation(2), Permutation(0, 1, 2), Permutation(0, 2, 1)]
```

generators.dihedral()
Generates the dihedral group of order 2 n , Dn .
The result is given as a subgroup of Sn , except for the special cases $\mathrm{n}=1$ (the group S2) and $\mathrm{n}=2$ (the Klein 4 -group) where that's not possible and embeddings in S2 and S4 respectively are given.

Examples

```
>>> Permutation.print_cyclic = True
>>> list(dihedral(3))
[Permutation(2), Permutation(0, 2), Permutation(0, 1, 2),
Permutation(1, 2), Permutation(0, 2, 1), Permutation(2)(0, 1)]
```


See also:

cyclic (page 175)

4.3.3 Permutation Groups

class diofant.combinatorics.perm_groups.PermutationGroup(*args, **kwargs)
The class defining a Permutation group.
PermutationGroup([p1, p2, ..., pn]) returns the permutation group generated by the list of permutations. This group can be supplied to Polyhedron if one desires to decorate the elements to which the indices of the permutation refer.

Examples

>>> Permutation.print_cyclic = True
The permutations corresponding to motion of the front, right and bottom face of a 2×2 Rubik's cube are defined:

```
>> F = Permutation(2, 19, 21, 8)(3, 17, 20, 10)(4, 6, 7, 5)
>> R = Permutation(1, 5, 21, 14)(3, 7, 23, 12)(8, 10, 11, 9)
>>> D = Permutation(6, 18, 14, 10)(7, 19, 15, 11)(20, 22, 23, 21)
```

These are passed as permutations to PermutationGroup:

```
>>> G = PermutationGroup(F, R, D)
>>> G.order()
3674160
```

The group can be supplied to a Polyhedron in order to track the objects being moved. An example involving the 2 x 2 Rubik's cube is given there, but here is a simple demonstration:

```
>>> a = Permutation(2, 1)
>>> b = Permutation(1, 0)
>>> G = PermutationGroup(a, b)
>>> P = Polyhedron(list('ABC'), pgroup=G)
>>> P.corners
(A, B, C)
>>> P.rotate(0) # apply permutation 0
>>> P.corners
(A, C, B)
>>> P.reset()
>>> P.corners
(A, B, C)
```

Or one can make a permutation as a product of selected permutations and apply them to an iterable directly:

```
>>> P10 = G.make_perm([0, 1])
>>> P10('ABC')
['C', 'A', 'B']
```


See also:

diofant. combinatorics.polyhedron.Polyhedron (page 203), diofant. combinatorics.permutations.Permutation (page 152)

References

[1] Holt, D., Eick, B., O’Brien, E. "Handbook of Computational Group Theory"
[2] Seress, A. "Permutation Group Algorithms"
[3] https://en.wikipedia.org/wiki/Schreier_vector
[4] https://en.wikipedia.org/wiki/Nielsen_transformation \#Product_replacement_algorithm
[5] Frank Celler, Charles R.Leedham-Green, Scott H.Murray, Alice C.Niemeyer, and E.A.O’Brien. "Generating Random Elements of a Finite Group"
[6] https://en.wikipedia.org/wiki/Block_\(permutation_group_theory\)
[7] https://web.archive.org/web/20170105021515/http://www.algorithmist.com: 80/index.php/Union_Find
[8] https://en.wikipedia.org/wiki/Multiply_transitive_group\#Multiply_transitive_groups
[9] https://en.wikipedia.org/wiki/Center_\(group_theory\)
[10] https://en.wikipedia.org/wiki/Centralizer_and_normalizer
[11] https://groupprops.subwiki.org/wiki/Derived_subgroup
[12] https://en.wikipedia.org/wiki/Nilpotent_group
[13] https://www.math.colostate.edu/~hulpke/CGT/cgtnotes.pdf

contains (i)

Return True if i is contained in PermutationGroup.

Examples

```
>>> p = Permutation(1, 2, 3)
>>> Permutation(3) in PermutationGroup(p)
True
```

__eq_(other)

Return True if PermutationGroup generated by elements in the group are same i.e they represent the same PermutationGroup.

Examples

```
>>> p = Permutation(0, 1, 2, 3, 4, 5)
>>> G = PermutationGroup([p, p**2])
>>> H = PermutationGroup([p**2, p])
>>> G.generators == H.generators
False
>>> G == H
True
```

mul__(other)
Return the direct product of two permutation groups as a permutation group.
This implementation realizes the direct product by shifting the index set for the generators of the second group: so if we have G acting on n 1 points and H acting on $n 2$ points, $G^{*} H$ acts on $n 1+n 2$ points.

Examples

```
>>> G = CyclicGroup(5)
>> H = G*G
>>> H
PermutationGroup([
    Permutation(9)(0, 1, 2, 3, 4),
    Permutation(5, 6, 7, 8, 9)])
>>> H.order()
25
```

static __new__(cls, *args, **kwargs)
The default constructor. Accepts Cycle and Permutation forms. Removes duplicates unless dups keyword is False.
_union_find_merge(first, second, ranks, parents, not_rep)
Merges two classes in a union-find data structure.
Used in the implementation of Atkinson's algorithm as suggested in [1], pp. 83-87. The class merging process uses union by rank as an optimization. ([7])

Notes

THIS FUNCTION HAS SIDE EFFECTS: the list of class representatives, parents, the list of class sizes, ranks, and the list of elements that are not representatives, not_rep, are changed due to class merging.

See also:

minimal_block (page 194), _union_find_rep (page 179)

References

[1] Holt, D., Eick, B., O’Brien, E. "Handbook of computational group theory"
[7] https://web.archive.org/web/20170105021515/http://www.algorithmist.com:80/ index.php/Union_Find
_union_find_rep(num, parents)
Find representative of a class in a union-find data structure.
Used in the implementation of Atkinson's algorithm as suggested in [1], pp. 83-87. After the representative of the class to which num belongs is found, path compression is performed as an optimization ([7]).

Notes

THIS FUNCTION HAS SIDE EFFECTS: the list of class representatives, parents, is altered due to path compression.

See also:

minimal_block (page 194), _union_find_merge (page 179)

References

[1] Holt, D., Eick, B., O'Brien, E. "Handbook of computational group theory"
[7] https://web.archive.org/web/20170105021515/http://www.algorithmist.com:80/ index.php/Union_Find
property base
Return a base from the Schreier-Sims algorithm.
For a permutation group G, a base is a sequence of points $B=\left(b _1, \quad b _2, \ldots\right.$, b_k) such that no element of G apart from the identity fixes all the points in B. The
concepts of a base and strong generating set and their applications are discussed in depth in [1], pp. 87-89 and [2], pp. 55-57.
An alternative way to think of B is that it gives the indices of the stabilizer cosets that contain more than the identity permutation.

Examples

```
>>> G = PermutationGroup([Permutation(0, 1, 3)(2, 4)])
>>> G.base
[0, 2]
```


See also:

strong_gens (page 201), basic_transversals (page 182), basic_orbits (page 181), basic_stabilizers (page 181)
baseswap (base, strong_gens, pos, randomized=False, transversals=None,
basic_orbits=None, strong_gens_distr=None)
Swap two consecutive base points in base and strong generating set.
If a base for a group G is given by ($b _1, b _2, \ldots, b _k$), this function returns a base (b_1, b_2, ..., b_\{i+1\}, b_i, ..., b_k), where i is given by pos, and a strong generating set relative to that base. The original base and strong generating set are not modified.

The randomized version (default) is of Las Vegas type.

Parameters

- base, strong_gens - The base and strong generating set.
- pos - The position at which swapping is performed.
- randomized - A switch between randomized and deterministic version.
- transversals - The transversals for the basic orbits, if known.
- basic_orbits - The basic orbits, if known.
- strong_gens_distr - The strong generators distributed by basic stabilizers, if known.
Returns (base, strong_gens) - base is the new base, and strong_gens is a generating set relative to it.

Examples

```
>>> from diofant.combinatorics.testutil import _verify_bsgs
>>> S = SymmetricGroup(4)
>>> S.schreier_sims()
>>> S.base
[0, 1, 2]
>>> base, gens = S.baseswap(S.base, S.strong_gens, 1, randomized=False)
>>> base, gens
([0, 2, 1],
[Permutation(0, 1, 2, 3), Permutation(3)(0, 1), Permutation(1, 3, 2),
Permutation(2, 3), Permutation(1, 3)])
```

check that base, gens is a BSGS

```
>>> S1 = PermutationGroup(gens)
>>> _verify_bsgs(S1, base, gens)
True
```


See also:

schreier_sims (page 198)

Notes

The deterministic version of the algorithm is discussed in [1], pp. 102-103; the randomized version is discussed in [1], p.103, and [2], p.98. It is of Las Vegas type. Notice that [1] contains a mistake in the pseudocode and discussion of BASESWAP: on line 3 of the pseudocode, \mid beta $\{i+1\} \wedge\{\backslash l e f t \backslash$ langle $T \backslash$ right \backslash rangle $\} \mid$ should
 the discussion of the algorithm.
property basic_orbits
Return the basic orbits relative to a base and strong generating set.
If (b_1, b_2, ..., b_k) is a base for a group G, and G^\{(i)\} = G_\{b_1, b_2, \ldots, \quad b_\{i-1 $\}\}$ is the i-th basic stabilizer (so that $\left.\mathrm{G}^{\wedge}\{(1)\}=G\right)$, the i-th basic orbit relative to this base is the orbit of $b _i$ under $G^{\wedge}\{(i)\}$. See [1], pp. 87-89 for more information.

Examples

```
>>> S = SymmetricGroup(4)
>>> S.basic_orbits
[[0, 1, 2, 3}], [1, 2, 3], [2, 3]]
```


See also:

base (page 179), strong_gens (page 201), basic_transversals (page 182), basic_stabilizers (page 181)
property basic_stabilizers
Return a chain of stabilizers relative to a base and strong generating set.
The i-th basic stabilizer $\mathrm{G}^{\wedge}\{(i)\}$ relative to a base ($\mathrm{b} _1, \mathrm{~b} _2, \ldots, \mathrm{~b} _$) is $G _\left\{b _1 \text {, }\right.$ b_2, ..., b_\{i-1\}\}. For more information, see [1], pp. 87-89.

Examples

```
>>> A = AlternatingGroup(4)
>>> A.schreier_sims()
>>> A.base
[0, 1]
>>> for g in A.basic_stabilizers:
... print(g)
..
PermutationGroup([
    Permutation(3)(0, 1, 2),
    Permutation(1, 2, 3)])
PermutationGroup([
    Permutation(1, 2, 3)])
```


See also:

base (page 179), strong_gens (page 201), basic_orbits (page 181), basic_transversals (page 182)
property basic_transversals
Return basic transversals relative to a base and strong generating set.
The basic transversals are transversals of the basic orbits. They are provided as a list of dictionaries, each dictionary having keys - the elements of one of the basic orbits, and values - the corresponding transversal elements. See [1], pp. 87-89 for more information.

Examples

```
>>> A = AlternatingGroup(4)
>>> A.basic transversals
[{0: Permutātion(3),
    1: Permutation(3)(0, 1, 2),
    2: Permutation(3)(0, 2, 1),
    3: Permutation(0, 3, 1)},
    {1: Permutation(3),
    2: Permutation(1, 2, 3),
    3: Permutation(1, 3, 2)}]
```


See also:

strong_gens (page 201), base (page 179), basic_orbits (page 181), basic_stabilizers (page 181)
center()
Return the center of a permutation group.
The center for a group G is defined as $Z(G)=\backslash\{z \backslash i n G \mid \backslash f o r a l l ~ g \backslash i n ~ G, ~ z g$ $=\mathrm{gz} \backslash\}$, the set of elements of G that commute with all elements of G. It is equal to the centralizer of G inside G, and is naturally a subgroup of G ([9]).

Examples

```
>>> D = DihedralGroup(4)
>>> G = D.center()
>>> G.order()
2
```


See also:

centralizer (page 183)

Notes

This is a naive implementation that is a straightforward application of . centralizer()

centralizer (other)

Return the centralizer of a group/set/element.
The centralizer of a set of permutations S inside a group G is the set of elements of G that commute with all elements of S :

Usually, S is a subset of G, but if G is a proper subgroup of the full symmetric group, we allow for S to have elements outside G.

It is naturally a subgroup of G; the centralizer of a permutation group is equal to the centralizer of any set of generators for that group, since any element commuting with the generators commutes with any product of the generators.

Parameters other - a permutation group/list of permutations/single permutation

Examples

```
>>> S = SymmetricGroup(6)
>>> C = CyclicGroup(6)
>>> H = S.centralizer(C)
>>> H.is subgroup(C)
True
```


See also:

subgroup_search (page 201)

Notes

The implementation is an application of .subgroup_search () with tests using a specific base for the group G.
commutator (G, H)
Return the commutator of two subgroups.
For a permutation group K and subgroups G, H, the commutator of G and H is defined as the group generated by all the commutators $[g, h]=h g h^{\wedge}\{-1\} g^{\wedge}\{-1\}$ for g in G and h in H. It is naturally a subgroup of K ([1], p.27).

Examples

```
>>> S = SymmetricGroup(5)
>>> A = AlternatingGroup(5)
>>> G = S.commutator(S, A)
>>> G.is_subgroup(A)
True
```


See also:

derived_subgroup (page 187)

Notes

The commutator of two subgroups H, G is equal to the normal closure of the commutators of all the generators, i.e. $h h^{\wedge}\{-1\} g^{\wedge}\{-1\}$ for h a generator of H and g a generator of G ([1], p.28)
contains (g, strict=True)
Test if permutation g belong to self, G.
If g is an element of G it can be written as a product of factors drawn from the cosets of G's stabilizers. To see if g is one of the actual generators defining the group use G.has(g).

If strict is not True, g will be resized, if necessary, to match the size of permutations in self.

Examples

```
>>> Permutation.print_cyclic = True
```

```
>>> a = Permutation(1, 2)
>>> b = Permutation(2, 3, 1)
>> G = PermutationGroup(a, b, degree=5)
>>> G.contains(G[0]) # trivial check
True
>>> elem = Permutation([[2, 3]], size=5)
>>> G.contains(elem)
True
>>> G.contains(Permutation(4)(0, 1, 2, 3))
False
```

If strict is False, a permutation will be resized, if necessary:

```
>>> H = PermutationGroup(Permutation(5))
>>> H.contains(Permutation(3))
False
>>> H.contains(Permutation(3), strict=False)
True
```

To test if a given permutation is present in the group:

```
>>> elem in G.generators
False
>>> G.has(elem)
False
```


See also:

coset_factor (page 185), diofant. core.basic.Basic. has (page 48)
coset_factor (g, factor_index=False)
Return G's (self's) coset factorization of g
If g is an element of G then it can be written as the product of permutations drawn from the Schreier-Sims coset decomposition,

The permutations returned in f are those for which the product gives $g: g=f[n] *$. ..$f[1] * f[0]$ where $n=\operatorname{len}(B)$ and $B=G$.base. $f[i]$ is one of the permutations in self._basic_orbits[i].
If factor_index $==$ True, returns a tuple $[b[0], \ldots, b[n]]$, where $b[i]$ belongs to self._bāsic_orbits[i]

Examples

```
>>> Permutation.print_cyclic = True
>>> a = Permutation(0, 1, 3, 7, 6, 4)(2, 5)
>>> b = Permutation(0, 1, 3, 2)(4, 5, 7, 6)
>>> G = PermutationGroup([a, b])
```

Define g:

```
>>> g = Permutation(7)(1, 2, 4)(3, 6, 5)
```

Confirm that it is an element of G:

```
>>> G.contains(g)
True
```

Thus, it can be written as a product of factors (up to 3) drawn from u. See below that a factor from $u 1$ and $u 2$ and the Identity permutation have been used:

```
>>> f = G.coset factor(g)
>>> f[2]*f[1]*f[0] == g
True
>>> f1 = G.coset_factor(g, True)
>>> f1
[0, 4, 4]
>>> tr = G.basic_transversals
>>> f[0] == tr[0][f1[0]]
True
```

If g is not an element of G then [] is returned:

```
>>> c = Permutation(5, 6, 7)
>>> G.coset_factor(c)
[]
```

see util._strip
coset_rank(g)
Rank using Schreier-Sims representation.
The coset rank of g is the ordering number in which it appears in the lexicographic listing according to the coset decomposition

The ordering is the same as in G.generate(method='coset'). If g does not belong to the group it returns None.

Examples

```
>>> Permutation.print_cyclic = True
>>> a = Permutation(0, 1, 3, 7, 6, 4)(2, 5)
>> b = Permutation(0, 1, 3, 2) (4, 5, 7, 6)
>>> G = PermutationGroup([a, b])
>>> c = Permutation(7)(2, 4)(3, 5)
>>> G.coset_rank(c)
16
>>> G.coset unrank(16)
Permutation(7)(2, 4)(3, 5)
```


See also:

coset_factor (page 185)
coset_unrank (rank, $a f=$ False)
Unrank using Schreier-Sims representation.
coset_unrank is the inverse operation of coset_rank if $0<=$ rank $<$ order; otherwise it returns None.
property degree
Returns the size of the permutations in the group.
The number of permutations comprising the group is given by len(group); the number of permutations that can be generated by the group is given by group.order().

Examples

```
>>> Permutation.print_cyclic = True
>>> a = Permutation([\overline{1}, 0, 2])
>>> G = PermutationGroup([a])
>>> G.degree
3
>>> len(G)
1
>>> G.order()
2
>>> list(G.generate())
[Permutation(2), Permutation(2)(0, 1)]
```


See also:

order (page 197)
derived_series()
Return the derived series for the group.
The derived series for a group G is defined as $G=G _0>G _1>G _2>$ ldots where G i $=\left[G\{i-1\}, G _\{i-1\}\right]$, i.e. $G i$ is the derived subgroup of $G\{i-1\}$, for $i \backslash i n \backslash m a t h b b\{N\}$. When we have G_k = $\bar{G} _\{k-1\}$ for some $k \backslash i n \backslash m a t h b b\{N\}$, the series terminates.

Returns

- A list of permutation groups containing the members of the derived
- series in the order G = G_0, G_1, G_2, ···.

Examples

```
>>> A = AlternatingGroup(5)
>>> len(A.derived_series())
1
>>> S = SymmetricGroup(4)
>>> len(S.derived_series())
4
>>> S.derived_series()[1].is_subgroup(AlternatingGroup(4))
True
>>> S.derived_series()[2].is_subgroup(DihedralGroup(2))
True
```

See also:
derived_subgroup (page 187)
derived_subgroup()
Compute the derived subgroup.
The derived subgroup, or commutator subgroup is the subgroup generated by all commutators $[g, h]=h g h^{\wedge}\{-1\} g^{\wedge}\{-1\}$ for g, $h \backslash i n G$; it is equal to the normal closure of the set of commutators of the generators ([1], p.28, [11]).

Examples

```
>>> Permutation.print cyclic = True
>> a = Permutation([1, 0, 2, 4, 3])
>> b = Permutation([0, 1, 3, 2, 4])
>>> G = PermutationGroup([a, b])
>>> C = G.derived subgroup()
>>> list(C.genera\overline{te(af=True))}
[[0, 1, 2, 3, 4], [0, 1, 3, 4, 2], [0, 1, 4, 2, 3]]
```


See also:

derived_series (page 186)

property elements

Returns all the elements of the permutation group in a list
generate (method='coset', af=False)
Return iterator to generate the elements of the group
Iteration is done with one of these methods:

```
method='coset' using the Schreier-Sims coset representation
method='dimino' using the Dimino method
```

If af $=$ True it yields the array form of the permutations

Examples

```
>>> Permutation.print_cyclic = True
```

The permutation group given in the tetrahedron object is also true groups:

```
>>> G = tetrahedron.pgroup
>>> G.is_group
True
```

Also the group generated by the permutations in the tetrahedron pgroup - even the first two - is a proper group:

```
>>> H = PermutationGroup(G[0], G[1])
>>> J = PermutationGroup(list(H.generate()))
>>> J
PermutationGroup([
    Permutation(0, 1)(2, 3),
    Permutation(3),
    Permutation(1, 2, 3),
    Permutation(1, 3, 2),
    Permutation(0, 3, 1),
    Permutation(0, 2, 3),
    Permutation(0, 3)(1, 2),
    Permutation(0, 1, 3),
    Permutation(3)(0, 2, 1),
    Permutation(0, 3, 2),
    Permutation(3)(0, 1, 2),
    Permutation(0, 2)(1, 3)])
>>> _.is_group
True
```

generate_dimino($a f=$ False)

Yield group elements using Dimino's algorithm
If af $==$ True it yields the array form of the permutations

References

[1] The Implementation of Various Algorithms for Permutation Groups in the Computer Algebra System: AXIOM, N.J. Doye, M.Sc. Thesis

Examples

```
>>> Permutation.print cyclic = True
>>> a = Permutation([0, 2, 1, 3])
>>> b = Permutation([0, 2, 3, 1])
>>> g = PermutationGroup([a, b])
>> list(g.generate_dimino(af=True))
[[0, 1, 2, 3], [0, 2, 1, 3], [0, 2, 3, 1],
[0, 1, 3, 2], [0, 3, 2, 1], [0, 3, 1, 2]]
```

generate_schreier_sims ($a f=$ False)
Yield group elements using the Schreier-Sims representation in coset_rank order
If af $=$ True it yields the array form of the permutations

Examples

```
>>> Permutation.print_cyclic = True
>>> a = Permutation([\overline{0, 2, 1, 3])}
>>> b = Permutation([0, 2, 3, 1])
>>> g = PermutationGroup([a, b])
>>> list(g.generate schreier sims(af=True))
[[0, 1, 2, 3], [0, 2, 1, 3], [0, 3, 2, 1],
    [0, 1, 3, 2], [0, 2, 3, 1], [0, 3, 1, 2]]
```


property generators

Returns the generators of the group.

Examples

```
>>> Permutation.print_cyclic = True
>>> a = Permutation([0, 2, 1])
>>> b = Permutation([1, 0, 2])
>> G = PermutationGroup([a, b])
>>> G.generators
[Permutation(1, 2), Permutation(2)(0, 1)]
```

property is_abelian
Test if the group is Abelian.

Examples

```
>>> Permutation.print cyclic = True
>>> a = Permutation([0, 2, 1])
>>> b = Permutation([1, 0, 2])
>>> G = PermutationGroup([a, b])
>>> G.is_abelian
False
>>> a = Permutation([0, 2, 1])
>>> G = PermutationGroup([a])
>>> G.is abelian
True
```

is_alt_sym (eps=0.05, _random_prec $=$ None)
Monte Carlo test for the symmetric/alternating group for degrees $>=8$.

More specifically, it is one-sided Monte Carlo with the answer True (i.e., G is symmetric/alternating) guaranteed to be correct, and the answer False being incorrect with probability eps.

Notes

The algorithm itself uses some nontrivial results from group theory and number theory: 1) If a transitive group G of degree n contains an element with a cycle of length $n / 2<p<n-2$ for p a prime, G is the symmetric or alternating group ([1], pp. 81-82) 2) The proportion of elements in the symmetric/alternating group having the property described in 1) is approximately $\backslash \log (2) / \backslash \log (n)$ ([1], p.82; [2], pp. 226-227). The helper function _check_cycles_alt_sym is used to go over the cycles in a permutation and look for ones satisfying 1).

Examples

```
>>> D = DihedralGroup(10)
>>> D.is_alt_sym()
False
```


See also:

diofant.combinatorics.util._check_cycles_alt_sym (page 223)
property is_nilpotent
Test if the group is nilpotent.
A group G is nilpotent if it has a central series of finite length. Alternatively, G is nilpotent if its lower central series terminates with the trivial group. Every nilpotent group is also solvable ([1], p.29, [12]).

Examples

```
>>> C = CyclicGroup(6)
>>> C.is_nilpotent
True
>>> S = SymmetricGroup(5)
>>> S.is nilpotent
False
```


See also:

lower_central_series (page 193), is_solvable (page 191)
is_normal($g r$, strict=True)
Test if $\mathrm{G}=$ self is a normal subgroup of gr .
G is normal in gr if for each g 2 in $\mathrm{G}, \mathrm{g} 1$ in $\mathrm{gr}, \mathrm{g}=\mathrm{g} 1 * \mathrm{~g} 2 * \mathrm{~g} 1 * *-1$ belongs to G It is sufficient to check this for each g1 in gr.generator and g2 g2 in G.generator

Examples

```
>>> Permutation.print_cyclic = True
>>> a = Permutation([\overline{1}, 2, 0])
>>> b = Permutation([1, 0, 2])
>>> G = PermutationGroup([a, b])
>>> G1 = PermutationGroup([a, Permutation([2, 0, 1])])
>>> Gl.is_normal(G)
True
```

is_primitive (randomized=True)
Test if a group is primitive.
A permutation group G acting on a set S is called primitive if S contains no nontrivial block under the action of G (a block is nontrivial if its cardinality is more than 1).

Notes

The algorithm is described in [1], p.83, and uses the function minimal_block to search for blocks of the form $\backslash\{0, k \backslash\}$ for k ranging over representatives for the orbits of G_0, the stabilizer of 0 . This algorithm has complexity $0\left(n^{\wedge} 2\right)$ where n is the degree of the group, and will perform badly if $\mathrm{G}_{-} 0$ is small.
There are two implementations offered: one finds G_0 deterministically using the function stabilizer, and the other (default) produces random elements of G_0 using random_stab, hoping that they generate a subgroup of G_0 with not too many more orbits than G_0 (this is suggested in [1], p.83). Behavior is changed by the randomized flag.

Examples

```
>>> D = DihedralGroup(10)
>>> D.is_primitive()
False
```


See also:

minimal_block (page 194), random_stab (page 198)

property is_solvable

Test if the group is solvable.
G is solvable if its derived series terminates with the trivial group ([1], p.29).

Examples

```
>>> S = SymmetricGroup(3)
>>> S.is_solvable
True
```


See also:

is_nilpotent (page 190), derived_series (page 186)

is_subgroup (G, strict=True)

Return True if all elements of self belong to G.
If strict is False then if self's degree is smaller than G's, the elements will be resized to have the same degree.

Examples

Testing is strict by default: the degree of each group must be the same:

```
>>> p = Permutation(0, 1, 2, 3, 4, 5)
>>> G1 = PermutationGroup([Permutation(0, 1, 2), Permutation(0, 1)])
>> G2 = PermutationGroup([Permutation(0, 2), Permutation(0, 1, 2)])
>>> G3 = PermutationGroup([p, p**2])
>>> assert G1.order() == G2.order() == G3.order() == 6
>>> G1.is_subgroup(G2)
True
>>> G1.is_subgroup(G3)
```

(continued from previous page)

```
False
>>> G3.is_subgroup(PermutationGroup(G3[1]))
False
>>> G3.is_subgroup(PermutationGroup(G3[0]))
True
```

To ignore the size, set strict to False:

```
>>> S3 = SymmetricGroup(3)
>>> S5 = SymmetricGroup(5)
>>> S3.is_subgroup(S5, strict=False)
True
>>> C7 = CyclicGroup(7)
>>> G = S5*C7
>>> S5.is_subgroup(G, False)
True
>>> C7.is subgroup(G, 0)
False
```

is_transitive(strict=True)
Test if the group is transitive.
A group is transitive if it has a single orbit.
If strict is False the group is transitive if it has a single orbit of length different from 1.

Examples

```
>>> a = Permutation([0, 2, 1, 3])
>>> b = Permutation([2, 0, 1, 3])
>>> G1 = PermutationGroup([a, b])
>>> Gl.is_transitive()
False
>>> G1.is_transitive(strict=False)
True
>>> c = Permutation([2, 3, 0, 1])
>>> G2 = PermutationGroup([a, c])
>>> G2.is_transitive()
True
>>> d = Permutation([1, 0, 2, 3])
>>> e = Permutation([0, 1, 3, 2])
>>> G3 = PermutationGroup([d, e])
>>> G3.is_transitive() or G3.is_transitive(strict=False)
False
```


property is_trivial

Test if the group is the trivial group.
This is true if the group contains only the identity permutation.

Examples

```
>>> G = PermutationGroup([Permutation([0, 1, 2])])
>>> G.is_trivial
True
```

lower_central_series()
Return the lower central series for the group.
The lower central series for a group G is the series $G=G _0>G _1>G _2>$ ldots where $G _k=\left[G, G _\{k-1\}\right]$, i.e. every term after the first is equal to the commutator of G and the previous term in G1 ([1], p.29).

Returns

- A list of permutation groups in the order
- G = G_0, G_1, G_2, ···

Examples

```
>>> A = AlternatingGroup(4)
>>> len(A.lower_central_series())
2
>>> A.lower_central_series()[1].is_subgroup(DihedralGroup(2))
True
```


See also:

commutator (page 183), derived_series (page 186)
make_perm (n, seed=None)
Multiply n randomly selected permutations from pgroup together, starting with the identity permutation. If n is a list of integers, those integers will be used to select the permutations and they will be applied in L to R order: make_perm((A, B, C)) will give CBA(I) where I is the identity permutation.
seed is used to set the seed for the random selection of permutations from pgroup. If this is a list of integers, the corresponding permutations from pgroup will be selected in the order give. This is mainly used for testing purposes.

Examples

```
>>> Permutation.print_cyclic = True
>> a, b = [Permutatiōn([1, 0, 3, 2]), Permutation([1, 3, 0, 2])]
>>> G = PermutationGroup([a, b])
>>> G.make perm(1, [0])
Permutation(0, 1)(2, 3)
>>> G.make_perm(3, [0, 1, 0])
Permutation(0, 2, 3, 1)
>>> G.make_perm([0, 1, 0])
Permutation(0, 2, 3, 1)
```


See also:

random (page 198)

property max_div

Maximum proper divisor of the degree of a permutation group.

Notes

Obviously, this is the degree divided by its minimal proper divisor (larger than 1 , if one exists). As it is guaranteed to be prime, the sieve from diofant.ntheory is used. This function is also used as an optimization tool for the functions minimal_block and _union_find_merge.

Examples

```
>>> G = PermutationGroup([Permutation([0, 2, 1, 3])])
>>> G.max_div
2
```


See also:

minimal_block (page 194), _union_find_merge (page 179)
minimal_block(points)
For a transitive group, finds the block system generated by points.
If a group G acts on a set S, a nonempty subset B of S is called a block under the action of G if for all g in G we have $g B=B$ (g fixes B) or $g B$ and B have no common points (g moves B entirely). ([1], p.23; [6]).
The distinct translates gB of a block B for g in G partition the set S and this set of translates is known as a block system. Moreover, we obviously have that all blocks in the partition have the same size, hence the block size divides |S| ([1], p.23). A G-congruence is an equivalence relation ~ on the set S such that a ~ b implies g(a) ~ $\mathrm{g}(\mathrm{b})$ for all g in G . For a transitive group, the equivalence classes of a G-congruence and the blocks of a block system are the same thing ([1], p.23).
The algorithm below checks the group for transitivity, and then finds the Gcongruence generated by the pairs (p_0, p_1), (p_0, p_2), ..., (p_0,p_\{k-1\}) which is the same as finding the maximal block system (i.e., the one with minimum block size) such that p_0, ..., $p_{-}\{k-1\}$ are in the same block ([1], p.83).
It is an implementation of Atkinson's algorithm, as suggested in [1], and manipulates an equivalence relation on the set S using a union-find data structure. The running time is just above 0 (|points||S|). ([1], pp. 83-87; [7]).

Examples

```
>>> D = DihedralGroup(10)
>>> D.minimal_block([0, 5])
[0, 6, 2, 8, 4, 0, 6, 2, 8, 4]
>>> D.minimal_block([0, 1])
```


See also:
union_find_rep (page 179), _union_find_merge (page 179), is_transitive (page 192), is_primitive (page 190)
normal_closure(other, $k=10$)
Return the normal closure of a subgroup/set of permutations.

If S is a subset of a group G, the normal closure of A in G is defined as the intersection of all normal subgroups of G that contain A ([1], p.14). Alternatively, it is the group generated by the conjugates $x^{\wedge}\{-1\} y x$ for x a generator of G and y a generator of the subgroup \left\langle $S \backslash$ right \backslash rangle generated by S (for some chosen

Parameters

- other - a subgroup/list of permutations/single permutation
- \mathbf{k} - an implementation-specific parameter that determines the number of conjugates that are adjoined to other at once

Examples

```
>>> S = SymmetricGroup(5)
>>> C = CyclicGroup(5)
>>> G = S.normal_closure(C)
>>> G.order()
60
>>> G.is_subgroup(AlternatingGroup(5))
True
```


See also:

commutator (page 183), derived_subgroup (page 187), random_pr (page 198)

Notes

The algorithm is described in [1], pp. 73-74; it makes use of the generation of random elements for permutation groups by the product replacement algorithm.
orbit (alpha, action='tuples')
Compute the orbit of alpha $\backslash\{g(\backslash a l p h a) \mid g$ in $G \backslash\}$ as a set.
The time complexity of the algorithm used here is $0(|0 r b| * r)$ where $|0 r b|$ is the size of the orbit and r is the number of generators of the group. For a more detailed analysis, see [1], p.78, [2], pp. 19-21. Here alpha can be a single point, or a list of points.
If alpha is a single point, the ordinary orbit is computed. if alpha is a list of points, there are three available options:
'union' - computes the union of the orbits of the points in the list 'tuples' - computes the orbit of the list interpreted as an ordered tuple under the group action (i.e., $g((1,2,3))=(g(1), g(2), g(3)))$ 'sets' - computes the orbit of the list interpreted as a sets

Examples

```
>>> a = Permutation([1, 2, 0, 4, 5, 6, 3])
>> G = PermutationGroup([a])
>>> G.orbit(0)
{0, 1, 2}
>>> G.orbit([0, 4], 'union')
{0, 1, 2, 3, 4, 5, 6}
```


See also:

orbit_transversal (page 196)
orbit_rep(alpha, beta, schreier_vector=None)
Return a group element which sends alpha to beta.
If beta is not in the orbit of alpha, the function returns False. This implementation makes use of the schreier vector. For a proof of correctness, see [1], p. 80

Examples

```
>>> Permutation.print_cyclic = True
>>> G = AlternatingGroup(5)
>>> G.orbit_rep(0, 4)
Permutation(0, 4, 1, 2, 3)
```


See also:

schreier_vector (page 200)
orbit_transversal (alpha, pairs=False)
Computes a transversal for the orbit of alpha as a set.
For a permutation group G, a transversal for the orbit Orb $=\backslash\{g(\backslash a l p h a) \mid g \backslash i n$ $\mathrm{G} \backslash\}$ is a set $\backslash\left\{g_{-} \backslash\right.$ beta $\mid ~ g _$beta $(\backslash a l p h a)=\$ beta $\left.\backslash\right\}$ for \beta $\backslash i n$ Orb. Note that there may be more than one possible transversal. If pairs is set to True, it returns the list of pairs (\backslash beta, g_\beta). For a proof of correctness, see [1], p. 79

Examples

```
>>> Permutation.print_cyclic = True
>>> G = DihedralGroup(6)
>>> G.orbit_transversal(0)
[Permutation(5),
    Permutation(0, 1, 2, 3, 4, 5),
    Permutation(0, 5)(1, 4)(2, 3),
    Permutation(0, 2, 4)(1, 3, 5),
    Permutation(5)(0, 4)(1, 3),
    Permutation(0, 3)(1, 4)(2, 5)]
```


See also:

orbit (page 195)
orbits (rep=False)
Return the orbits of self, ordered according to lowest element in each orbit.

Examples

```
>>> a = Permutation(1, 5)(2, 3)(4, 0, 6)
>>> b = Permutation(1, 5)(3, 4)(2, 6, 0)
>> G = PermutationGroup([a, b])
>>> G.orbits()
[{0, 2, 3, 4, 6}, {1, 5}]
```

order()
Return the order of the group: the number of permutations that can be generated from elements of the group.
The number of permutations comprising the group is given by len(group); the length of each permutation in the group is given by group.size.

Examples

```
>>> a = Permutation([1, 0, 2])
>>> G = PermutationGroup([a])
>>> G.degree
3
>>> len(G)
1
>>> G.order()
2
>>> list(G.generate())
[Permutation(2), Permutation(2)(0, 1)]
```

```
>>> a = Permutation([0, 2, 1])
>>> b = Permutation([1, 0, 2])
>>> G = PermutationGroup([a, b])
>>> G.order()
6
```


See also:

degree (page 186)
pointwise_stabilizer(points, incremental=True)
Return the pointwise stabilizer for a set of points.
For a permutation group G and a set of points $\backslash\left\{p _1, p _2, \backslash l d o t s, ~ p _k \backslash\right\}$, the pointwise stabilizer of $p _1, p _2$, ···, $p _k$ is defined as G_\{p_1, ···, p_k\} $=\backslash\left\{g \backslash i n G \mid g\left(p _i\right)=p _i \backslash f o r a l l i \backslash i n \backslash\{1,2, \backslash l d o t s, k \backslash\} \backslash\right\}([1], p 20)$. It is a subgroup of ${ }^{`}$ G.

Examples

```
>>> S = SymmetricGroup(7)
>> Stab = S.pointwise stabilizer([2, 3, 5])
>>> Stab.is_subgroup(S.stabilizer(2).stabilizer(3).stabilizer(5))
True
```


See also:

stabilizer (page 200), schreier_sims_incremental (page 198)

Notes

When incremental $==$ True, rather than the obvious implementation using successive calls to .stabilizer(), this uses the incremental Schreier-Sims algorithm to obtain a base with starting segment - the given points.
random (af=False)
Return a random group element.
random_pr (gen_count=11, iterations=50,_random_prec=None)
Return a random group element using product replacement.
For the details of the product replacement algorithm, see _random_pr_init In random_pr the actual 'product replacement' is performed. Notice that if the attribute _random_gens is empty, it needs to be initialized by _random_pr_init.
random_stab (alpha, schreier_vector=None,_random_prec=None)
Random element from the stabilizer of alpha.
The schreier vector for alpha is an optional argument used for speeding up repeated calls. The algorithm is described in [1], p. 81

See also:

random_pr (page 198), orbit_rep (page 196)

schreier_sims()

Schreier-Sims algorithm.
It computes the generators of the chain of stabilizers G > G_\{b_1\} > .. > G_\{b1,..,b_r\} > 1 in which G_\{b_1,..,b_i\} stabilizes b_1,..,b_i, and the corresponding s cosets. An element of the group can be written as the product h_1*..*h_s.
We use the incremental Schreier-Sims algorithm.

Examples

```
>>> a = Permutation([0, 2, 1])
>>> b = Permutation([1, 0, 2])
>> G = PermutationGroup([a, b])
>>> G.schreier_sims()
>>> G.basic_trānsversals
[{0: Permutātion(2)(0, 1), 1: Permutation(2), 2: Permutation(1, 2)},
{0: Permutation(2), 2: Permutation(0, 2)}]
```

schreier_sims_incremental (base=None, gens=None)
Extend a sequence of points and generating set to a base and strong generating set.

Parameters

- base - The sequence of points to be extended to a base. Optional parameter with default value [].
- gens - The generating set to be extended to a strong generating set relative to the base obtained. Optional parameter with default value self.generators.
Returns (base, strong_gens) - base is the base obtained, and strong_gens is the strong generating set relative to it. The original parameters base, gens remain unchanged.

Examples

```
>>> from diofant.combinatorics.testutil import verify bsgs
>>> A = AlternatingGroup(7)
>>> base = [2, 3]
>>> seq = [2, 3]
>>> base, strong_gens = A.schreier_sims_incremental(base=seq)
>>> _verify_bsgs(A, base, strong_gēns)
True
>>> base[:2]
[2, 3]
```


Notes

This version of the Schreier-Sims algorithm runs in polynomial time. There are certain assumptions in the implementation - if the trivial group is provided, base and gens are returned immediately, as any sequence of points is a base for the trivial group. If the identity is present in the generators gens, it is removed as it is a redundant generator. The implementation is described in [1], pp. 90-93.

See also:

schreier_sims (page 198), schreier_sims_random (page 199)
schreier_sims_random (base=None, gens=None, consec_succ=10,
_random_prec=None)
Randomized Schreier-Sims algorithm.
The randomized Schreier-Sims algorithm takes the sequence base and the generating set gens, and extends base to a base, and gens to a strong generating set relative to that base with probability of a wrong answer at most $2^{\wedge}\{-$ consec \backslash _succ $\}$, provided the random generators are sufficiently random.

Parameters

- base - The sequence to be extended to a base.
- gens - The generating set to be extended to a strong generating set.
- consec_succ - The parameter defining the probability of a wrong answer.
- _random_prec - An internal parameter used for testing purposes.

Returns (base, strong_gens) - base is the base and strong_gens is the strong generating set relative to it.

Examples

```
>>> from diofant.combinatorics.testutil import _verify_bsgs
>>> S = SymmetricGroup(5)
>>> base, strong_gens = S.schreier_sims_random(consec_succ=5)
>>> _verify_bsgs(S, base, strong_gens)
True
```


Notes

The algorithm is described in detail in [1], pp. 97-98. It extends the orbits orbs and the permutation groups stabs to basic orbits and basic stabilizers for the base and strong generating set produced in the end. The idea of the extension process is to "sift" random group elements through the stabilizer chain and amend the stabilizers/orbits along the way when a sift is not successful. The helper function _strip is used to attempt to decompose a random group element according to the current state of the stabilizer chain and report whether the element was fully decomposed (successful sift) or not (unsuccessful sift). In the latter case, the level at which the sift failed is reported and used to amend stabs, base, gens and orbs accordingly. The halting condition is for consec_succ consecutive successful sifts to pass. This makes sure that the current base and gens form a BSGS with probability at least 1

- 1/\text\{consec _succ\}.

See also:

schreier_sims (page 198)
schreier_vector (alpha)
Computes the schreier vector for alpha.
The Schreier vector efficiently stores information about the orbit of alpha. It can later be used to quickly obtain elements of the group that send alpha to a particular element in the orbit. Notice that the Schreier vector depends on the order in which the group generators are listed. For a definition, see [3]. Since list indices start from zero, we adopt the convention to use "None" instead of 0 to signify that an element doesn't belong to the orbit. For the algorithm and its correctness, see [2], pp.78-80.

Examples

```
>>> a = Permutation([2, 4, 6, 3, 1, 5, 0])
>>> b = Permutation([0, 1, 3, 5, 4, 6, 2])
>>> G = PermutationGroup([a, b])
>>> G.schreier vector(0)
[-1, None, 0, \overline{1, None, 1, 0]}
```


See also:

orbit (page 195)
stabilizer(alpha)
Return the stabilizer subgroup of alpha.
The stabilizer of $\backslash a l p h a$ is the group G_\alpha $=\backslash\{g \backslash i n G \mid g(\backslash a l p h a)=$ \alpha
$. For a proof of correctness, see[1], p.79. }$

Examples

```
>>> Permutation.print_cyclic = True
>>> G = DihedralGroup(6)
>>> G.stabilizer(5)
PermutationGroup([
    Permutation(5)(0, 4)(1, 3),
    Permutation(5)])
```


See also:

orbit (page 195)
property strong_gens
Return a strong generating set from the Schreier-Sims algorithm.
A generating set $\mathrm{S}=\backslash\left\{\mathrm{g} _1, \mathrm{~g} _2, \ldots, \mathrm{~g}_{-} \mathrm{t}\right.$ \} for a permutation group G is a strong generating set relative to the sequence of points (referred to as a "base") (b_1, b_2, ..., b_k) if, for 1 \leq i \leq k we have that the intersection of the pointwise stabilizer $G^{\wedge}\{(i+1)\}:=G _\left\{b _1, b _2, \ldots, b _i\right\}$ with S generates the pointwise stabilizer $\mathrm{G}^{\wedge}\{(\mathrm{i}+1)\}$. The concepts of a base and strong generating set and their applications are discussed in depth in [1], pp. 87-89 and [2], pp. 55-57.

Examples

```
>>> D = DihedralGroup(4)
>>> D.strong gens
[Permutation(0, 1, 2, 3), Permutation(0, 3)(1, 2), Permutation(1, 3)]
>>> D.base
[0, 1]
```


See also:

base (page 179), basic_transversals (page 182), basic_orbits (page 181), basic_stabilizers (page 181)
subgroup_search (prop, base=None, strong_gens=None, tests=None, init_subgroup=None)
Find the subgroup of all elements satisfying the property prop.
This is done by a depth-first search with respect to base images that uses several tests to prune the search tree.

Parameters

- prop - The property to be used. Has to be callable on group elements and always return True or False. It is assumed that all group elements satisfying prop indeed form a subgroup.
- base - A base for the supergroup.
- strong_gens - A strong generating set for the supergroup.
- tests - A list of callables of length equal to the length of base. These are used to rule out group elements by partial base images, so that tests[l](g) returns False if the element g is known not to satisfy prop base on where g sends the first $l+1$ base points.
- init_subgroup - if a subgroup of the sought group is known in advance, it can be passed to the function as this parameter.

Returns res - The subgroup of all elements satisfying prop. The generating set for this group is guaranteed to be a strong generating set relative to the base base.

Examples

```
>>> from diofant.combinatorics.testutil import _verify_bsgs
>>> S = SymmetricGroup(7)
>>> def prop_even(x):
.. return x.is_even
>>> base, strong_gen̄s = S.schreier_sims_incremental()
>>> G = S.subgroup_search(prop_even, base=base, strong_gens=strong_gens)
>>> G.is_subgroup(\overline{AlternatingG}\overline{roup(7))}
True
>>> _verify_bsgs(G, base, G.generators)
True
```


Notes

This function is extremely lenghty and complicated and will require some careful attention. The implementation is described in [1], pp. 114-117, and the comments for the code here follow the lines of the pseudocode in the book for clarity.

The complexity is exponential in general, since the search process by itself visits all members of the supergroup. However, there are a lot of tests which are used to prune the search tree, and users can define their own tests via the tests parameter, so in practice, and for some computations, it's not terrible.
A crucial part in the procedure is the frequent base change performed (this is line 11 in the pseudocode) in order to obtain a new basic stabilizer. The book mentiones that this can be done by using .baseswap (. . .), however the current implementation uses a more straightforward way to find the next basic stabilizer - calling the function .stabilizer(...) on the previous basic stabilizer.

property transitivity_degree

Compute the degree of transitivity of the group.
A permutation group G acting on $\backslash 0 \mathrm{mega}=\backslash\{0,1, \ldots, \mathrm{n}-1 \backslash\}$ is k -fold transitive, if, for any k points (a_1, a_2, ..., a_k) \in\0mega and any k points (b_1, b_2,
 $g\left(a _k\right)=b _k$ The degree of transitivity of G is the maximum k such that G is k-fold transitive. ([8])

Examples

```
>>> a = Permutation([1, 2, 0])
>>> b = Permutation([1, 0, 2])
>>> G = PermutationGroup([a, b])
>>> G.transitivity_degree
3
```


See also:

```
is_transitive (page 192), orbit (page 195)
```


4.3.4 Polyhedron

class diofant.combinatorics.polyhedron.Polyhedron(corners, faces=[], pgroup=[])
Represents the polyhedral symmetry group (PSG).
The PSG is one of the symmetry groups of the Platonic solids. There are three polyhedral groups: the tetrahedral group of order 12, the octahedral group of order 24, and the icosahedral group of order 60.
All doctests have been given in the docstring of the constructor of the object.

References

- https://mathworld.wolfram.com/PolyhedralGroup.html
property array_form
Return the indices of the corners.
The indices are given relative to the original position of corners.

Examples

```
>>> tetrahedron.array_form
[0, 1, 2, 3]
>>> tetrahedron.rotate(0)
>>> tetrahedron.array_form
[0, 2, 3, 1]
>>> tetrahedron.pgroup[0].array_form
[0, 2, 3, 1]
>>> tetrahedron.reset()
```


See also:

corners (page 203), cyclic_form (page 203)
property corners
Get the corners of the Polyhedron.
The method vertices is an alias for corners.

Examples

```
>>> p = Polyhedron(list('abcd'))
>> p.corners == p.vertices == (a, b, c, d)
True
```


See also:

array_form (page 203), cyclic_form (page 203)
property cyclic_form
Return the indices of the corners in cyclic notation.
The indices are given relative to the original position of corners.

See also:

corners (page 203), array_form (page 203)
property edges
Given the faces of the polyhedra we can get the edges.

Examples

>> corners $=(\mathrm{a}, \mathrm{b}, \mathrm{c})$
>>> faces = [(0, 1, 2)]
>>> Polyhedron(corners, faces).edges
$\{(0,1),(0,2),(1,2)\}$

property faces

Get the faces of the Polyhedron.
property pgroup
Get the permutations of the Polyhedron.
reset()
Return corners to their original positions.

Examples

```
>>> tetrahedron.corners
(0, 1, 2, 3)
>>> tetrahedron.rotate(0)
>>> tetrahedron.corners
(0, 2, 3, 1)
>>> tetrahedron.reset()
>>> tetrahedron.corners
(0, 1, 2, 3)
```

rotate (perm)

Apply a permutation to the polyhedron in place. The permutation may be given as a Permutation instance or an integer indicating which permutation from pgroup of the Polyhedron should be applied.
This is an operation that is analogous to rotation about an axis by a fixed increment.

Notes

When a Permutation is applied, no check is done to see if that is a valid permutation for the Polyhedron. For example, a cube could be given a permutation which effectively swaps only 2 vertices. A valid permutation (that rotates the object in a physical way) will be obtained if one only uses permutations from the pgroup of the Polyhedron. On the other hand, allowing arbitrary rotations (applications of permutations) gives a way to follow named elements rather than indices since Polyhedron allows vertices to be named while Permutation works only with indices.

Examples

```
>>> cube.corners
(0, 1, 2, 3, 4, 5, 6, 7)
>>> cube.rotate(0)
>> cube.corners
(1, 2, 3, 0, 5, 6, 7, 4)
```

A non-physical "rotation" that is not prohibited by this method:

```
>>> cube.reset()
>>> cube.rotate(Permutation([[1, 2]], size=8))
>>> cube.corners
(0, 2, 1, 3, 4, 5, 6, 7)
```

Polyhedron can be used to follow elements of set that are identified by letters instead of integers:

```
>>> shadow = h5 = Polyhedron(list('abcde'))
>>> p = Permutation([3, 0, 1, 2, 4])
>>> h5.rotate(p)
>>> h5.corners
(d, a, b, c, e)
>>> == shadow.corners
True
>>> copy = h5.copy()
>>> h5.rotate(p)
>>> h5.corners == copy.corners
False
```

property size

Get the number of corners of the Polyhedron.

property vertices

Get the corners of the Polyhedron.
The method vertices is an alias for corners.

Examples

```
>>> p = Polyhedron(list('abcd'))
>>> p.corners == p.vertices == (a, b, c, d)
True
```

See also:
array_form (page 203), cyclic_form (page 203)

4.3.5 Prufer Sequences

class diofant. combinatorics.prufer. Prufer(*args, **kw_args)
The Prufer correspondence is an algorithm that describes the bijection between labeled trees and the Prufer code. A Prufer code of a labeled tree is unique up to isomorphism and has a length of $n-2$.

Prufer sequences were first used by Heinz Prufer to give a proof of Cayley's formula.

References

- https://mathworld.wolfram.com/LabeledTree.html
static edges (*runs)
Return a list of edges and the number of nodes from the given runs that connect nodes in an integer-labelled tree.
All node numbers will be shifted so that the minimum node is 0 . It is not a problem if edges are repeated in the runs; only unique edges are returned. There is no assumption made about what the range of the node labels should be, but all nodes from the smallest through the largest must be present.

Examples

```
>>> Prufer.edges([1, 2, 3], [2, 4, 5]) # a T
([[0, 1], [1, 2], [1, 3], [3, 4]], 5)
```

Duplicate edges are removed:

```
>>> Prufer.edges([0, 1, 2, 3], [1, 4, 5], [1, 4, 6]) # a K
([[0, 1], [1, 2], [1, 4], [2, 3], [4, 5], [4, 6]], 7)
```

next (delta=1)

Generates the Prufer sequence that is delta beyond the current one.

Examples

```
>>> a = Prufer([[0, 1], [0, 2], [0, 3]])
>>> b = a.next(1) # == a.next()
>>> b.tree repr
[[0, 2], [\overline{0}, 1], [1, 3]]
>>> b.rank
1
```


See also:

prufer_rank (page 207), rank (page 207), prev (page 206), size (page 208)
property nodes
Returns the number of nodes in the tree.

Examples

```
>>> Prufer([[0, 3], [1, 3], [2, 3], [3, 4], [4, 5]]).nodes
6
>>> Prufer([1, 0, 0]).nodes
5
```

prev (delta=1)
Generates the Prufer sequence that is -delta before the current one.

Examples

```
>>> a = Prufer([[0, 1], [1, 2], [2, 3], [1, 4]])
>>> a.rank
36
>>> b = a.prev()
>>> b
Prufer((1, 2, 0))
>>> b.rank
35
```


See also:

prufer_rank (page 207), rank (page 207), next (page 206), size (page 208)
prufer_rank()
Computes the rank of a Prufer sequence.

Examples

```
>>> a = Prufer([[0, 1], [0, 2], [0, 3]])
>>> a.prufer_rank()
0
```


See also:

rank (page 207), next (page 206), prev (page 206), size (page 208)
property prufer_repr
Returns Prufer sequence for the Prufer object.
This sequence is found by removing the highest numbered vertex, recording the node it was attached to, and continuing until only two vertices remain. The Prufer sequence is the list of recorded nodes.

Examples

```
>>> Prufer([[0, 3], [1, 3], [2, 3], [3, 4], [4, 5]]).prufer_repr
[3, 3, 3, 4]
>>> Prufer([1, 0, 0]).prufer_repr
[1, 0, 0]
```


See also:

to_prufer (page 208)

property rank

Returns the rank of the Prufer sequence.

Examples

```
>>> p = Prufer([[0, 3], [1, 3], [2, 3], [3, 4], [4, 5]])
>> p.rank
778
>>> p.next(1).rank
779
>>> p.prev().rank
77
```


See also:

prufer_rank (page 207), next (page 206), prev (page 206), size (page 208)
property size
Return the number of possible trees of this Prufer object.

Examples

```
>>> Prufer([0]*4).size == Prufer([6]*4).size == 1296
True
```


See also:

prufer_rank (page 207), rank (page 207), next (page 206), prev (page 206)
static to_prufer(tree, n)
Return the Prufer sequence for a tree given as a list of edges where n is the number of nodes in the tree.

Examples

```
>>> a = Prufer([[0, 1], [0, 2], [0, 3]])
>>> a.prufer_repr
[0, 0]
>>> Prufer.to_prufer([[0, 1], [0, 2], [0, 3]], 4)
[0, 0]
```


See also:

prufer_repr (page 207) returns Prufer sequence of a Prufer object.
static to_tree(prufer)
Return the tree (as a list of edges) of the given Prufer sequence.

Examples

```
>>> a = Prufer([0, 2], 4)
>>> a.tree repr
[[0, 1], [0, 2], [2, 3]]
>> Prufer.to tree([0, 2])
[[0, 1], [0, 2], [2, 3]]
```


References

- https://hamberg.no/erlend/posts/2010-11-06-prufer-sequence-compact-tree-representation. html

See also:

tree_repr (page 209) returns tree representation of a Prufer object.
property tree_repr
Returns the tree representation of the Prufer object.

Examples

```
>>> Prufer([[0, 3], [1, 3], [2, 3], [3, 4], [4, 5]]).tree_repr
[[0, 3], [1, 3], [2, 3], [3, 4], [4, 5]]
>>> Prufer([1, 0, 0]).tree repr
[[1, 2], [0, 1], [0, 3], [0, 4]]
```


See also:

to_tree (page 208)
classmethod unrank (rank, n)
Finds the unranked Prufer sequence.

Examples

```
>>> Prufer.unrank(0, 4)
Prufer((0, 0))
```


4.3.6 Subsets

class diofant.combinatorics.subsets.Subset (subset, superset)
Represents a basic subset object.
We generate subsets using essentially two techniques, binary enumeration and lexicographic enumeration. The Subset class takes two arguments, the first one describes the initial subset to consider and the second describes the superset.

Examples

```
>>> a = Subset(['c', 'd'], ['a', 'b', 'c', 'd'])
>>> a.next_binary().subset
['b']
>>> a.prev_binary().subset
['c']
```

classmethod bitlist_from_subset(subset, superset)
Gets the bitlist corresponding to a subset.

Examples

```
>>> Subset.bitlist_from_subset(['c', 'd'], ['a', 'b', 'c', 'd'])
'0011'
```


See also:

subset_from_bitlist (page 214)
property cardinality
Returns the number of all possible subsets.

Examples

```
>>> a = Subset(['c', 'd'], ['a', 'b', 'c', 'd'])
>>> a.cardinality
16
```


See also:

subset (page 213), superset (page 214), size (page 213), superset_size (page 214)
iterate_binary (k)
This is a helper function. It iterates over the binary subsets by k steps. This variable can be both positive or negative.

Examples

```
>>> a = Subset(['c', 'd'], ['a', 'b', 'c', 'd'])
>>> a.iterate_binary(-2).subset
['d']
>>> a = Subset(['a', 'b', 'c'], ['a', 'b', 'c', 'd'])
>>> a.iterate_binary(2).subset
[]
```


See also:

next_binary (page 210), prev_binary (page 211)
iterate_graycode (k)
Helper function used for prev_gray and next_gray. It performs k step overs to get the respective Gray codes.

Examples

```
>>> a = Subset([1, 2, 3], [1, 2, 3, 4])
>>> a.iterate_graycode(3).subset
[1, 4]
>>> a.iterate_graycode(-2).subset
[1, 2, 4]
```


See also:

next_gray (page 211), prev_gray (page 212)
next_binary ()
Generates the next binary ordered subset.

Examples

```
>>> a = Subset(['c', 'd'], ['a', 'b', 'c', 'd'])
>>> a.next_binary().subset
['b']
>>> a = Subset(['a', 'b', 'c', 'd'], ['a', 'b', 'c', 'd'])
>>> a.next_binary().subset
[]
```


See also:

prev_binary (page 211), iterate_binary (page 210)
next_gray()
Generates the next Gray code ordered subset.

Examples

```
>>> a = Subset([1, 2, 3], [1, 2, 3, 4])
>>> a.next_gray().subset
[1, 3]
```


See also:

iterate_graycode (page 210), prev_gray (page 212)
next_lexicographic()
Generates the next lexicographically ordered subset.

Examples

```
>>> a = Subset(['c', 'd'], ['a', 'b', 'c', 'd'])
>>> a.next_lexicographic().subset
['d']
>>> a = Subset(['d'], ['a', 'b', 'c', 'd'])
>>> a.next_lexicographic().subset
[]
```


See also:

prev_lexicographic (page 212)

prev_binary()

Generates the previous binary ordered subset.

Examples

```
>>> a = Subset([], ['a', 'b', 'c', 'd'])
>>> a.prev_binary().subset
['a', 'b',''c', 'd']
>>> a = Subset(['c', 'd'], ['a', 'b', 'c', 'd'])
>>> a.prev_binary().subset
['c']
```


See also:

next_binary (page 210), iterate_binary (page 210)
prev_gray()
Generates the previous Gray code ordered subset.

Examples

```
>>> a = Subset([2, 3, 4], [1, 2, 3, 4, 5])
>>> a.prev_gray().subset
[2, 3, 4, 5]
```


See also:

iterate_graycode (page 210), next_gray (page 211)
prev_lexicographic()
Generates the previous lexicographically ordered subset.

Examples

```
>>> a = Subset([], ['a', 'b', 'c', 'd'])
>>> a.prev_lexicographic().subset
['d']
>>> a = Subset(['c', 'd'], ['a', 'b', 'c', 'd'])
>>> a.prev_lexicographic().subset
['c']
```


See also:

next_lexicographic (page 211)
property rank_binary
Computes the binary ordered rank.

Examples

```
>>> a = Subset([], ['a', 'b', 'c', 'd'])
>>> a.rank_binary
0
>>> a = Subset(['c', 'd'], ['a', 'b', 'c', 'd'])
>>> a.rank_binary
3
```


See also:

iterate_binary (page 210), unrank_binary (page 215)
property rank_gray
Computes the Gray code ranking of the subset.

Examples

```
>>> a = Subset(['c', 'd'], ['a', 'b', 'c', 'd'])
>>> a.rank_gray
2
>> a = Subset([2, 4, 5], [1, 2, 3, 4, 5, 6])
>>> a.rank_gray
27
```


See also:

iterate_graycode (page 210), unrank_gray (page 215)
property rank_lexicographic
Computes the lexicographic ranking of the subset.

Examples

```
>>> a = Subset(['c', 'd'], ['a', 'b', 'c', 'd'])
>>> a.rank_lexicographic
14
>>> a = Subset([2, 4, 5], [1, 2, 3, 4, 5, 6])
>>> a.rank_lexicographic
43
```

property size

Gets the size of the subset.

Examples

```
>>> a = Subset(['c', 'd'], ['a', 'b', 'c', 'd'])
>>> a.size
2
```


See also:

subset (page 213), superset (page 214), superset_size (page 214), cardinality (page 210)
property subset
Gets the subset represented by the current instance.

Examples

```
>>> a = Subset(['c', 'd'], ['a', 'b', 'c', 'd'])
>>> a.subset
['c', 'd']
```


See also:

superset (page 214), size (page 213), superset_size (page 214), cardinality (page 210)
classmethod subset_from_bitlist(super_set, bitlist)
Gets the subset defined by the bitlist.

Examples

```
>>> Subset.subset_from_bitlist(['a', 'b', 'c', 'd'], '0011').subset
['c', 'd']
```


See also:

bitlist_from_subset (page 209)

classmethod subset_indices(subset, superset)

Return indices of subset in superset in a list; the list is empty if all elements of subset are not in superset.

Examples

```
>>> superset = [1, 3, 2, 5, 4]
>>> Subset.subset_indices([3, 2, 1], superset)
[1, 2, 0]
>>> Subset.subset_indices([1, 6], superset)
[]
>>> Subset.subset_indices([], superset)
[]
```

property superset

Gets the superset of the subset.

Examples

```
>>> a = Subset(['c', 'd'], ['a', 'b', 'c', 'd'])
>>> a.superset
['a', 'b', 'c', 'd']
```


See also:

subset (page 213), size (page 213), superset_size (page 214), cardinality (page 210)
property superset_size
Returns the size of the superset.

Examples

```
>>> a = Subset(['c', 'd'], ['a', 'b', 'c', 'd'])
>>> a.superset_size
4
```


See also:

subset (page 213), superset (page 214), size (page 213), cardinality (page 210)
classmethod unrank_binary (rank, superset)
Gets the binary ordered subset of the specified rank.

Examples

```
>>> Subset.unrank_binary(4, ['a', 'b', 'c', 'd']).subset
['b']
```


See also:

iterate_binary (page 210), rank_binary (page 212)
classmethod unrank_gray(rank, superset)
Gets the Gray code ordered subset of the specified rank.

Examples

```
>>> Subset.unrank_gray(4, ['a', 'b', 'c']).subset
['a', 'b']
>>> Subset.unrank_gray(0, ['a', 'b', 'c']).subset
[]
```


See also:

iterate_graycode (page 210), rank_gray (page 212)
subsets.ksubsets(k)
Finds the subsets of size k in lexicographic order.
This uses the itertools generator.

Examples

```
>>> list(ksubsets([1, 2, 3], 2))
[(1, 2), (1, 3), (2, 3)]
>>> list(ksubsets([1, 2, 3, 4, 5], 2))
[(1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 4),
    (2, 5), (3, 4), (3, 5), (4, 5)]
```


See also:

Subset (page 209)

4.3.7 Gray Code

class diofant.combinatorics.graycode.GrayCode(n, *args,**kw_args)
A Gray code is essentially a Hamiltonian walk on a n-dimensional cube with edge length of one. The vertices of the cube are represented by vectors whose values are binary. The Hamilton walk visits each vertex exactly once. The Gray code for a 3d cube is ['000','100','110','010', 011 ','111','101', '001'].
A Gray code solves the problem of sequentially generating all possible subsets of n objects in such a way that each subset is obtained from the previous one by either deleting or adding a single object. In the above example, 1 indicates that the object is present, and 0 indicates that its absent.
Gray codes have applications in statistics as well when we want to compute various statistics related to subsets in an efficient manner.

References

- Nijenhuis,A. and Wilf,H.S.(1978). Combinatorial Algorithms. Academic Press.
- Knuth, D. (2011). The Art of Computer Programming, Vol 4 Addison Wesley

Examples

```
>>> a = GrayCode(3)
>>> list(a.generate_gray())
['000', '001', '011', '010', '110', '111', '101', '100']
>>> a = GrayCode(4)
>>> list(a.generate_gray())
['0000', '0001', '0011', '0010', '0110', '0111', '0101', '0100',
'1100',' '1101', '1111', '1110', '1010', '1011', '1001', '1000']
```


property current

Returns the currently referenced Gray code as a bit string.

Examples

```
>>> GrayCode(3, start='100').current
```

'100'
generate_gray (**hints)
Generates the sequence of bit vectors of a Gray Code.
[1] Knuth, D. (2011). The Art of Computer Programming, Vol 4, Addison Wesley

Examples

```
>>> a = GrayCode(3)
>>> list(a.generate_gray())
['000', '001', '011', '010', '110', '111', '101', '100']
>>> list(a.generate_gray(start='011'))
['011', '010', '110', '111', '101', '100']
>>> list(a.generate_gray(rank=4))
['110', '111', '101', '100']
```


See also:

skip (page 218)

property n

Returns the dimension of the Gray code.

Examples

```
>>> a = GrayCode(5)
>>> a.n
5
```

next (delta=1)
Returns the Gray code a distance delta (default $=1$) from the current value in canonical order.

Examples

```
>>> a = GrayCode(3, start='110')
>>> a.next().current
'111'
>>> a.next(-1).current
'010'
```


property rank

Ranks the Gray code.
A ranking algorithm determines the position (or rank) of a combinatorial object among all the objects w.r.t. a given order. For example, the 4 bit binary reflected Gray code (BRGC) '0101' has a rank of 6 as it appears in the 6th position in the canonical ordering of the family of 4 bit Gray codes.

References

- http://statweb.stanford.edu/~susan/courses/s208/node12.html

Diofant Documentation, Release 0.13.0

Examples

```
>>> a = GrayCode(3)
>>> list(a.generate_gray())
['000', '001', '011', '010', '110', '111', '101', '100']
>>> GrayCode(3, start='100').rank
7
>>> GrayCode(3, rank=7).current
'100'
```


See also:

unrank (page 218)
property selections
Returns the number of bit vectors in the Gray code.

Examples

```
>>> a = GrayCode(3)
>>> a.selections
8
```

skip()
Skips the bit generation.

Examples

```
>>> a = GrayCode(3)
>>> for i in a.generate_gray():
... if i == '010':
... a.skip()
... print(i)
...
000
0 0 1
0 1 1
010
1 1 1
101
100
```


See also:

generate_gray (page 216)
classmethod unrank (n, rank)
Unranks an n -bit sized Gray code of rank k . This method exists so that a derivative GrayCode class can define its own code of a given rank.

The string here is generated in reverse order to allow for tail-call optimization.

Examples

```
>>> GrayCode(5, rank=3).current
    '00010'
>>> GrayCode.unrank(5, 3)
'00010'
```


See also:

rank (page 217)
graycode.random_bitstring()
Generates a random bitlist of length n.

Examples

```
>>> random_bitstring(3)
100
```

graycode.gray_to_bin()
Convert from Gray coding to binary coding.
We assume big endian encoding.

Examples

```
>>> gray_to_bin('100')
'111'
```


See also:

bin_to_gray (page 219)
graycode.bin_to_gray()
Convert from binary coding to gray coding.
We assume big endian encoding.

Examples

```
>>> bin_to_gray('111')
'100'
```


See also:

gray_to_bin (page 219)
graycode.get_subset_from_bitstring(bitstring)
Gets the subset defined by the bitstring.

Examples

```
>>> get_subset_from_bitstring(['a', 'b', 'c', 'd'], '0011')
['c', 'd']
>>> get_subset_from_bitstring(['c', 'a', 'c', 'c'], '1100')
['c', 'a']
```


See also:

graycode_subsets (page 220)
graycode.graycode_subsets()
Generates the subsets as enumerated by a Gray code.

Examples

```
>>> list(graycode_subsets(['a', 'b', 'c']))
[[], ['c'], ['b','c'], ['b'], ['a', 'b'], ['a', 'b', 'c'],
    ['a', 'c'], ['a']]
>>> list(graycode_subsets(['a', 'b', 'c', 'c']))
[[], ['c'], ['c',''c'], ['c'],'['b', 'c'], ['b', 'c', 'c'],
    ['b', 'c'], ['b'], ['a', 'b'], ['a', 'b', 'c'], ['a', 'b', 'c', 'c'],
    ['a', 'b', 'c'], ['a', 'c'], ['a', 'c', 'c'], ['a', 'c'], ['a']]
```


See also:

get_subset_from_bitstring (page 219)

4.3.8 Named Groups

diofant.combinatorics.named_groups.SymmetricGroup (n)
Generates the symmetric group on n elements as a permutation group.
The generators taken are the n-cycle ($\left.012 \begin{array}{llll} & 1 & \ldots & n-1\end{array}\right)$ and the transposition (0) 1) (in cycle notation). (See [1]). After the group is generated, some of its basic properties are set.

Examples

```
>>> G = SymmetricGroup(4)
>>> G.is_group
True
>>> G.order()
24
>>> list(G.generate_schreier_sims(af=True))
[[0, 1, 2, 3], [1, 2, 3, 0], [2, 3, 0, 1], [3, 1, 2, 0], [0, 2, 3, 1],
[1, 3, 0, 2], [2, 0, 1, 3], [3, 2, 0, 1], [0, 3, 1, 2], [1, 0, 2, 3],
[2, 1, 3, 0], [3, 0, 1, 2], [0, 1, 3, 2], [1, 2, 0, 3], [2, 3, 1, 0],
[3, 1, 0, 2], [0, 2, 1, 3], [1, 3, 2, 0], [2, 0, 3, 1], [3, 2, 1, 0],
[0, 3, 2, 1], [1, 0, 3, 2], [2, 1, 0, 3], [3, 0, 2, 1]]
```


See also:

CyclicGroup (page 221), DihedralGroup (page 221), AlternatingGroup (page 222)

References

[1] https://en.wikipedia.org/wiki/Symmetric_group\#Generators_and_relations
diofant.combinatorics.named_groups.CyclicGroup(n)
Generates the cyclic group of order n as a permutation group.
The generator taken is the n-cycle ($012 \ldots n-1$) (in cycle notation). After the group is generated, some of its basic properties are set.

Examples

```
>>> G = CyclicGroup(6)
>>> G.is_group
True
>>> G.order()
6
>>> list(G.generate_schreier_sims(af=True))
[[0, 1, 2, 3, 4, 5], [1, 2, 3, 4, 5, 0], [2, 3, 4, 5, 0, 1],
[3, 4, 5, 0, 1, 2], [4, 5, 0, 1, 2, 3], [5, 0, 1, 2, 3, 4]]
```


See also:

SymmetricGroup (page 220), DihedralGroup (page 221), AlternatingGroup (page 222)
diofant.combinatorics.named_groups.DihedralGroup(n)
Generates the dihedral group D_{n} as a permutation group.
The dihedral group D_{n} is the group of symmetries of the regular n-gon. The generators taken are the n-cycle $a=\left(\begin{array}{llll}0 & 1 & 2 & \ldots \\ n-1\end{array}\right)$ (a rotation of the n-gon) and $b=(0 n-1)(1$ $\mathrm{n}-2) \ldots$ (a reflection of the n -gon) in cycle rotation. It is easy to see that these satisfy $\mathrm{a}^{* *} \mathrm{n}=\mathrm{b}^{* *} 2=1$ and $\mathrm{bab}=\sim \mathrm{a}$ so they indeed generate D_{n} (See [1]). After the group is generated, some of its basic properties are set.

Examples

```
>>> G = DihedralGroup(5)
>>> G.is_group
True
>>> a = list(G.generate_dimino())
>>> [perm.cyclic form for perm in a]
[[], [[0, 1, 2, \overline{3, 4]], [[0, 2, 4, 1, 3]],}
[[0, 3, 1, 4, 2]], [[0, 4, 3, 2, 1]], [[0, 4], [1, 3]],
[[1, 4], [2, 3]], [[0, 1], [2, 4]], [[0, 2], [3, 4]],
[[0, 3], [1, 2]]]
```


See also:

SymmetricGroup (page 220), CyclicGroup (page 221), AlternatingGroup (page 222)

References

[1] https://en.wikipedia.org/wiki/Dihedral_group
diofant.combinatorics.named_groups.AlternatingGroup(n)
Generates the alternating group on n elements as a permutation group.
For $n>2$, the generators taken are (012), (012...n-1) for n odd and (012), ($12 \ldots \mathrm{n}-1$) for n even (See [1], p.31, ex.6.9.). After the group is generated, some of its basic properties are set. The cases $\mathrm{n}=1,2$ are handled separately.

Examples

```
>>> G = AlternatingGroup(4)
>>> G.is_group
True
>>> a = list(G.generate_dimino())
>>> len(a)
12
>>> all(perm.is_even for perm in a)
True
```


See also:

SymmetricGroup (page 220), CyclicGroup (page 221), DihedralGroup (page 221)

References

[1] Armstrong, M. "Groups and Symmetry"
diofant.combinatorics.named_groups.AbelianGroup(*cyclic_orders)
Returns the direct product of cyclic groups with the given orders.
According to the structure theorem for finite abelian groups ([1]), every finite abelian group can be written as the direct product of finitely many cyclic groups.

Examples

```
>>> Permutation.print_cyclic = True
>>> AbelianGroup(3, 4)
PermutationGroup([
    Permutation(6)(0, 1, 2),
        Permutation(3, 4, 5, 6)])
>>> _.is_group
True
```


See also:

diofant.combinatorics.group_constructs.DirectProduct (page 228)

References

- https://groupprops.subwiki.org/wiki/Structure_theorem_for_finitely_generated abelian_groups

4.3.9 Utilities

diofant.combinatorics.util._base_ordering(base, degree)
Order $\{0,1, \ldots, n-1\}$ so that base points come first and in order.

Parameters

- '"base" - the base
- "'degree" - the degree of the associated permutation group

Returns

- A list base_ordering such that base_ordering[point] is the
- number of point in the ordering.

Examples

```
>>> S = SymmetricGroup(4)
>>> S.schreier_sims()
>>> _base_ordering(S.base, S.degree)
[0, 1, 2, 3]
```


Notes

This is used in backtrack searches, when we define a relation \ll on the underlying set for a permutation group of degree $n,\{0,1, \ldots, n-1\}$, so that if $\left(b_{1}, b_{2}, \ldots, b_{k}\right)$ is a base we have $b_{i} \ll b_{j}$ whenever $i<j$ and $b_{i} \ll a$ for all $i \in\{1,2, \ldots, k\}$ and a is not in the base. The idea is developed and applied to backtracking algorithms in [1], pp.108-132. The points that are not in the base are taken in increasing order.

References

- Holt, D., Eick, B., O’Brien, E. "Handbook of computational group theory"
diofant.combinatorics.util._check_cycles_alt_sym (perm)
Checks for cycles of prime length $\overline{\mathrm{p}}$ with $\mathrm{n} / 2<\overline{\mathrm{p}}<\mathrm{n}-2$.
Here n is the degree of the permutation. This is a helper function for the function is_alt_sym from diofant.combinatorics.perm_groups.

Examples

```
>>> a = Permutation([[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10], [11, 12]])
>>> _check_cycles_alt_sym(a)
False
>>> b = Permutation([[0, 1, 2, 3, 4, 5, 6], [7, 8, 9, 10]])
>>> _check_cycles_alt_sym(b)
True
```


See also:

diofant.combinatorics.perm_groups.PermutationGroup.is_alt_sym (page 189)

```
diofant.combinatorics.util._distribute_gens_by_base(base, gens)
```

Distribute the group elements gens by membership in basic stabilizers.
Notice that for a base $\left(b_{1}, b_{2}, \ldots, b_{k}\right)$, the basic stabilizers are defined as $G^{(i)}=G_{b_{1}, \ldots, b_{i-1}}$ for $i \in\{1,2, \ldots, k\}$.

Parameters

- "'base" - a sequence of points in `\(\{0,1, \ldots, n-1\}`\)
- ‘`gens" - a list of elements of a permutation group of degree `n`.

Returns

- List of length k, where k is
- the length of base. The i-th entry contains those elements in
- gens which fix the first i elements of base (so that the
- 0 -th entry is equal to gens itself). If no element fixes the first
- i elements of base, the i-th element is set to a list containing
- the identity element.

Examples

```
>>> Permutation.print_cyclic = True
>>> D = DihedralGroup(3)
>>> D.schreier_sims()
>>> D.strong gens
[Permutation(0, 1, 2), Permutation(0, 2), Permutation(1, 2)]
>>> D.base
[0, 1]
>>> _distribute_gens_by_base(D.base, D.strong_gens)
[[Pe\overline{rmutation(0-, 1, \overline{2}), Permutation(0, 2), Permutation(1, 2)],}
    [Permutation(1, 2)]]
```


See also:

strong_gens_from_distr (page 228), _orbits_transversals_from_bsgs (page 225), handle_precomputed_bsgs (page 224)
diofant.combinatorics.util._handle_precomputed_bsgs(base, strong_gens, transversals=None, basic_orbits=None, strong_gens_distr=None)
Calculate BSGS-related structures from those present.

The base and strong generating set must be provided; if any of the transversals, basic orbits or distributed strong generators are not provided, they will be calculated from the base and strong generating set.

Parameters

- '`base \({ }^{`}\) - the base
- '`strong_gens" - the strong generators
- '`transversals ${ }^{\text {- }}$ - basic transversals
- '`basic_orbits"` - basic orbits
- "'strong_gens_distr" - strong generators distributed by membership in basic
- stabilizers

Returns

- (transversals, basic_orbits, strong_gens_distr) where transversals
- are the basic transversals, basic_orbits are the basic orbits, and
- strong_gens_distr are the strong generators distributed by membership
- in basic stabilizers.

Examples

```
>>> Permutation.print_cyclic = True
>>> D = DihedralGroup(3)
>>> D.schreier_sims()
>>> _handle_prēcomputed_bsgs(D.base, D.strong_gens,
*:. basic_orbits=D.basic_orbits)
([{0: Permutation(2), 1: Permutatiōn(0, 1, 2), 2: Permutation(0, 2)},
{1: Permutation(2), 2: Permutation(1, 2)}],
[[0, 1, 2], [1, 2]], [[Permutation(0, 1, 2),
    Permutation(0, 2),
    Permutation(1, 2)],
    [Permutation(1, 2)]])
```


See also:

_orbits_transversals_from_bsgs (page 225), _distribute_gens_by_base (page 224)
diofant.combinatorics.util._orbits_transversals_from_bsgs(base,
strong_gens_distr, transver-
sals_only=False)
Compute basic orbits and transversals from a base and strong generating set.
The generators are provided as distributed across the basic stabilizers. If the optional argument transversals_only is set to True, only the transversals are returned.

Parameters

- '`base" - the base
- ‘’strong_gens_distr" - strong generators distributed by membership in basic
- stabilizers
- "transversals_only` - a flag switching between returning only the
- transversals/ both orbits and transversals

Examples

```
>>> Permutation.print_cyclic = True
>>> S = SymmetricGroup(3)
>>> S.schreier sims()
>>> strong gens
>>> _orbits_trañversals_from_bsgs(\overline{S}.base, strong_gens_distr)
([[0-, 1, 2], [1, 2]],
[{0: Permutation(2), 1: Permutation(0, 1, 2), 2: Permutation(0, 2, 1)},
{1: Permutation(2), 2: Permutation(1, 2)}])
```


See also:

distribute_gens_by_base (page 224), _handle_precomputed_bsgs (page 224) diofant.combinatorics.util._remove_gens(base, strong_gens, basic_orbits=None, strong_gens_distr=None)
Remove redundant generators from a strong generating set.

Parameters

- '"base" - a base
- "'strong_gens" - a strong generating set relative to " ${ }^{\text {base" }}$
- "'basic_orbits" - basic orbits
- ‘’strong_gens_distr" - strong generators distributed by membership in basic
- stabilizers

Returns

- A strong generating set with respect to base which is a subset of
- strong_gens.

Examples

```
>>> from diofant.combinatorics.testutil import _verify_bsgs
>>> S = SymmetricGroup(15)
>>> base, strong_gens = S.schreier_sims_incremental()
>>> new_gens = _- remove_gens(base, \overline{s}tron\overline{g}_gens)
>>> len(new_gen\overline{s})
14
>>> _verify_bsgs(S, base, new_gens)
True
```


Notes

This procedure is outlined in [1],p. 95 .

References

[1] Holt, D., Eick, B., O’Brien, E. "Handbook of computational group theory"
diofant.combinatorics.util._strip(g, base, orbits, transversals)
Attempt to decompose a permutation using a (possibly partial) BSGS structure.
This is done by treating the sequence base as an actual base, and the orbits orbits and transversals transversals as basic orbits and transversals relative to it.

This process is called "sifting". A sift is unsuccessful when a certain orbit element is not found or when after the sift the decomposition doesn't end with the identity element.
The argument transversals is a list of dictionaries that provides transversal elements for the orbits orbits.

Parameters

- '`g'` - permutation to be decomposed
- "'base" - sequence of points

- under some subgroup of the pointwise stabilizer of `
- `base[0], base[1], ..., base[i - 1]`. The groups themselves are implicit
- in this function since the only information we need is encoded in the orbits
- and transversals
- "transversals" - a list of orbit transversals associated with the orbits
- "orbits".

Examples

```
>>> Permutation.print_cyclic = True
>>> S = SymmetricGroup(5)
>>> S.schreier sims()
>> g = Permutation([0, 2, 3, 1, 4])
>>> _strip(g, S.base, S.basic_orbits, S.basic_transversals)
(Permutation(4), 5)
```


Notes

The algorithm is described in [1],pp.89-90. The reason for returning both the current state of the element being decomposed and the level at which the sifting ends is that they provide important information for the randomized version of the Schreier-Sims algorithm.

References

[1] Holt, D., Eick, B., O’Brien, E. "Handbook of computational group theory"

See also:

diofant.combinatorics.perm_groups.PermutationGroup.schreier_sims (page 198), diofant.combinatorics.perm_groups.PermutationGroup.schreier_sims_random (page 199)
diofant.combinatorics.util._strong_gens_from_distr(strong_gens_distr)
Retrieve strong generating set from generators of basic stabilizers.
This is just the union of the generators of the first and second basic stabilizers.

Parameters

- `strong_gens_distr" - strong generators distributed by membership in basic
 - stabilizers

Examples

```
>>> Permutation.print_cyclic = True
>>> S = SymmetricGroup(3)
>>> S.schreier_sims()
>>> S.strong_gens
[Permutation(0, 1, 2), Permutation(2)(0, 1), Permutation(1, 2)]
>>> strong_gens_distr = _distribute_gens_by_base(S.base, S.strong_gens)
>>> _strong_gens_from_distr(strong_gens_distr)
[Permutation(0, \overline{1, 2), Permutation(2)(0, 1), Permutation(1, 2)]}
```


See also:

distribute_gens_by_base (page 224)

4.3.10 Group constructors

diofant.combinatorics.group_constructs.DirectProduct(*groups)
Returns the direct product of several groups as a permutation group.
This is implemented much like the _mul_() (page 178) procedure for taking the direct product of two permutation groups, but the idea of shifting the generators is realized in the case of an arbitrary number of groups. A call to DirectProduct(G1, G2, ..., Gn) is generally expected to be faster than a call to $\mathrm{G} 1 * \mathrm{G} 2 * \ldots * \mathrm{Gn}$ (and thus the need for this algorithm).

Examples

```
>>> C = CyclicGroup(4)
>>> G = DirectProduct(C, C, C)
>>> G.order()
64
```


See also:

diofant.combinatorics.perm_groups.PermutationGroup.__mul__ (page 178)

4.3.11 Test Utilities

diofant. combinatorics.testutil._cmp_perm_lists(first, second)
Compare two lists of permutations as sets.
This is used for testing purposes. Since the array form of a permutation is currently a list, Permutation is not hashable and cannot be put into a set.

Examples

```
>>> a = Permutation([0, 2, 3, 4, 1])
>>> b = Permutation([1, 2, 0, 4, 3])
>>> c = Permutation([3, 4, 0, 1, 2])
>>> lsl = [a, b, c]
>>> ls2 = [b, c, a]
>>> _cmp_perm_lists(ls1, ls2)
True
```

diofant.combinatorics.testutil._naive_list_centralizer(self, other, af=False)
diofant.combinatorics.testutil._verify_bsgs(group, base, gens)
Verify the correctness of a base and strong generating set.
This is a naive implementation using the definition of a base and a strong generating set relative to it. There are other procedures for verifying a base and strong generating set, but this one will serve for more robust testing.

Examples

```
>>> A = AlternatingGroup(4)
>>> A.schreier_sims()
>>> _verify_bsgs(A, A.base, A.strong_gens)
True
```


See also:

diofant.combinatorics.perm_groups.PermutationGroup.schreier_sims (page 198)
diofant.combinatorics.testutil._verify_centralizer(group, arg, centr=None)
Verify the centralizer of a group/set/element inside another group.
This is used for testing .centralizer() from diofant.combinatorics.perm_groups

Examples

... AlternatingGroup) $\ggg \mathrm{S}=$ SymmetricGroup(5) $\ggg \mathrm{A}=$ AlternatingGroup(5) \ggg centr $=\operatorname{PermutationGroup}([\operatorname{Permutation}([0,1,2,3,4])]) \ggg$ _verify_centralizer(S, A, centr) True

See also:

naive_list_centralizer (page 229), diofant.combinatorics.perm_groups.
\bar{P} ermutātionḠroup. centralizer (page 183), _cmp_perm_lists (page 229)
diofant.combinatorics.testutil._verify_normal_closure(group, arg, closure=None)
Verify the normal closure of a subgroup/subset/element in a group.
This is used to test diofant.combinatorics.perm_groups.PermutationGroup.normal_closure

Examples

```
>>> S = SymmetricGroup(3)
>>> A = AlternatingGroup(3)
>>> _verify_normal_closure(S, A, closure=A)
True
```


See also:

diofant.combinatorics.perm_groups.PermutationGroup.normal_closure (page 194)

4.3.12 Tensor Canonicalization

```
diofant.combinatorics.tensor_can.canonicalize(g, dummies, msym, *v)
```

Canonicalize tensor formed by tensors.

Parameters

- \mathbf{g} (permutation representing the tensor)
- dummies (list representing the dummy indices) - it can be a list of dummy indices of the same type or a list of lists of dummy indices, one list for each type of index; the dummy indices must come after the free indices, and put in order contravariant, covariant [d0, -d0, d1,-d1,...]
- msym (symmetry of the metric(s)) - it can be an integer or a list; in the first case it is the symmetry of the dummy index metric; in the second case it is the list of the symmetries of the index metric for each type
- v (list, (base_i, gens_i, n_i, sym_i) for tensors of type i)
- base_i, gens_i (BSGS for tensors of this type.) - The BSGS should have minimal base under lexicographic ordering; if not, an attempt is made do get the minimal BSGS; in case of failure, canonicalize_naive is used, which is much slower.
- n_i (number of tensors of type i.)
- sym_i (symmetry under exchange of component tensors of type i.) -

Both for msym and sym_i the cases are

- None no symmetry
- 0 commuting
- 1 anticommuting

Returns

- 0 if the tensor is zero, else return the array form of
- the permutation representing the canonical form of the tensor.

Notes

First one uses canonical_free to get the minimum tensor under lexicographic order, using only the slot symmetries. If the component tensors have not minimal BSGS, it is attempted to find it; if the attempt fails canonicalize_naive is used instead.
Compute the residual slot symmetry keeping fixed the free indices using tensor_gens(base, gens, list_free_indices, sym).
Reduce the problem eliminating the free indices.
Then use double_coset_can_rep and lift back the result reintroducing the free indices.

Examples

one type of index with commuting metric;
$A_{a b}$ and $B_{a b}$ antisymmetric and commuting
$T=A_{d 0 d 1} * B^{d 0}{ }_{d 2} * B^{d 2 d 1}$
ord $=[d 0,-d 0, d 1,-d 1, d 2,-d 2]$ order of the indices
$\mathrm{g}=[1,3,0,5,4,2,6,7]$
$T_{c}=0$

```
>>> base2a, gens2a = get_symmetric_group_sgs(2, 1)
>>> t0 = (base2a, gens2a, 1, 0)
>>> t1 = (base2a, gens2a, 2, 0)
>>> g = Permutation([1, 3, 0, 5, 4, 2, 6, 7])
>>> canonicalize(g, range(6), 0, t0, t1)
0
```

same as above, but with $B_{a b}$ anticommuting
$T_{c}=-A^{d 0 d 1} * B_{d 0}{ }^{d 2} * B_{d 1 d 2}$
can $=[0,2,1,4,3,5,7,6]$

```
>>> t1 = (base2a, gens2a, 2, 1)
>>> canonicalize(g, range(6), 0, t0, t1)
[0, 2, 1, 4, 3, 5, 7, 6]
```

two types of indices $[a, b, c, d, e, f]$ and $[m, n]$, in this order, both with commuting metric $f^{a b c}$ antisymmetric, commuting
$A_{m a}$ no symmetry, commuting
$T=f^{c}{ }_{d a} * f^{f}{ }_{e b} * A_{m}{ }^{d} * A^{m b} * A_{n}{ }^{a} * A^{n e}$

$$
\begin{aligned}
& \text { ord }=[c, f, a,-a, b,-b, d,-d, e,-e, m,-m, n,-n] \\
& g=[0,7,3,1,9,5,11,6,10,4,13,2,12,8,14,15]
\end{aligned}
$$

$$
\text { The canonical tensor is } T_{c}=-f^{c a b} * f^{f d e} * A^{m}{ }_{a} * A_{m d} * A^{n}{ }_{b} * A_{n e}
$$

$$
\operatorname{can}=[0,2,4,1,6,8,10,3,11,7,12,5,13,9,15,14]
$$

```
>>> base_f, gens_f = get_symmetric_group_sgs(3, 1)
>>> base\overline{1}, gens1-}= get_symmmetric_group_s\overline{gs(1)
>>> base_a, gens_a = bsgs_direct_product(basel, gens1, base1, gens1)
>>> t0 =- (base_f, gens_f,- 2, 0)
>> tl = (base_a, gens_a, 4, 0)
>>> dummies = [range(2, 10), range(10, 14)]
>>> g = Permutation([0, 7, 3, 1, 9, 5, 11, 6, 10, 4, 13, 2, 12, 8, 14, 15])
>>> canonicalize(g, dummies, [0, 0], t0, t1)
[0, 2, 4, 1, 6, 8, 10, 3, 11, 7, 12, 5, 13, 9, 15, 14]
```

diofant.combinatorics.tensor_can.double_coset_can_rep(dummies, sym, b_S, sgens, S_transversals, g)
Butler-Portugal algorithm for tensor canonicalization with dummy indices
dummies list of lists of dummy indices, one list for each type of index; the dummy indices are put in order contravariant, covariant [d0, -d0, d1, -d1, ...].
sym list of the symmetries of the index metric for each type.

possible symmetries of the metrics

- 0 symmetric
- 1 antisymmetric
- None no symmetry
b_S base of a minimal slot symmetry BSGS.
sgens generators of the slot symmetry BSGS.
S_transversals transversals for the slot BSGS.
g permutation representing the tensor.
Return 0 if the tensor is zero, else return the array form of the permutation representing the canonical form of the tensor.
A tensor with dummy indices can be represented in a number of equivalent ways which typically grows exponentially with the number of indices. To be able to establish if two tensors with many indices are equal becomes computationally very slow in absence of an efficient algorithm.
The Butler-Portugal algorithm [3] is an efficient algorithm to put tensors in canonical form, solving the above problem.
Portugal observed that a tensor can be represented by a permutation, and that the class of tensors equivalent to it under slot and dummy symmetries is equivalent to the double coset $D * g * S$ (Note: in this documentation we use the conventions for multiplication of permutations p , q with $(\mathrm{p} * \mathrm{q})(\mathrm{i})=\mathrm{p}[\mathrm{q}[\mathrm{i}]$] which is opposite to the one used in the Permutation class)
Using the algorithm by Butler to find a representative of the double coset one can find a canonical form for the tensor.

To see this correspondence, let g be a permutation in array form; a tensor with indices ind (the indices including both the contravariant and the covariant ones) can be written as
$t=T($ ind $[g[0], \ldots$, ind $[g[n-1]])$,
where $n=l e n(i n d)$; g has size $n+2$, the last two indices for the sign of the tensor (trick introduced in [4]).

A slot symmetry transformation s is a permutation acting on the slots $t->T(i n d[(g *$ s) $[0]], \ldots$, ind $[(g * s)[n-1]])$

A dummy symmetry transformation acts on ind $t->T(\operatorname{ind}[(d * g)[0]], \ldots$, ind $[(d * g)[n-1]])$
Being interested only in the transformations of the tensor under these symmetries, one can represent the tensor by g, which transforms as
$g->d * g * s$, so it belongs to the coset $D * g * S$.
Let us explain the conventions by an example.
Given a tensor $T^{d 3 d 2 d 1}{ }_{d 1 d 2 d 3}$ with the slot symmetries $T^{a 0 a 1 a 2 a 3 a 4 a 5}=-T^{a 2 a 1 a 0 a 3 a 4 a 5}$
$T^{a 0 a 1 a 2 a 3 a 4 a 5}=-T^{a 4 a 1 a 2 a 3 a 0 a 5}$
and symmetric metric, find the tensor equivalent to it which is the lowest under the ordering of indices: lexicographic ordering $d 1, d 2, d 3$ then and contravariant index before covariant index; that is the canonical form of the tensor.
The canonical form is $-T^{d 1 d 2 d 3}{ }_{d 1 d 2 d 3}$ obtained using $T^{a 0 a 1 a 2 a 3 a 4 a 5}=-T^{a 2 a 1 a 0 a 3 a 4 a 5}$.
To convert this problem in the input for this function, use the following labelling of the index names (- for covariant for short) $d 1,-d 1, d 2,-d 2, d 3,-d 3$
$T^{d 3 d 2 d 1}{ }_{d 1 d 2 d 3}$ corresponds to $g=[4,2,0,1,3,5,6,7]$ where the last two indices are for the sign sgens $=[\operatorname{Permutation}(0,2)(6,7), \operatorname{Permutation}(0,4)(6,7)]$
sgens[0] is the slot symmetry $-(0,2) T^{a 0 a 1 a 2 a 3 a 4 a 5}=-T^{a 2 a 1 a 0 a 3 a 4 a 5}$
sgens[1] is the slot symmetry $-(0,4) T^{a 0 a 1 a 2 a 3 a 4 a 5}=-T^{a 4 a 1 a 2 a 3 a 0 a 5}$
The dummy symmetry group D is generated by the strong base generators $[(0,1),(2,3),(4,5),(0,1)(2,3),(2,3)(4,5)]$
The dummy symmetry acts from the left $d=[1,0,2,3,4,5,6,7]$ exchange $d 1->-d 1$ $T^{d 3 d 2 d 1}{ }_{d 1 d 2 d 3}==T^{d 3 d 2}{ }_{d 1}{ }^{d 1}{ }_{d 2 d 3}$
$g=[4,2,0,1,3,5,6,7]->[4,2,1,0,3,5,6,7]={ }_{a} f_{r} m u l(d, g)$ which differs from ${ }_{a} f_{r} m u l(g, d)$.
The slot symmetry acts from the right $s=[2,1,0,3,4,5,7,6]$ exchanges slots 0 and 2 and changes sign $T^{d 3 d 2 d 1}{ }_{d 1 d 2 d 3}==-T^{d 1 d 2 d 3}{ }_{d 1 d 2 d 3}$
$g=[4,2,0,1,3,5,6,7]->[0,2,4,1,3,5,7,6]={ }_{a} f_{r} \operatorname{mul}(g, s)$
Example in which the tensor is zero, same slot symmetries as above: $T^{d 3}{ }_{d 1, d 2}{ }^{d 1}{ }_{d 3}{ }^{d 2}$
$=-T^{d 3}{ }_{d 1, d 3}{ }^{d 1}{ }_{d 2}{ }^{d 2}$ under slot symmetry $-(2,4)$;
$=T_{d 3 d 1}{ }^{d 3 d 1}{ }_{d 2}{ }^{d 2}$ under slot symmetry - $(0,2)$;
$=T^{d 3}{ }_{d 1 d 3}{ }^{d 1}{ }_{d 2}{ }^{d 2}$ symmetric metric;
$=0$ since two of these lines have tensors differ only for the sign.
The double coset $\mathrm{D}^{*} \mathrm{~g}^{*}$ S consists of permutations $h=d * g * s$ corresponding to equivalent tensors; if there are two h which are the same apart from the sign, return zero; otherwise
choose as representative the tensor with indices ordered lexicographically according to $[d 1,-d 1, d 2,-d 2, d 3,-d 3]$ that is rep $=\min (D * g * S)=\min ([d * g *$ sfordinDforsin $S])$
The indices are fixed one by one; first choose the lowest index for slot 0 , then the lowest remaining index for slot 1, etc. Doing this one obtains a chain of stabilizers
$S->S_{b 0}->S_{b 0, b 1}->\ldots$ and $D->D_{p 0}->D_{p 0, p 1}->\ldots$
where $[b 0, b 1, \ldots]=\operatorname{range}(b)$ is a base of the symmetric group; the strong base b_{S} of S is an ordered sublist of it; therefore it is sufficient to compute once the strong base generators of S using the Schreier-Sims algorithm; the stabilizers of the strong base generators are the strong base generators of the stabilizer subgroup.
dbase $=[p 0, p 1, \ldots]$ is not in general in lexicographic order, so that one must recompute the strong base generators each time; however this is trivial, there is no need to use the Schreier-Sims algorithm for D.
The algorithm keeps a TAB of elements $\left(s_{i}, d_{i}, h_{i}\right)$ where $h_{i}=d_{i} * g * s_{i}$ satisfying $h_{i}[j]=p_{j}$ for $0<=j<i$ starting from $s_{0}=i d, d_{0}=i d, h_{0}=g$.
The equations $h_{0}[0]=p_{0}, h_{1}[1]=p_{1}, \ldots$ are solved in this order, choosing each time the lowest possible value of $\mathrm{p}_{-} \mathrm{i}$
For $j<i d_{i} * g * s_{i} * S_{b_{0}, \ldots, b_{i-1}} * b_{j}=D_{p_{0}, \ldots, p_{i-1}} * p_{j}$ so that for dx in $D_{p_{0}, \ldots, p_{i-1}}$ and sx in $S_{\text {base }[0], \ldots, \text { base }[i-1]}$ one has $d x * d_{i} * g * s_{i} * s x * b_{j}=p_{j}$
Search for dx, sx such that this equation holds for $j=i$; it can be written as $s_{i} * s x * b_{j}=$ $J, d x * d_{i} * g * J=p_{j} s x * b_{j}=s_{i} * *-1 * J ; s x=\operatorname{trace}\left(s_{i} * *-1, S_{b_{0}, \ldots, b_{i-1}}\right) d x * *-1 * p_{j}=d_{i} * g * J ; d x=$ $\operatorname{trace}\left(d_{i} * g * J, D_{p_{0}, \ldots, p_{i-1}}\right)$
$s_{i+1}=s_{i} * \operatorname{trace}\left(s_{i} * *-1 * J, S_{b_{0}, \ldots, b_{i-1}}\right) d_{i+1}=\operatorname{trace}\left(d_{i} * g * J, D_{p_{0}, \ldots, p_{i-1}}\right) * *-1 * d_{i} h_{i+1} * b_{i}=$ $d_{i+1} * g * s_{i+1} * b_{i}=p_{i}$
$h_{n} * b_{j}=p_{j}$ for all \mathbf{j}, so that h_{n} is the solution.
Add the found (s, d, h) to TAB1.
At the end of the iteration sort TAB1 with respect to the h; if there are two consecutive h in TAB1 which differ only for the sign, the tensor is zero, so return 0 ; if there are two consecutive h which are equal, keep only one.
Then stabilize the slot generators under i and the dummy generators under p_{i}.
Assign $T A B=T A B 1$ at the end of the iteration step.
At the end $T A B$ contains a unique (s, d, h), since all the slots of the tensor h have been fixed to have the minimum value according to the symmetries. The algorithm returns h.
It is important that the slot BSGS has lexicographic minimal base, otherwise there is an i which does not belong to the slot base for which p_{i} is fixed by the dummy symmetry only, while i is not invariant from the slot stabilizer, so p_{i} is not in general the minimal value.
This algorithm differs slightly from the original algorithm [3]: the canonical form is minimal lexicographically, and the BSGS has minimal base under lexicographic order. Equal tensors h are eliminated from TAB.

Examples

```
>>> gens = [Permutation(x) for x in [[2, 1, 0, 3, 4, 5, 7, 6],
... [4, 1, 2, 3, 0, 5, 7, 6]]]
>>> base = [0, 2]
>>> g = Permutation([4, 2, 0, 1, 3, 5, 6, 7])
>>> transversals = get_transversals(base, gens)
>>> double_coset_can_rep([list(range(6))], [0], base, gens, transversals, g)
[0, 1, 2, 3, 4, 5, 7, 6]
```

```
>>> g = Permutation([4, 1, 3, 0, 5, 2, 6, 7])
>>> double_coset_can_rep([list(range(6))], [0], base, gens, transversals, g)
0
```

diofant.combinatorics.tensor_can.get_symmetric_group_sgs(n, antisym=False)
Return base, gens of the minimal BSGS for (anti)symmetric tensor
n rank of the tensor
antisym = False symmetric tensor antisym = True antisymmetric tensor

Examples

```
>>> Permutation.print_cyclic = True
>>> get symmetric group sgs(3)
([0, 1], [Permutation(4)(0, 1), Permutation(4)(1, 2)])
```

diofant.combinatorics.tensor_can.bsgs_direct_product(base1, gens1, base2, gens2, signed=True)
Direct product of two BSGS.
base1 base of the first BSGS.
gens1 strong generating sequence of the first BSGS.
base2, gens2 similarly for the second BSGS.
signed flag for signed permutations.

Examples

```
>>> Permutation.print_cyclic = True
>>> basel, gens1 = ge\overline{t}symmetric_group_sgs(1)
>>> base2, gens2 = get_symmetric_group_sgs(2)
>>> bsgs_direct_product(base1, gens1, base2, gens2)
([1], [P\overline{ermutation(4)(1, 2)])}
```


4.4 Number Theory

Generating and counting primes.
class diofant.ntheory.generate.Sieve
An infinite list of prime numbers, implemented as a dynamically growing sieve of Eratosthenes. When a lookup is requested involving an odd number that has not been sieved, the sieve is automatically extended up to that number.

```
>> from array import array # this line and next for doctest only
>> sieve._list = array('l', [2, 3, 5, 7, 11, 13])
```

```
>>> 25 in sieve
False
>>> sieve._list
array('l', [2, 3, 5, 7, 11, 13, 17, 19, 23])
```

extend (n)

Grow the sieve to cover all primes <= n (a real number).

Examples

```
>>> from array import array # this line and next for doctest only
>>> sieve._list = array('l', [2, 3, 5, 7, 11, 13])
```

```
>>> sieve.extend(30)
>>> sieve[10] == 29
True
```

extend_to_no(i)

Extend to include the ith prime number.
i must be an integer.
The list is extended by 50% if it is too short, so it is likely that it will be longer than requested.

Examples

```
>>> from array import array # this line and next for doctest only
>>> sieve._list = array('l', [2, 3, 5, 7, 11, 13])
```

```
>>> sieve.extend_to_no(9)
>>> sieve._list
array('l', [2, 3, 5, 7, 11, 13, 17, 19, 23])
```

primerange (a, b)

Generate all prime numbers in the range [a, b).

Examples

```
>>> print(list(sieve.primerange(7, 18)))
```

[7, 11, 13, 17]
search (n)
Return the indices i, j of the primes that bound n .
If n is prime then $\mathrm{i}==\mathrm{j}$.
Although n can be an expression, if ceiling cannot convert it to an integer then an n error will be raised.

Examples

```
>>> sieve.search(25)
(9, 10)
>>> sieve.search(23)
(9, 9)
```

diofant.ntheory.generate.cycle_length (f, x0, nmax=None, values=False)
For a given iterated sequence, return a generator that gives the length of the iterated cycle (lambda) and the length of terms before the cycle begins (mu); if values is True then the terms of the sequence will be returned instead. The sequence is started with value x 0 .

Note: more than the first lambda + mu terms may be returned and this is the cost of cycle detection with Brent's method; there are, however, generally less terms calculated than would have been calculated if the proper ending point were determined, e.g. by using Floyd's method.
This will yield successive values of $\mathrm{i}<-$ func(i):

```
>>> def iter(func, i):
... while 1:
... ii = func(i)
.." yield ii
... i = ii
```

. . .

A function is defined:

```
>>> def func(i):
... return (i**2 + 1) % 51
```

and given a seed of 4 and the mu and lambda terms calculated:

```
>>> next(cycle_length(func, 4))
(6, 2)
```

We can see what is meant by looking at the output:

```
>>> n = cycle_length(func, 4, values=True)
>>> list(n)
[17, 35, 2, 5, 26, 14, 44, 50, 2, 5, 26, 14]
```

There are 6 repeating values after the first 2 .
If a sequence is suspected of being longer than you might wish, nmax can be used to exit early (and mu will be returned as None):

```
>>> next(cycle_length(func, 4, nmax=4))
(4, None)
>>> list(cycle_length(func, 4, nmax=4, values=True))
[17, 35, 2, 5]
```


References

- https://en.wikipedia.org/wiki/Cycle_detection.
diofant. ntheory.generate. nextprime(n, ith=1)
Return the ith prime greater than n .
i must be an integer.

Notes

Potential primes are located at $6^{*} \mathrm{j}+/-1$. This property is used during searching.

```
>>> [(i, nextprime(i)) for i in range(10, 15)]
[(10, 11), (11, 13), (12, 13), (13, 17), (14, 17)]
>>> nextprime(2, ith=2) # the 2nd prime after 2
5
```


See also:

prevprime (page 238) Return the largest prime smaller than n primerange (page 239) Generate all primes in a given range
diofant.ntheory.generate.prevprime(n)
Return the largest prime smaller than n.

Notes

Potential primes are located at $6^{*}+/-1$. This property is used during searching.

```
>> [(i, prevprime(i)) for i in range(10, 15)]
[(10, 7), (11, 7), (12, 11), (13, 11), (14, 13)]
```


See also:

nextprime (page 238) Return the ith prime greater than n
primerange (page 239) Generates all primes in a given range
diofant. ntheory.generate.prime (nth)
Return the nth prime, with the primes indexed as prime $(1)=2$, prime $(2)=3$, etc.... The nth prime is approximately $n * \log (\mathrm{n})$ and can never be larger than $2^{* *}$ n.

References

- https://primes.utm.edu/glossary/xpage/BertrandsPostulate.html

Examples

```
>>> prime(10)
29
>>> prime(1)
2
```


See also:

diofant.ntheory.primetest.isprime (page 258) Test if n is prime
primerange (page 239) Generate all primes in a given range
primepi (page 239) Return the number of primes less than or equal to n
diofant.ntheory.generate.primepi(n)
Return the value of the prime counting function $\mathrm{pi}(\mathrm{n})=$ the number of prime numbers less than or equal to n.

Examples

```
>>> primepi(25)
```

9

See also:

diofant.ntheory.primetest.isprime (page 258) Test if n is prime
primerange (page 239) Generate all primes in a given range
prime (page 238) Return the nth prime
diofant.ntheory.generate.primerange (a, b)
Generate a list of all prime numbers in the range $[a, b)$.
If the range exists in the default sieve, the values will be returned from there; otherwise values will be returned but will not modify the sieve.

Notes

Some famous conjectures about the occurrence of primes in a given range are:

- Twin primes: though often not, the following will give 2 primes an infinite number of times: primerange ($6 * \mathrm{n}-1,6 * \mathrm{n}+2$)
- Legendre's: the following always yields at least one prime primerange($\mathrm{n}^{* *} 2$, $\left.(\mathrm{n}+1)^{* *} 2+1\right)$
- Bertrand's (proven): there is always a prime in the range primerange(n, $2 * n$)

- Brocard's: there are at least four primes in the range

primerange(prime(n)**2, prime(n+1)**2)
The average gap between primes is $\log (\mathrm{n})$; the gap between primes can be arbitrarily large since sequences of composite numbers are arbitrarily large, e.g. the numbers in the sequence $n!+2, n!+3 \ldots n!+n$ are all composite.

References

- https://en.wikipedia.org/wiki/Prime_number
- https://primes.utm.edu/notes/gaps.html

Examples

```
>>> print(list(primerange(1, 30)))
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
```

The Sieve method, primerange, is generally faster but it will occupy more memory as the sieve stores values. The default instance of Sieve, named sieve, can be used:

```
>>> list(sieve.primerange(1, 30))
```

$[2,3,5,7,11,13,17,19,23,29]$

See also:

nextprime (page 238) Return the ith prime greater than n
prevprime (page 238) Return the largest prime smaller than n
randprime (page 241) Returns a random prime in a given range
primorial (page 240) Returns the product of primes based on condition
Sieve.primerange (page 236) return range from already computed primes or extend the sieve to contain the requested range.
diofant.ntheory.generate.primorial($n, n t h=T r u e)$
Returns the product of the first n primes (default) or the primes less than or equal to n (when nth=False).

```
>>> primorial(4) # the first 4 primes are 2, 3, 5, 7
210
>>> primorial(4, nth=False) # primes <= 4 are 2 and 3
6
>>> primorial(1)
2
>>> primorial(1, nth=False)
1
>>> primorial(sqrt(101), nth=False)
210
```

One can argue that the primes are infinite since if you take a set of primes and multiply them together (e.g. the primorial) and then add or subtract 1, the result cannot be divided by any of the original factors, hence either 1 or more new primes must divide this product of primes.
In this case, the number itself is a new prime:

```
>>> factorint(primorial(4) + 1)
{211: 1}
```

In this case two new primes are the factors:

```
>>> factorint(primorial(4) - 1)
{11: 1, 19: 1}
```

Here, some primes smaller and larger than the primes multiplied together are obtained:

```
>>> p = list(primerange(10, 20))
>>> sorted(set(primefactors(Mul(*p) + 1)).difference(set(p)))
[2, 5, 31, 149]
```


See also:

primerange (page 239) Generate all primes in a given range
diofant.ntheory.generate. randprime (a, b)
Return a random prime number in the range [a, b).
Bertrand's postulate assures that randprime($\mathrm{a}, 2^{*} \mathrm{a}$) will always succeed for $\mathrm{a}>1$.

References

- https://en.wikipedia.org/wiki/Bertrand's_postulate

Examples

```
>>> randprime(1, 30)
13
>>> isprime(randprime(1, 30))
True
```


See also:

primerange (page 239) Generate all primes in a given range
Integer factorization
diofant.ntheory.factor_.antidivisor_count (n)
Return the number of antidivisors of n.

References

- formula from https://oeis.org/A066272

Examples

```
>>> antidivisor_count(13)
4
>>> antidivisor_count(27)
5
```


See also:

factorint (page 245), divisors (page 244), antidivisors (page 242), divisor_count (page 243), totient (page 253)
diofant.ntheory.factor_.antidivisors(n, generator=False)
Return all antidivisors of n sorted from 1..n by default.
Antidivisors of n are numbers that do not divide n by the largest possible margin. If generator is True an unordered generator is returned.

References

- definition is described in http://oeis.org/A066272/a066272a.html

Examples

```
>>> antidivisors(24)
[7, 16]
```

>>> sorted(antidivisors(128, generator=True))
[3, 5, 15, 17, 51, 85]

See also:

primefactors (page 251), factorint (page 245), divisors (page 244), divisor_count (page 243), antidivisor_count (page 241)
diofant.ntheory.factor_.core($n, t=2$)
Calculate core $(\mathrm{n}, \mathrm{t})=\overline{\operatorname{corer}_{t}}(\mathrm{n})$ of a positive integer n .
core_2(n) is equal to the squarefree part of n
If n's prime factorization is:

$$
n=\prod_{i=1}^{\omega} p_{i}^{m_{i}}
$$

then

$$
\operatorname{core}_{t}(n)=\prod_{i=1}^{\omega} p_{i}^{m_{i}} \bmod t
$$

Parameters \mathbf{t} (core (n, t) calculates the t-th power free part of n) - core $(\mathrm{n}, 2)$ is the squarefree part of $n \operatorname{core}(n, 3)$ is the cubefree part of n Default for t is 2 .

References

- https://en.wikipedia.org/wiki/Square-free_integer\#Squarefree_core

Examples

```
>>> from diofant.ntheory.factor_ import core
>>> core(24, 2)
6
>>> core(9424, 3)
1178
>>> core(379238)
379238
>>> core(15**11, 10)
15
```


See also:

factorint (page 245), diofant.solvers.diophantine.square_factor (page 770)
diofant.ntheory.factor_divisor_count(n, modulus=1)
Return the number of divisors of n.
If modulus is not 1 then only those that are divisible by modulus are counted.

References

- https://web.archive.org/web/20130629014824/http://www.mayer.dial.pipex.com: 80/maths/formulae.htm

Examples

```
>>> divisor_count(6)
```

4

See also:

factorint (page 245), divisors (page 244), totient (page 253)
class diofant.ntheory.factor_. divisor_sigma($n, k=1$)
Calculate the divisor function $\sigma_{k}(n)$ for positive integer n.
divisor_sigma(n, k) is equal to sum ($x^{* *}$ k for x in divisors(n))
If n 's prime factorization is:

$$
n=\prod_{i=1}^{\omega} p_{i}^{m_{i}}
$$

then

$$
\sigma_{k}(n)=\prod_{i=1}^{\omega}\left(1+p_{i}^{k}+p_{i}^{2 k}+\cdots+p_{i}^{m_{i} k}\right) .
$$

Parameters \mathbf{k} (power of divisors in the sum) - for $\mathrm{k}=0$, 1 : divisor_sigma(n , 0) is equal to divisor_count(n) divisor_sigma($n, 1$) is equal to sum(divisors(n))
Default for k is 1 .

References

- https://en.wikipedia.org/wiki/Divisor_function

Examples

```
>>> divisor_sigma(18, 0)
6
>>> divisor_sigma(39, 1)
5%
>>> divisor_sigma(12, 2)
210
>>> divisor_sigma(37)
38
```


See also:

divisor_count (page 243), totient (page 253), divisors (page 244), factorint (page 245)
diofant.ntheory.factor_divisors(n, generator=False)
Return all divisors of n.
Divisors are sorted from 1..n by default. If generator is True an unordered generator is returned.
The number of divisors of n can be quite large if there are many prime factors (counting repeated factors). If only the number of factors is desired use divisor_count(n).

Examples

```
>>> divisors(24)
[1, 2, 3, 4, 6, 8, 12, 24]
>>> divisor_count(24)
8
>>> list(divisors(120, generator=True))
\([1,2,4,8,3,6,12,24,5,10,20,40,15,30,60,120]\)
```


See also:

primefactors (page 251), factorint (page 245), divisor_count (page 243)

References

- https://stackoverflow.com/questions/1010381/python-factorization
diofant.ntheory.factor_factorint(n, limit=None, use_trial=True, use_rho=True, use_pm1=True, ve'rbose=False, visual=None)
Given a positive integer n, factorint (n) returns a dict containing the prime factors of n as keys and their respective multiplicities as values. For example:

```
>>> factorint(2000) # 2000 = (2**4) * (5**3)
{2: 4, 5: 3}
>>> factorint(65537) # This number is prime
{65537: 1}
```

For input less than 2, factorint behaves as follows:

- factorint(1) returns the empty factorization, \{\}
- factorint(0) returns $\{0: 1\}$
- factorint (-n) adds $-1: 1$ to the factors and then factors n

Partial Factorization:

If limit (>3) is specified, the search is stopped after performing trial division up to (and including) the limit (or taking a corresponding number of rho/p-1 steps). This is useful if one has a large number and only is interested in finding small factors (if any). Note that setting a limit does not prevent larger factors from being found early; it simply means that the largest factor may be composite. Since checking for perfect power is relatively cheap, it is done regardless of the limit setting.
This number, for example, has two small factors and a huge semi-prime factor that cannot be reduced easily:

```
>>> a = 1407633717262338957430697921446883
>>> f = factorint(a, limit=10000)
>>> f
{7: 1, 991: 1, 202916782076162456022877024859: 1}
>>> isprime(max(f))
False
```

This number has a small factor and a residual perfect power whose base is greater than the limit:

```
>>> factorint(3*101**7, limit=5)
{3: 1, 101: 7}
```

Visual Factorization:
If visual is set to True, then it will return a visual factorization of the integer. For example:

```
>>> pprint(factorint(4200, visual=True), use_unicode=False)
3 1 2 1
2*3*5*7
```

Note that this is achieved by using the evaluate=False flag in Mul and Pow. If you do other manipulations with an expression where evaluate=False, it may evaluate. Therefore, you should use the visual option only for visualization, and use the normal dictionary returned by visual=False if you want to perform operations on the factors.
You can easily switch between the two forms by sending them back to factorint:

```
>>> regular = factorint(1764)
>>> regular
{2: 2, 3: 2, 7: 2}
>>> pprint(factorint(regular), use_unicode=False)
2 2 2
2 *3 *7
```

```
>>> visual = factorint(1764, visual=True)
>>> pprint(visual, use_unicode=False)
2 2 2
2 *3 *7
>>> print(factorint(visual))
{2: 2, 3: 2, 7: 2}
```

If you want to send a number to be factored in a partially factored form you can do so with a dictionary or unevaluated expression:

```
>> factorint(factorint({4: 2, 12: 3})) # twice to toggle to dict form
{2: 10, 3: 3}
>>> factorint(Mul(4, 12, evaluate=False))
{2: 4, 3: 1}
```

The table of the output logic is:

Input	True	False	other
dict	mul	dict	mul
n	mul	dict	dict
mul	mul	dict	dict

Notes

The function switches between multiple algorithms. Trial division quickly finds small factors (of the order 1-5 digits), and finds all large factors if given enough time. The Pollard rho and p-1 algorithms are used to find large factors ahead of time; they will often find factors of the order of 10 digits within a few seconds:

```
>>> factors = factorint(12345678910111213141516)
>>> for base, exp in sorted(factors.items()):
... print('%s %s' % (base, exp))
2
2507191691 1
1231026625769 1
```

Any of these methods can optionally be disabled with the following boolean parameters:

- use_trial: Toggle use of trial division
- use_rho: Toggle use of Pollard's rho method
- use_pm1: Toggle use of Pollard's p-1 method
factorint also periodically checks if the remaining part is a prime number or a perfect power, and in those cases stops.
If verbose is set to True, detailed progress is printed.

See also:

smoothness (page 252), smoothness_p (page 252), divisors (page 244)
diofant.ntheory.factor_.factorrat(rat, limit=None, use_trial=True, use_rho=True, use_pm1=True, verbose=False, visual=None)
Given a Rational r, factorrat (r) returns a dict containing the prime factors of r as keys and their respective multiplicities as values. For example:

```
>>> factorrat(Rational(8, 9)) # = (2**3) * (3**-2)
{2: 3, 3: -2}
>>> factorrat(Rational(-1, 987)) # = -1 * (3**-1) * (7**-1) * (47**-1)
{-1: 1, 3: -1, 7: -1, 47: -1}
```

Please see the docstring for factorint for detailed explanations and examples of the following keywords:

- limit: Integer limit up to which trial division is done
- use_trial: Toggle use of trial division
- use_rho: Toggle use of Pollard's rho method
- use_pm1: Toggle use of Pollard's p-1 method
- verbose: Toggle detailed printing of progress
- visual: Toggle product form of output
diofant.ntheory.factor_.multiplicity (p, n)
Find the greatest integer m such that $\mathrm{p}^{* *} \mathrm{~m}$ divides n .

Examples

```
>>> [multiplicity(5, n) for n in [8, 5, 25, 125, 250]]
[0, 1, 2, 3, 3]
>>> multiplicity(3, Rational(1, 9))
-2
```

diofant.ntheory.factor_. perfect_power (n, candidates $=$ None, big=True, factor=True) Return (b, e) such that $n==b^{* *} e$ if n is a perfect power; otherwise return False.
By default, the base is recursively decomposed and the exponents collected so the largest possible e is sought. If $\mathrm{big}=\mathrm{False}$ then the smallest possible e (thus prime) will be chosen.
If candidates for exponents are given, they are assumed to be sorted and the first one that is larger than the computed maximum will signal failure for the routine.

If factor=True then simultaneous factorization of n is attempted since finding a factor indicates the only possible root for n. This is True by default since only a few small factors will be tested in the course of searching for the perfect power.

Examples

```
>>> perfect_power(16)
(2, 4)
>>> perfect_power(16, big=False)
(4, 2)
```

diofant. ntheory.factor_.pollard_pm1($n, B=10, a=2$, retries $=0$, seed=1234)
Use Pollard's p-1 method to try to extract a nontrivial factor of n. Either a divisor (perhaps composite) or None is returned.

The value of a is the base that is used in the test $\operatorname{gcd}\left(a^{* *} M-1, n\right)$. The default is 2 . If retries > 0 then if no factor is found after the first attempt, a new a will be generated randomly (using the seed) and the process repeated.
Note: the value of M is $\operatorname{lcm}(1 . . \mathrm{B})=$ reduce(lcm, range($2, \mathrm{~B}+1$)).
A search is made for factors next to even numbers having a power smoothness less than B. Choosing a larger B increases the likelihood of finding a larger factor but takes longer. Whether a factor of n is found or not depends on a and the power smoothness of the even mumber just less than the factor p (hence the name $p-1$).
Although some discussion of what constitutes a good a some descriptions are hard to interpret. At the modular.math site referenced below it is stated that if $\operatorname{gcd}\left(a^{* *} \mathrm{M}-1, \mathrm{n}\right)$ $=\mathrm{N}$ then $\mathrm{a}^{* *} \mathrm{M} \% \mathrm{q}^{* *} \mathrm{r}$ is 1 for every prime power divisor of N . But consider the following:

```
>>> n = 257*1009
>>> smoothness_p(n)
(-1, [(257, (1, 2, 256)), (1009, (1, 7, 16))])
```

So we should (and can) find a root with $\mathrm{B}=16$:

```
>>> pollard_pm1(n, B=16, a=3)
1009
```

If we attempt to increase B to 256 we find that it doesn't work:

```
>>> pollard_pm1(n, B=256)
>>>
```

But if the value of a is changed we find that only multiples of 257 work, e.g.:

```
>>> pollard_pm1(n, B=256, a=257)
1009
```

Checking different a values shows that all the ones that didn't work had a gcd value not equal to n but equal to one of the factors:

```
>>> M = 1
>>> for i in range(2, 256):
#. M = math.lcm(M, i)
...
>>> {math.gcd(pow(a, M, n) - 1, n) for a in range(2, 256) if
... math.gcd(pow(a, M, n) - 1, n) != n}
{1009}
```

But does $\mathrm{aM} \% \mathrm{~d}$ for every divisor of n give 1 ?

```
>>> am = pow(255, M, n)
>> [(d, am % Pow(*d.args)) for d in factorint(n, visual=True).args]
[(257**1, 1), (1009**1, 1)]
```

No, only one of them. So perhaps the principle is that a root will be found for a given value of B provided that:

1) the power smoothness of the p-1 value next to the root does not exceed B
2) $a^{* *} \mathrm{M} \% \mathrm{p}$!= 1 for any of the divisors of n.

By trying more than one a it is possible that one of them will yield a factor.

Examples

With the default smoothness bound, this number can't be cracked:

```
>>> pollard_pm1(21477639576571)
```

Increasing the smoothness bound helps:

```
>>> pollard_pm1(21477639576571, B=2000)
4410317
```

Looking at the smoothness of the factors of this number we find:

```
>>> print(smoothness_p(21477639576571, visual=1))
p**i=4410317**1 has p-1 B=1787, B-pow=1787
p**i=4869863**1 has p-1 B=2434931, B-pow=2434931
```

The B and B-pow are the same for the p-1 factorizations of the divisors because those factorizations had a very large prime factor:

```
>>> factorint(4410317 - 1)
{2: 2, 617: 1, 1787: 1}
>>> factorint(4869863-1)
{2: 1, 2434931: 1}
```

Note that until B reaches the B-pow value of 1787, the number is not cracked;

```
>>> pollard pm1(21477639576571, B=1786)
>>> pollard_pm1(21477639576571, B=1787)
4410317
```

The B value has to do with the factors of the number next to the divisor, not the divisors themselves. A worst case scenario is that the number next to the factor p has a large prime divisisor or is a perfect power. If these conditions apply then the powersmoothness will be about $\mathrm{p} / 2$ or p . The more realistic is that there will be a large prime factor next to p requiring a B value on the order of $p / 2$. Although primes may have been searched for up to this level, the $\mathrm{p} / 2$ is a factor of $\mathrm{p}-1$, something that we don't know. The modular.math reference below states that 15% of numbers in the range of $10{ }^{* *} 15$ to $15^{* *} 15+10^{* *} 4$ are $10^{* *} 6$ power smooth so a B of $10^{* *} 6$ will fail 85% of the time in that range. From $10^{* *} 8$ to $10^{* * 8}+10^{* *} 3$ the percentages are nearly reversed...but in that range the simple trial division is quite fast.

References

- Richard Crandall \& Carl Pomerance (2005), "Prime Numbers: A Computational Perspective", Springer, 2nd edition, 236-238
- https://web.archive.org/web/20150716201437/http://modular.math.washington. edu/edu/2007/spring/ent/ent-html/node81.html
- https://web.archive.org/web/20170830055619/http://www.cs.toronto.edu/~yuvalf/ Factorization.pdf
diofant.ntheory.factor_.pollard_rho($n, s=2, a=1$, retries $=5$, seed=1234, max_steps=None, $F=$ None)
Use Pollard's rho method to try to extract a nontrivial factor of n. The returned factor may be a composite number. If no factor is found, None is returned.
The algorithm generates pseudo-random values of x with a generator function, replacing x with $F(x)$. If F is not supplied then the function $x^{* *} 2+a$ is used. The first value supplied to $F(x)$ is s. Upon failure (if retries is >0) a new a and s will be supplied; the a will be ignored if F was supplied.
The sequence of numbers generated by such functions generally have a a lead-up to some number and then loop around back to that number and begin to repeat the sequence, e.g. 1, 2, 3, 4, 5, 3, 4, 5 - this leader and loop look a bit like the Greek letter rho, and thus the name, 'rho'.

For a given function, very different leader-loop values can be obtained so it is a good idea to allow for retries:

```
>>> n = 16843009
>>> def F(x):
#. return (2048*pow(x, 2, n) + 32767) % n
>>> for s in range(5):
... print('loop length = %4i; leader length = %3i' % next(cycle_length(F, s)))
#
loop length = 2489; leader length = 42
loop length = 78; leader length = 120
loop length = 1482; leader length = 99
loop length = 1482; leader length = 285
loop length = 1482; leader length = 100
```

Here is an explicit example where there is a two element leadup to a sequence of 3 numbers $(11,14,4)$ that then repeat:

```
>>> x = 2
>>> for i in range(9):
#." x = (x**2 + 12) % 17
... print(x)
#"
16
13
11
14
4
11
14
4
11
>>> next(cycle_length(lambda x: (x**2+12) % 17, 2))
(3, 2)
```

```
>>> list(cycle_length(lambda x: (x**2+12) % 17, 2, values=True))
[16, 13, 11, 1\overline{4}, 4]
```

Instead of checking the differences of all generated values for a gcd with n, only the kth and $2 *$ kth numbers are checked, e.g. 1st and 2nd, 2nd and 4th, 3rd and 6th until it has been detected that the loop has been traversed. Loops may be many thousands of steps long before rho finds a factor or reports failure. If max_steps is specified, the iteration is cancelled with a failure after the specified number of steps.

Examples

```
>>> n = 16843009
>>> def F(x):
    return (2048*pow(x, 2, n) + 32767) % n
">>> pollard rho(n, F=F)
257
```

Use the default setting with a bad value of a and no retries:

```
>>> pollard_rho(n, a=n-2, retries=0)
```

If retries is >0 then perhaps the problem will correct itself when new values are generated for a:

```
>>> pollard_rho(n, a=n-2, retries=1)
```

257

References

- Richard Crandall \& Carl Pomerance (2005), "Prime Numbers: A Computational Perspective", Springer, 2nd edition, 229-231
diofant.ntheory.factor_.primefactors (n, limit=None, verbose=False)
Return a sorted list of n's prime factors, ignoring multiplicity and any composite factor that remains if the limit was set too low for complete factorization. Unlike factorint(), primefactors() does not return -1 or 0 .

Examples

```
>>> primefactors(6)
[2, 3]
>>> primefactors(-5)
[5]
```

```
>>> sorted(factorint(123456).items())
[(2, 6), (3, 1), (643, 1)]
>>> primefactors(123456)
[2, 3, 643]
```

```
>>> sorted(factorint(10000000001, limit=200).items())
[(101, 1), (99009901, 1)]
>>> isprime(99009901)
```

```
False
>>> primefactors(10000000001, limit=300)
[101]
```


See also:

divisors (page 244)
diofant.ntheory.factor_. smoothness(n)
Return the B-smooth and B-power smooth values of n.
The smoothness of n is the largest prime factor of n ; the power- smoothness is the largest divisor raised to its multiplicity.

```
>>> smoothness(2**7*3**2)
(3, 128)
>>> smoothness(2**4*13)
(13, 16)
>>> smoothness(2)
(2, 2)
```


See also:

factorint (page 245), smoothness_p (page 252)
diofant.ntheory.factor_.smoothness_p $(n, m=-1$, power $=0$, visual=None)
Return a list of $[m,(p,(M, s m(p+m), p s m(p+m))) \ldots]$ where:

1. $\mathrm{p}^{* *} \mathrm{M}$ is the base- p divisor of n
2. $s m(p+m)$ is the smoothness of $p+m(m=-1$ by default)
3. $\operatorname{psm}(p+m)$ is the power smoothness of $p+m$

The list is sorted according to smoothness (default) or by power smoothness if power=1.
The smoothness of the numbers to the left $(m=-1)$ or right $(m=1)$ of a factor govern the results that are obtained from the $\mathrm{p}+/-1$ type factoring methods.

```
>>> smoothness_p(10431, m=1)
(1, [(3, (2, 2, 4)), (19, (1, 5, 5)), (61, (1, 31, 31))])
>>> smoothness_p(10431)
(-1, [(3, (2, \overline{2}, 2)), (19, (1, 3, 9)), (61, (1, 5, 5))])
>>> smoothness p(10431, power=1)
(-1, [(3, (2, 2, 2)), (61, (1, 5, 5)), (19, (1, 3, 9))])
```

If visual=True then an annotated string will be returned:

```
>>> print(smoothness p(21477639576571, visual=1))
p**i=4410317**1 has p-1 B=1787, B-pow=1787
p**i=4869863**1 has p-1 B=2434931, B-pow=2434931
```

This string can also be generated directly from a factorization dictionary and vice versa:

```
>>> f = factorint(17*g)
>>> f
{3: 2, 17: 1}
>>> smoothness_p(f)
'p**i=3**2 has p-1 B=2, B-pow=2\np**i=17**1 has p-1 B=2, B-pow=16'
>>> smoothness_p(_)
{3: 2, 17: 1}
```

The table of the output logic is:

	Visual		
Input	True	False	other
dict	str	tuple	str
str	str	tuple	dict
tuple	str	tuple	str
n	str	tuple	tuple
mul	str	tuple	tuple

See also:

factorint (page 245), smoothness (page 252)
diofant.ntheory.factor_.square_factor (a)
Returns an integer $c \overline{\text { s.t. }} a=\bar{c}^{2} k, c, k \in Z$. Here k is square free. a can be given as an integer or a dictionary of factors.

Examples

```
>>> square_factor(24)
2
>>> square_factor(-36*3)
6
>>> square_factor(1)
1
>>> square_factor({3: 2, 2: 1, -1: 1})
3
```


See also:

diofant.solvers.diophantine.reconstruct (page 771), diofant.ntheory.factor_. core (page 242)
class diofant.ntheory.factor_.totient(n)
Calculate the Euler totient function phi(n)

```
>>> totient(1)
1
>>> totient(25)
20
```


See also:

divisor_count (page 243)
diofant.ntheory.factor_.trailing(n)
Count the number of trailing zero digits in the binary representation of n, i.e. determine the largest power of 2 that divides n.

Examples

```
>>> trailing(128)
7
>>> trailing(63)
0
```

diofant.ntheory.modular.crt $(M, U$, symmetric $=$ False, check=True)
Chinese Remainder Theorem.
The moduli in M are assumed to be pairwise coprime. The output is then an integer f , such that $f=u_{-} i$ mod $m_{-} i$ for each pair out of U and M. If symmetric is False a positive integer will be returned, else $|\mathrm{f}|$ will be less than or equal to the LCM of the moduli, and thus f may be negative.
If the moduli are not co-prime the correct result will be returned if/when the test of the result is found to be incorrect. This result will be None if there is no solution.
The keyword check can be set to False if it is known that the moduli are coprime.

Examples

```
>>> crt([99, 97, 95], [49, 76, 65])
(639985, 912285)
```

This is the correct result because:

```
>>> [639985 % m for m in [99, 97, 95]]
```

[49, 76, 65]

If the moduli are not co-prime, you may receive an incorrect result if you use check=False:

```
>> crt([12, 6, 17], [3, 4, 2], check=False)
(954, 1224)
>>> [954 % m for m in [12, 6, 17]]
[6, 0, 2]
>>> crt([12, 6, 17], [3, 4, 2]) is None
True
>>> crt([3, 6], [2, 5])
(5, 6)
```


Notes

Rather than checking that all pairs of moduli share no GCD (an O(n**2) test) and rather than factoring all moduli and seeing that there is no factor in common, a check that the result gives the indicated residuals is performed - an $\mathrm{O}(\mathrm{n})$ operation.

See also:

solve_congruence (page 255)
diofant.ntheory.modular.crt1(M)
First part of Chinese Remainder Theorem, for multiple application.

Examples

```
>>> crtl([18, 42, 6])
(4536, [252, 108, 756], [0, 2, 0])
```

diofant.ntheory.modular.crt2 (M, U, p, E, S, symmetric $=$ False $)$
Second part of Chinese Remainder Theorem, for multiple application.

Examples

>>> mm, e, s = crt1([18, 42, 6])
>>> crt2([18, 42, 6], [0, 0, 0], mm, e, s)
(0, 4536)
diofant.ntheory.modular.integer_rational_reconstruction(c, m, domain)
Reconstruct a rational number $\frac{a}{b}$ from

$$
c=\frac{a}{b} \bmod m,
$$

where c and m are integers.
The algorithm is based on the Euclidean Algorithm. In general, m is not a prime number, so it is possible that b is not invertible modulo m. In that case None is returned.

Parameters

- \mathbf{c} (Integer) $-c=\frac{a}{b} \bmod m$
- m (Integer) - modulus, not necessarily prime
- domain (IntegerRing) - a, b, c are elements of domain

Returns frac (Rational) - either $\frac{a}{b}$ in \mathbb{Q} or None

References

- [Wan81]
diofant.ntheory.modular.solve_congruence(*remainder modulus_pairs, **hint)
Compute the integer n that has the residual ai when $\overline{\mathrm{it}}$ is divided by mi where the ai and mi are given as pairs to this function: ($\mathrm{a} 1, \mathrm{~m} 1$), ($\mathrm{a} 2, \mathrm{~m} 2$), ...). If there is no solution, return. Otherwise return n and its modulus.

The mi values need not be co-prime. If it is known that the moduli are not co-prime then the hint check can be set to False (default=True) and the check for a quicker solution via crt() (valid when the moduli are co-prime) will be skipped.

If the hint symmetric is True (default is False), the value of n will be within $1 / 2$ of the modulus, possibly negative.

Examples

What number is $2 \bmod 3,3 \bmod 5$ and $2 \bmod 7$?

```
>>> solve_congruence((2, 3), (3, 5), (2, 7))
(23, 105)
>>> [23 % m for m in [3, 5, 7]]
[2, 3, 2]
```

If you prefer to work with all remainder in one list and all moduli in another, send the arguments like this:

```
>>> solve_congruence(*zip((2, 3, 2), (3, 5, 7)))
(23, 105)
```

The moduli need not be co-prime; in this case there may or may not be a solution:

```
>>> solve_congruence((2, 3), (4, 6)) is None
True
```

```
>>> solve_congruence((2, 3), (5, 6))
```

$(5,6)$

The symmetric flag will make the result be within $1 / 2$ of the modulus:

```
>>> solve_congruence((2, 3), (5, 6), symmetric=True)
(-1, 6)
```


See also:

crt (page 254) high level routine implementing the Chinese Remainder Theorem
diofant.ntheory.modular.symmetric_residue(a, m)
Return the residual mod m such that it is within half of the modulus.

```
>>> symmetric_residue(1, 6)
1
>>> symmetric_residue(4, 6)
-2
```

diofant.ntheory.multinomial.binomial_coefficients(n)
Return a dictionary containing pairs ($k 1, k 2$) : $C_{k n}$ where $C_{k n}$ are binomial coefficients and $n=k 1+k 2$.

Examples

```
>>> binomial_coefficients(9)
{(0, 9): 1, (1, 8): 9, (2, 7): 36,
    (3, 6): 84, (4, 5): 126, (5, 4): 126, (6, 3): 84,
    (7, 2): 36, (8, 1): 9, (9, 0): 1}
```


See also:

binomial_coefficients_list (page 256), multinomial_coefficients (page 257) diofant.ntheory.multinomial.binomial_coefficients_list(n)

Return a list of binomial coefficients as rows of the Pascal's triangle.

Examples

>>> binomial_coefficients_list(9)
$[1,9,36,8 \overline{4}, 126,126, \overline{8} 4,36,9,1]$

See also:

binomial_coefficients (page 256), multinomial_coefficients (page 257)
diofant.ntheory.multinomial.multinomial_coefficients(m, n)
Return a dictionary containing pairs \{(k1,k2,..,km) : C_kn\} where C_kn are multinomial coefficients such that $\mathrm{n}=\mathrm{k} 1+\mathrm{k} 2+. .+\mathrm{km}$.

Examples

```
>>> multinomial_coefficients(2, 5)
{(0, 5): 1, (1, 4): 5,
    (2, 3): 10, (3, 2): 10, (4, 1): 5, (5, 0): 1}
```


Notes

The algorithm is based on the following result:

$$
\binom{n}{k_{1}, \ldots, k_{m}}=\frac{k_{1}+1}{n-k_{1}} \sum_{i=2}^{m}\binom{n}{k_{1}+1, \ldots, k_{i}-1, \ldots}
$$

See also:

binomial_coefficients_list (page 256), binomial_coefficients (page 256)
diofant.ntheory.multinomial.multinomial_coefficients_iterator (m, n, tuple $=<$ class
'tuple'>)

Multinomial coefficient iterator.
This routine has been optimized for m large with respect to n by taking advantage of the fact that when the monomial tuples t are stripped of zeros, their coefficient is the same as that of the monomial tuples from multinomial_coefficients(n, n). Therefore, the latter coefficients are precomputed to save memory and time.

```
>>> m53, m33 = multinomial_coefficients(5, 3), multinomial_coefficients(3, 3)
>> (m53[(0, 0, 0, 1, 2)] == m53[(0, 0, 1, 0, 2)] ==
... m53[(1, 0, 2, 0, 0)] == m33[(0, 1, 2)])
True
```


Examples

```
>>> it = multinomial_coefficients_iterator(20, 3)
>>> next(it)
((3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), 1)
```

diofant.ntheory.partitions_.npartitions(n)
Calculate the partition function $\mathrm{P}(\mathrm{n})$, i.e. the number of ways that n can be written as a sum of positive integers.
$\mathrm{P}(\mathrm{n})$ is computed using the Hardy-Ramanujan-Rademacher formula.
The correctness of this implementation has been tested for $10 * * \mathrm{n}$ up to $\mathrm{n}=8$.

Examples

```
>>> npartitions(25)
1958
```


References

- https://mathworld.wolfram.com/PartitionFunctionP.html

Primality testing
diofant.ntheory.primetest.is_square(n, prep=True)
Return True if $\mathrm{n}==\mathrm{a}$ * a for some integer a , else False.
If n is suspected of not being a square then this is a quick method of confirming that it is not.

References

- https://mersenneforum.org/showpost.php?p=110896

See also:

diofant.core.power.integer_nthroot (page 103)
diofant.ntheory.primetest.isprime(n)
Test if n is a prime number (True) or not (False). For $\mathrm{n}<10^{* *} 16$ the answer is accurate; greater n values have a small probability of actually being pseudoprimes.
Negative primes (e.g. -2) are not considered prime.
The function first looks for trivial factors, and if none is found, performs a safe MillerRabin strong pseudoprime test with bases that are known to prove a number prime. Finally, a general Miller-Rabin test is done with the first k bases which will report a pseudoprime as a prime with an error of about $4^{* *-k . ~ T h e ~ c u r r e n t ~ v a l u e ~ o f ~} \mathrm{k}$ is 46 so the error is about $2 \times 10^{* *}-28$.

Examples

```
>>> isprime(13)
True
>>> isprime(15)
False
```


See also:

diofant.ntheory.generate.primerange (page 239) Generates all primes in a given range
diofant.ntheory.generate.primepi (page 239) Return the number of primes less than or equal to n
diofant.ntheory.generate.prime (page 238) Return the nth prime
diofant.ntheory.primetest.mr(n, bases)
Perform a Miller-Rabin strong pseudoprime test on n using a given list of bases/witnesses.

References

- Richard Crandall \& Carl Pomerance (2005), "Prime Numbers: A Computational Perspective", Springer, 2nd edition, 135-138
- A list of thresholds and the bases they require are here: https://en.wikipedia.org/ wiki/Miller\%E2\%80\%93Rabin_primality_test\#Deterministic_variants

Examples

```
>>> mr(1373651, [2, 3])
False
>>> mr(479001599, [31, 73])
True
```

diofant.ntheory.residue_ntheory.discrete_log(n, a, b, order=None, prime_order=None)
Compute the discrete logarithm of a to the base b modulo n.
This is a recursive function to reduce the discrete logarithm problem in cyclic groups of composite order to the problem in cyclic groups of prime order.

Notes

It employs different algorithms depending on the problem (subgroup order size, prime order or not):

- Trial multiplication
- Baby-step giant-step
- Pohlig-Hellman

References

- https://mathworld.wolfram.com/DiscreteLogarithm.html
- [MVV97]

Examples

```
>>> discrete_log(41, 15, 7)
3
```

diofant.ntheory.residue_ntheory.is_nthpow_residue (a, n, m)
Returns True if $x^{* *}{ }^{n}==a(\bmod m)$ has solutions.

References

- P. Hackman "Elementary Number Theory" (2009), page 76
diofant.ntheory.residue_ntheory.is_primitive_root (a, p)
Returns True if a is a primitive root of p
a is said to be the primitive root of p if $\operatorname{gcd}(a, p)==1$ and $\operatorname{totient}(p)$ is the smallest positive number s.t.:
a**totient (p) cong $1 \bmod (p)$

Examples

```
>>> is_primitive_root(3, 10)
True
>>> is_primitive_root(9, 10)
False
>>> n_order(3, 10) == totient(10)
True
>>> n_order(9, 10) == totient(10)
False
```

diofant.ntheory.residue_ntheory.is_quad_residue (a, p)
Returns True if $(\bmod p)$ is in the set of squares $\bmod p$, i.e a $\% \mathrm{p}$ in $\left\{\mathrm{i}^{* *} 2 \% \mathrm{p}\right.$ for i in range(p) \}. If p is an odd prime, an iterative method is used to make the determination:

```
>>> sorted({i**2 % 7 for i in range(7)})
[0, 1, 2, 4]
>>> [j for j in range(7) if is_quad_residue(j, 7)]
[0, 1, 2, 4]
```


See also:

legendre_symbol (page 261), jacobi_symbol (page 260)
diofant.ntheory. residue_ntheory.jacobi_symbol (m, n)
Returns the Jacobi symbol (m / n).

For any integer m and any positive odd integer n the Jacobi symbol is defined as the product of the Legendre symbols corresponding to the prime factors of n :

$$
\left(\frac{m}{n}\right)=\left(\frac{m}{p^{1}}\right)^{\alpha_{1}}\left(\frac{m}{p^{2}}\right)^{\alpha_{2}} \ldots\left(\frac{m}{p^{k}}\right)^{\alpha_{k}} \text { where } n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{k}^{\alpha_{k}}
$$

Like the Legendre symbol, if the Jacobi symbol $\left(\frac{m}{n}\right)=-1$ then m is a quadratic nonresidue modulo n.

But, unlike the Legendre symbol, if the Jacobi symbol $\left(\frac{m}{n}\right)=1$ then m may or may not be a quadratic residue modulo n.

Parameters

- m (integer)
- n (odd positive integer)

Examples

```
>>> jacobi_symbol(45, 77)
-1
>>> jacobi_symbol(60, 121)
1
```

The relationship between the jacobi_symbol and legendre_symbol can be demonstrated as follows:

```
>>> L = legendre symbol
>>> Integer(45).factors()
{3: 2, 5: 1}
>>> jacobi_symbol(7, 45) == L(7, 3)**2 * L(7, 5)**1
True
```


See also:

is_quad_residue (page 260), legendre_symbol (page 261)
diofant.ntheory.residue_ntheory.legendre_symbol (a, p)
Returns the Legendre symbol (a / p).
For an integer a and an odd prime p, the Legendre symbol is defined as

$$
\left(\frac{a}{p}\right)= \begin{cases}0 & \text { if } p \text { divides } a \\ 1 & \text { if } a \text { is a quadratic residue modulo } p \\ -1 & \text { if } a \text { is a quadratic nonresidue modulo } p\end{cases}
$$

Parameters

- a (integer)
- p (odd prime)

Examples

>>> [legendre_symbol(i, 7) for i in range(7)]
[0, 1, 1, -1, 1, -1, -1]
>> sorted(\{i**2 \% 7 for i in range(7)\})
[0, 1, 2, 4]

See also:

is_quad_residue (page 260), jacobi_symbol (page 260)

References

- https://en.wikipedia.org/wiki/Legendre_symbol
class diofant.ntheory. residue_ntheory.mobius (n)
Möbius function maps natural number to $\{-1,0,1\}$

It is defined as follows:

1) 1 if $n=1$.
2) 0 if n has a squared prime factor.
3) $(-1)^{k}$ if n is a square-free positive integer with k number of prime factors.

It is an important multiplicative function in number theory and combinatorics. It has applications in mathematical series, algebraic number theory and also physics (Fermion operator has very concrete realization with Möbius Function model).

Parameters n (positive integer)

Examples

```
>>> mobius(13*7)
1
>>> mobius(1)
1
>>> mobius(13*7*5)
-1
>>> mobius(13**2)
0
```


References

- https://en.wikipedia.org/wiki/M\�\�bius_function
- Thomas Koshy "Elementary Number Theory with Applications"
diofant.ntheory.residue_ntheory.n_order (a, n)
Returns the order of a modulo n.
The order of a modulo n is the smallest integer k such that $\mathrm{a}^{* *} \mathrm{k}$ leaves a remainder of 1 with n .

Examples

```
>>> n_order(3, 7)
6
>>> n_order(4, 7)
3
```

diofant.ntheory.residue_ntheory.nthroot_mod (a, n, p, all_roots=False)
Find the solutions to $\mathrm{x}^{* *} \mathrm{n}=\mathrm{a} \bmod \mathrm{p}$.
Parameters

- a (integer)
- n(positive integer)
- p (positive integer)
- all_roots (if False returns the smallest root, else the list of roots)

Examples

```
>>> nthroot mod(11, 4, 19)
8
>>> nthroot mod(11, 4, 19, True)
[8, 11]
>>> nthroot_mod(68, 3, 109)
23
```

diofant.ntheory.residue_ntheory.primitive_root (p)
Returns the smallest primitive root or None.

References

- W. Stein "Elementary Number Theory" (2011), page 44
- P. Hackman "Elementary Number Theory" (2009), Chapter C

Parameters \mathbf{p} (positive integer)

Examples

```
>>> primitive_root(19)
```

2
diofant.ntheory.residue_ntheory.quadratic_residues (p)
Returns the list of quadratic residues.

Examples

>>> quadratic_residues(7)
[0, 1, 2, 4]
diofant.ntheory.residue_ntheory.sqrt_mod (a, p, all_roots=False)
Find a root of $x^{* *} 2=a \bmod p$.
Parameters

- a (integer)
- \mathbf{p} (positive integer)
- all_roots (if True the list of roots is returned or None)

Notes

If there is no root it is returned None; else the returned root is less or equal to p // 2 ; in general is not the smallest one. It is returned p // 2 only if it is the only root.

Use all_roots only when it is expected that all the roots fit in memory; otherwise use sqrt_mod_iter.

Examples

```
>>> sqrt_mod(11, 43)
21
>>> sqrt mod(17, 32, True)
[7, 9, 2\overline{3}, 25]
```

diofant.ntheory.residue_ntheory.sqrt_mod_iter(a, p, domain=<class 'int'>)
Iterate over solutions to $x^{* *} 2=a \bmod p$.

Parameters

- a (integer)
- \mathbf{p} (positive integer)
- domain (integer domain, int, ZZ or Integer)

Examples

```
>>> list(sqrt_mod_iter(11, 43))
```

[21, 22]
diofant.ntheory.continued_fraction.continued_fraction_convergents(cf)
Return an iterator over the convergents of a continued fraction.
The parameter should be an iterable returning successive partial quotients of the continued fraction, such as might be returned by continued_fraction_iterator. In computing the convergents, the continued fraction need not be strictly in canonical form (all integers, all but the first positive). Rational and negative elements may be present in the expansion.

Examples

```
>>> list(continued_fraction_convergents([0, 2, 1, 2]))
```

[0, 1/2, 1/3, 3/8]
>>> list(continued_fraction_convergents([1, Rational(1, 2), -7, Rational(1, 4)]))
[1, 3, 19/5, 7]

```
>>> it = continued_fraction_convergents(continued_fraction_iterator(pi))
>>> for n in range(7):
... print(next(it))
3
22/7
333/106
355/113
103993/33102
104348/33215
208341/66317
```


See also:

continued_fraction_iterator (page 265)
diofant.ntheory.continued_fraction.continued_fraction_iterator (x)
Return continued fraction expansion of x as iterator.

Examples

```
>>> list(continued fraction iterator(Rational(3, 8)))
[0, 2, 1, 2]
>>> list(continued_fraction_iterator(Rational(-3, 8)))
[-1, 1, 1, 1, 2]
```

```
>>> for i, v in enumerate(continued_fraction_iterator(pi)):
.". if i > 7:
... break
#. print(v)
3
7
15
1
292
1
1
1
```


References

- https://en.wikipedia.org/wiki/Continued_fraction
diofant.ntheory.continued_fraction.continued_fraction_periodic ($p, q, d=0$)
Find the periodic continued fraction expansion.
Compute the continued fraction expansion of a rational or a quadratic surd, i.e. $\frac{p+\sqrt{d}}{q}$, where p, q and $d \geq 0$ are integers.

Returns list - the continued fraction representation (canonical form) as a list of integers, optionally ending (for quadratic irrationals) with repeating block as the last term of this list.

Parameters

- \mathbf{p} (int) - the rational part of the number's numerator
- $\mathbf{q}($ int $)$ - the denominator of the number
- d (int, optional) - the irrational part (discriminator) of the number's numerator

Examples

```
>>> continued_fraction_periodic(3, 2, 7)
```

$[2,[1,4,1,1]]$

Golden ratio has the simplest continued fraction expansion:

```
>>> continued_fraction_periodic(1, 2, 5)
[[1]]
```

If the discriminator is zero or a perfect square then the number will be a rational number:

```
>>> continued_fraction_periodic(4, 3, 0)
[1, 3]
>>> continued_fraction_periodic(4, 3, 49)
[3, 1, 2]
```


See also:

continued_fraction_iterator (page 265), continued_fraction_reduce (page 266)

References

- https://en.wikipedia.org/wiki/Periodic_continued_fraction
- K. Rosen. Elementary Number theory and its applications. Addison-Wesley, 3 Sub edition, pages 379-381, January 1992.
diofant.ntheory.continued_fraction.continued_fraction_reduce(cf)
Reduce a continued fraction to a rational or quadratic irrational.
Compute the rational or quadratic irrational number from its terminating or periodic continued fraction expansion. The continued fraction expansion (cf) should be supplied as a terminating iterator supplying the terms of the expansion. For terminating continued fractions, this is equivalent to list (continued_fraction_convergents(cf)) [-1], only a little more efficient. If the expansion has a repeating part, a list of the repeating terms should be returned as the last element from the iterator. This is the format returned by continued_fraction_periodic.
For quadratic irrationals, returns the largest solution found, which is generally the one sought, if the fraction is in canonical form (all terms positive except possibly the first).

Examples

```
>>> continued_fraction_reduce([1, 2, 3, 4, 5])
225/157
>>> continued_fraction_reduce([-2, 1, 9, 7, 1, 2])
-256/233
>>> continued_fraction_reduce([2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8]).evalf(10)
2.718281835
>>> continued_fraction_reduce([1, 4, 2, [3, 1]])
(sqrt(21) + 2\overline{8}7)/238
>>> continued_fraction_reduce([[1]])
1/2 + sqrt(5)/2
>>> continued_fraction_reduce(continued_fraction_periodic(8, 5, 13))
(sqrt(13) + 8\overline{)}/5
```


See also:

continued_fraction_periodic (page 265)
diofant.ntheory.egyptian_fraction.egyptian_fraction(r, algorithm='Greedy')
Compute an Egyptian fraction of the rational r.
Returns list - The list of denominators of an Egyptian fraction expansion.

Parameters

- r (Rational) - a positive rational number.
- algorithm ($\{$ "Greedy", "Graham Jewett", "Takenouchi", "Golomb" \}, optional) - Denotes the algorithm to be used (the default is "Greedy").

Examples

```
>>> egyptian_fraction(Rational(3, 7))
[3, 11, 231]
>>> egyptian fraction(Rational(3, 7), 'Graham Jewett')
[7, 8, 9, 56, 57, 72, 3192]
>>> egyptian_fraction(Rational(3, 7), 'Takenouchi')
[4, 7, 28]
>>> egyptian_fraction(Rational(3, 7), 'Golomb')
[3, 15, 35]
>>> egyptian_fraction(Rational(11, 5), 'Golomb')
[1, 2, 3, 4, 9, 234, 1118, 2580]
```


See also:

diofant. core.numbers.Rational (page 89)

Notes

Currently the following algorithms are supported:

1) Greedy Algorithm

Also called the Fibonacci-Sylvester algorithm. At each step, extract the largest unit fraction less than the target and replace the target with the remainder.

It has some distinct properties:
a) Given p / q in lowest terms, generates an expansion of maximum length p. Even as the numerators get large, the number of terms is seldom more than a handful.
b) Uses minimal memory.
c) The terms can blow up (standard examples of this are $5 / 121$ and 31/311). The denominator is at most squared at each step (doubly-exponential growth) and typically exhibits singly-exponential growth.
2) Graham Jewett Algorithm

The algorithm suggested by the result of Graham and Jewett. Note that this has a tendency to blow up: the length of the resulting expansion is always $2^{* *}(x / \operatorname{gcd}(x$, y)) - 1.
3) Takenouchi Algorithm

The algorithm suggested by Takenouchi (1921). Differs from the Graham-Jewett algorithm only in the handling of duplicates.
4) Golomb's Algorithm

A method given by Golumb (1962), using modular arithmetic and inverses. It yields the same results as a method using continued fractions proposed by Bleicher (1972).
If the given rational is greater than or equal to 1 , a greedy algorithm of summing the harmonic sequence $1 / 1+1 / 2+1 / 3+\ldots$ is used, taking all the unit fractions of this sequence until adding one more would be greater than the given number. This list of denominators is prefixed to the result from the requested algorithm used on the remainder. For example, if r is $8 / 3$, using the Greedy algorithm, we get $[1,2,3,4,5,6,7,14$, 420], where the beginning of the sequence, [1, 2, 3, 4, 5, 6, 7] is part of the harmonic sequence summing to $363 / 140$, leaving a remainder of $31 / 420$, which yields [14, 420] by the Greedy algorithm. The result of egyptian_fraction(Rational(8, 3), "Golomb") is [1, 2, $3,4,5,6,7,14,574,2788,6460,11590,33062,113820]$, and so on.

References

- https://en.wikipedia.org/wiki/Egyptian_fraction
- https://en.wikipedia.org/wiki/Greedy_algorithm_for_Egyptian_fractions
- https://www.ics.uci.edu/~eppstein/numth/egypt/conflict.html
- https://ami.uni-eszterhazy.hu/uploads/papers/finalpdf/AMI_42_from129to134.pdf

4.5 Concrete Mathematics

4.5.1 Hypergeometric terms

The center stage, in recurrence solving and summations, play hypergeometric terms. Formally these are sequences annihilated by first order linear recurrence operators. In simple words if we are given term $a(n)$ then it is hypergeometric if its consecutive term ratio is a rational function in n.
To check if a sequence is of this type you can use the is_hypergeometric method which is available in Basic class. Here is simple example involving a polynomial:

```
>>> (n**2 + 1).is_hypergeometric(n)
True
```

Of course polynomials are hypergeometric but are there any more complicated sequences of this type? Here are some trivial examples:

```
>>> factorial(n).is_hypergeometric(n)
True
>>> binomial(n, k).is_hypergeometric(n)
True
>>> rf(n, k).is hypergeometric(n)
True
>>> ff(n, k).is hypergeometric(n)
True
>>> gamma(n).is hypergeometric(n)
True
>>> (2**n).is_hypergeometric(n)
True
```

We see that all species used in summations and other parts of concrete mathematics are hypergeometric. Note also that binomial coefficients and both rising and falling factorials are hypergeometric in both their arguments:

```
>>> binomial(n, k).is_hypergeometric(k)
True
>>> rf(n, k).is_hypergeometric(k)
True
>>> ff(n, k).is_hypergeometric(k)
True
```

To say more, all previously shown examples are valid for integer linear arguments:

```
>>> factorial(2*n).is_hypergeometric(n)
True
>>> binomial(3*n+1, k).is_hypergeometric(n)
True
>>> rf(n+1, k-1).is_hypergeometric(n)
True
>>> ff(n-1, k+1).is_hypergeometric(n)
True
>>> gamma(5*n).is_hypergeometric(n)
True
>>> (2**(n-7)).is_hypergeometric(n)
True
```

However nonlinear arguments make those sequences fail to be hypergeometric:

```
>>> factorial(n**2).is_hypergeometric(n)
False
>>> (2**(n**3 + 1)).is hypergeometric(n)
False
```

If not only the knowledge of being hypergeometric or not is needed, you can use hypersimp () function. It will try to simplify combinatorial expression and if the term given is hypergeometric it will return a quotient of polynomials of minimal degree. Otherwise is will return None to say that sequence is not hypergeometric:

```
>>> hypersimp(factorial(2*n), n)
2*(n + 1)*(2*n + 1)
>>> hypersimp(factorial(n**2), n)
```


4.5.2 Concrete Class Reference

class diofant.concrete.summations.Sum(function, *symbols, **assumptions) Represents unevaluated summation.
Sum represents a finite or infinite series, with the first argument being the general form of terms in the series (which usually depend on the bound variable symbol), and the second argument being (symbol, start, end), with symbol taking all integer values from start through end (inclusive).
For start < end we adopt definition:

```
Sum(f(i), (i, start, end)) = - Sum(f(i), (i, end+1, start-1))
```


Notes

The summation convention for start < end described by Karr in [Kar81], especially definition 3 of section 1.4. The only difference with the reference is that Karr defines all sums with the upper limit being exclusive. This is in contrast to the usual mathematical notation, which we adopt, but does not affect the summation convention. Indeed we have:

$$
\sum_{m \leq i<n} f_{i}=\sum_{i=m}^{n-1} f_{i}
$$

This convention allows us to preserve the splitting identity

$$
\sum_{i=m}^{n} f_{i}=\sum_{i=m}^{l} f_{i}+\sum_{i=l+1}^{n} f_{i}
$$

regardless of the ordering of m, l and n.
Note that it also follows:

$$
\sum_{i=m}^{m-1} f_{i}=0
$$

Examples

```
>>> Sum(k**2, (k, 1, m)).doit()
m**3/3 + m**2/2 + m/6
>> Sum(x**k/factorial(k), (k, 0, oo)).doit()
E**X
```

An example showing that the symbolic result of a summation is still valid for seemingly nonsensical values of the limits. Then the Karr convention allows us to give a perfectly valid interpretation to those sums by interchanging the limits according to the adopted rule:

```
>>> Sum(k, (k, 1, n)).doit()
n**2/2 + n/2
>> _.subs({n: -4})
6
>>> Sum(-n, (n, -3, 0)).doit()
6
```


See also:

summation (page 280), diofant.concrete.products.Product (page 273), diofant. concrete. products. product (page 280)

References

- https://en.wikipedia.org/wiki/Summation
euler_maclaurin $(m=0, n=0$, eps=0, eval_integral=True)
Return an Euler-Maclaurin approximation of self, where m is the number of leading terms to sum directly and n is the number of terms in the tail.
With $\mathrm{m}=\mathrm{n}=0$, this is simply the corresponding integral plus a first-order endpoint correction.
Returns (s, e) where s is the Euler-Maclaurin approximation and e is the estimated error (taken to be the magnitude of the first omitted term in the tail):

```
>>> Sum(1/k, (k, 2, 5)).doit().evalf()
1.28333333333333
>> s, e = Sum(1/k, (k, 2, 5)).euler_maclaurin()
>>> s
-log(2) + 7/20 + log(5)
>>> print(sstr((s.evalf(), e.evalf()), full_prec=True))
(1.26629073187415, 0.0175000000000000)
```

The endpoints may be symbolic:

```
>>> s, e = Sum(1/k, (k, a, b)).euler_maclaurin()
>>> s
-log(a) + log(b) + 1/(2*b) + 1/(2*a)
>>> e
Abs(1/(12*b**2) - 1/(12*a**2))
```

If the function is a polynomial of degree at most $2 \mathrm{n}+1$, the Euler-Maclaurin formula becomes exact (and $\mathrm{e}=0$ is returned):

```
>>> Sum(k, (k, 2, b)).euler_maclaurin()
(b**2/2 + b/2 - 1, 0)
>>> Sum(k, (k, 2, b)).doit()
b**2/2 + b/2 - 1
```

With a nonzero eps specified, the summation is ended as soon as the remainder term is less than the epsilon.
findrecur($F=F$ unction(' F^{\prime}), $n=$ None)
Find a recurrence formula for the summand of the sum.
Given a sum $f(n)=\sum_{k} F(n, k)$, where $F(n, k)$ is doubly hypergeometric (that's, both $F(n+1, k) / F(n, k)$ and $F(n, k+1) / F(n, k)$ are rational functions of n and k), we find a recurrence for the summand $F(n, k)$ of the form

$$
\sum_{i=0}^{I} \sum_{j=0}^{J} a_{i, j} F(n-j, k-i)=0
$$

Examples

```
>>> s = Sum(factorial(n)/(factorial(k)*factorial(n - k)), (k, 0, oo))
>>> s.findrecur()
-F(n,k) + F(n-1,k) + F(n - 1, k - 1)
```


Notes

We use Sister Celine's algorithm, see [PetkovvsekWZ97], Ch. 4.

reverse_order (*indices)

Reverse the order of a limit in a Sum.
Parameters *indices (list) - The selectors in the argument indices specify some indices whose limits get reversed. These selectors are either variable names or numerical indices counted starting from the inner-most limit tuple.

Examples

```
>>> Sum(x, (x, 0, 3)).reverse_order(x)
Sum(-x, (x, 4, -1))
>>> Sum(x*y, (x, 1, 5), (y, 0, 6)).reverse_order(x, y)
Sum(x*y, (x, 6, 0), (y, 7, -1))
>> Sum(x, (x, a, b)).reverse order(x)
Sum(-x, (x, b + 1, a - 1))
>>> Sum(x, (x, a, b)).reverse_order(0)
Sum(-x, (x, b + 1, a - 1))
```

While one should prefer variable names when specifying which limits to reverse, the index counting notation comes in handy in case there are several symbols with the same name.

```
>>> s = Sum(x**2, (x, a, b), (x, c, d))
>>> s
Sum(x**2, (x, a, b), (x, c, d))
>>> s0 = s.reverse_order(0)
>>> s0
Sum(-x**2, (x, b + 1, a - 1), (x, c, d))
>>> s1 = s0.reverse_order(1)
>>> sl
Sum(x**2, (x, b + 1, a - 1), (x, d + 1, c - 1))
```

Of course we can mix both notations:

```
>>> Sum(x*y, (x, a, b), (y, 2, 5)).reverse_order(x, 1)
Sum(x*y, (x, b + 1, a - 1), (y, 6, 1))
>>> Sum(x*y, (x, a, b), (y, 2, 5)).reverse_order(y, x)
Sum(x*y, (x, b + 1, a - 1), (y, 6, 1))
```


See also:

diofant. concrete.expr_with_intlimits.ExprWithIntLimits.index (page 278), diofant. concrete.expr_with_intlimits.ExprWithIntLimits.reorder_limit (page 279), diofant.concrete.expr_with_intlimits.ExprWithIntLimits. reorder (page 278)

References

- [Kar81]

class diofant.concrete.products. Product (function, *symbols, **assumptions) Represents unevaluated products.
Product represents a finite or infinite product, with the first argument being the general form of terms in the series (which usually depend on the bound variable symbol), and the second argument being (symbol, start, end), with symbol taking all integer values from start through end (inclusive).

Notes

We follow the the analogue of the summation convention described by Karr [Kar81], adopted by the Sum (page 270):

$$
\prod_{i=m}^{n} f_{i}=\frac{1}{\prod_{i=n+1}^{m-1} f_{i}}
$$

Examples

```
>>> Product(k**2, (k, 1, m)).doit()
factorial(m)**2
```

Products with the lower limit being larger than the upper one:

```
>>> Product(1/k, (k, 6, 1)).doit()
120
>>> Product(k, (k, 2, 5)).doit()
120
```

The empty product:

```
>>> Product(k, (k, n, n-1)).doit()
1
```


See also:

diofant.concrete.summations.Sum (page 270), diofant.concrete.summations. summation (page 280), product (page 280)

References

- https://en.wikipedia.org/wiki/Multiplication\#Capital_pi_notation
- https://en.wikipedia.org/wiki/Empty_product
reverse_order (*indices)
Reverse the order of a limit in a Product.

Parameters *indices (list) - The selectors in the argument indices specify some indices whose limits get reversed. These selectors are either variable names or numerical indices counted starting from the inner-most limit tuple.

Examples

```
>>> P = Product(x, (x, a, b))
>>> Pr = P.reverse_order(x)
>> Pr
Product(1/x, (x, b + 1, a - 1))
>>> Pr = Pr.doit()
>>> Pr
1/RisingFactorial(b + 1, a - b - 1)
>>> simplify(Pr)
gamma(b + 1)/gamma(a)
>>> P = P.doit()
>>> P
RisingFactorial(a, -a + b + 1)
>>> simplify(P)
gamma(b + 1)/gamma(a)
```

While one should prefer variable names when specifying which limits to reverse, the index counting notation comes in handy in case there are several symbols with the same name.

```
>>> s = Sum(x*y, (x, a, b), (y, c, d))
>>> s
Sum(x*y, (x, a, b), (y, c, d))
>>> s0 = s.reverse_order(0)
>>> s0
Sum(-x*y, (x, b + 1, a - 1), (y, c, d))
>>> s1 = s0.reverse_order(1)
>>> s1
Sum(x*y, (x, b + 1, a - 1), (y, d + 1, c - 1))
```

Of course we can mix both notations:

```
>>> Sum(x*y, (x, a, b), (y, 2, 5)).reverse_order(x, 1)
Sum(x*y, (x, b + 1, a - 1), (y, 6, 1))
>>> Sum(x*y, (x, a, b), (y, 2, 5)).reverse_order(y, x)
Sum(x*y, (x, b + 1, a - 1), (y, 6, 1))
```


See also:

diofant. concrete.expr_with_intlimits.ExprWithIntLimits.index (page 278), diofant.concrete.expr_with_intlimits.ExprWithIntLimits.reorder_limit (page 279), diofan̄̄t.concrete.expr_with_intlimits.ExprWithIn̄̄tLimits. reorder (page 278)

References

- [Kar81]
class diofant.concrete.expr_with_limits.ExprWithLimits(function, *symbols, **assumptions)
Represents an expression with limits.
as_dummy ()
Replace instances of the given dummy variables with explicit dummy counterparts to make clear what are dummy variables and what are real-world symbols in an object.

Examples

```
>>> Integral(x, (x, x, y), (y, x, y)).as_dummy()
Integral(_x, (_x, x, _y), (_y, x, y))
```

If the object supports the "integral at" limit (x,) it is not treated as a dummy, but the explicit form, (x, x) of length 2 does treat the variable as a dummy.

```
>>> Integral(x, x).as_dummy()
Integral(x, x)
>>> Integral(x, (x, x)).as_dummy()
Integral(_x, (_x, x))
```

If there were no dummies in the original expression, then the the symbols which cannot be changed by subs() are clearly seen as those with an underscore prefix.

See also:

diofant. concrete.expr_with_limits.ExprWithLimits.variables (page 276) Lists the integration variables

property free_symbols

This method returns the symbols in the object, excluding those that take on a specific value (i.e. the dummy symbols).

Examples

>>> $\operatorname{Sum}(x,(x, y, 1)) . f r e e _s y m b o l s$
\{y\}

property function

Return the function applied across limits.

Examples

```
>>> Integral(x**2, x).function
x**2
```


See also:

diofant. concrete.expr_with_limits.ExprWithLimits.limits (page 276), diofant. concrete.expr_with_limits.ExprWithLimits.variables (page 276), diofant. concrete.expr_with_limits.ExprWithLimits.free_symbols
(page 275)
property is_number
Return True if the Sum has no free symbols, else False.
property limits
Return the limits of expression.

Examples

```
>>> from diofant.abc import i
>>> Integral(x**i, (i, 1, 3)).limits
((i, 1, 3),)
```


See also:

diofant.concrete.expr_with_limits.ExprWithLimits.function (page 275), diofant. concrete.expr_with_limits.ExprWithLimits.variables (page 276), diofant. concrete.expr_with_limits.ExprWithLimits.free_symbols
(page 275)
property variables
Return a list of the dummy variables

```
>>> from diofant.abc import i
>>> Sum(x**i, (i, 1, 3)).variables
[i]
```


See also:

diofant. concrete.expr_with_limits.ExprWithLimits.function (page 275), diofant. concrete.expr_with_limits.ExprWithLimits.limits (page 276), diofant. concrete.expr_with_limits.ExprWithLimits.free_symbols (page 275)
diofant. concrete.expr_with_limits.ExprWithLimits.as_dummy (page 275)
Rename dummy variables
class diofant. concrete.expr_with_intlimits.ExprWithIntLimits(function, *symbols, **assumptions)
Represents an expression with integer limits.
change_index (var, trafo, newvar=None)
Change index of a Sum or Product.
Perform a linear transformation $x \mapsto a x+b$ on the index variable x. For a the only values allowed are ± 1. A new variable to be used after the change of index can also be specified.

Parameters

- var (Symbol) - specifies the index variable x to transform.
- trafo (Expr) - The linear transformation in terms of var.
- newvar (Symbol, optional) - Replacement symbol to be used instead of var in the final expression.

Examples

```
>>> from diofant.abc import u, v, i, j, l
```

```
>>> s = Sum(x, (x, a, b))
>>> s.doit()
-a**2/2 +a/2 + b**2/2 + b/2
```

```
>>> sn = s.change_index(x, x + 1, y)
>>> sn
Sum(y - 1, (y, a + 1, b + 1))
>>> sn.doit()
-a**2/2 + a/2 + b**2/2 + b/2
```

```
>>> sn = s.change_index(x, -x, y)
>>> sn
Sum(-y, (y, -b, -a))
>>> sn.doit()
-a**2/2 + a/2 + b**2/2 + b/2
```

```
>>> sn = s.change_index(x, x+u)
>>> sn
Sum(-u + x, (x, a + u, b + u))
>>> sn.doit()
-a**2/2 - a*u + a/2 + b**2/2 + b*u + b/2 - u*(-a + b + 1) + u
>>> simplify(sn.doit())
-a**2/2 + a/2 + b**2/2 + b/2
```

```
>>> sn = s.change_index(x, -x - u, y)
>>> sn
Sum(-u - y, (y, -b - u, -a - u))
>>> sn.doit()
-a**2/2 - a*u + a/2 + b**2/2 + b*u + b/2 - u*(-a + b + 1) + u
>>> simplify(sn.doit())
-a**2/2 + a/2 + b**2/2 + b/2
```

```
>>> p = Product(i*j**2, (i, a, b), (j, c, d))
>>> p
Product(i*j**2, (i, a, b), (j, c, d))
>>> p2 = p.change_index(i, i+3, k)
>>> p2
Product(j**2*(k - 3), (k, a + 3, b + 3), (j, c, d))
>> p3 = p2.change_index(j, -j, l)
>>> p3
Product(l**2*(k - 3), (k, a + 3, b + 3), (l, -d, -c))
```

When dealing with symbols only, we can make a general linear transformation:

```
>>> sn = s.change_index(x, u*x+v, y)
>>> sn
Sum((-v + y)/u, (y, b*u + v, a*u + v))
>>> sn.doit()
```

```
        (continued from previous page)
\(-v^{*}\left(a^{*} u-b^{*} u+1\right) / u+\left(a^{* *} 2^{*} u^{*} * 2 / 2+a^{*} u^{*} v+a^{*} u / 2-b^{*} 2^{*} u^{*} * 2 / 2-b^{*} u^{*} v+_{b}\right.\)
\(\left.\rightarrow b^{*} u / 2+v\right) / u\)
\(\gg\) simplify(sn.doit())
\(\mathrm{a} * * 2 * \mathrm{u} / 2+\mathrm{a} / 2-\mathrm{b} * * 2 * \mathrm{u} / 2+\mathrm{b} / 2\)
```

However, the last result can be inconsistent with usual summation where the index increment is always 1 . This is obvious as we get back the original value only for u equal +1 or -1 .

See also:

diofant.concrete.expr_with_intlimits.ExprWithIntLimits.index (page 278), diofant.concrete.expr_with_intlimits.ExprWithIntLimits.reorder_limit (page 279), diofant.concrete.expr_with_intlimits.ExprWithIntLimits. reorder (page 278), diofant.concrete. summations.Sum.reverse_order (page 272), diofant. concrete.products.Product.reverse_order (page 273)
index (x)
Return the index of a dummy variable in the list of limits.
Note that we start counting with 0 at the inner-most limits tuple.
Parameters \mathbf{x} (Symbol) - a dummy variable

Examples

```
>>> Sum(x*y, (x, a, b), (y, c, d)).index(x)
0
>>> Sum(x*y, (x, a, b), (y, c, d)).index(y)
1
>>> Product(x*y, (x, a, b), (y, c, d)).index(x)
0
>>> Product(x*y, (x, a, b), (y, c, d)).index(y)
1
```


See also:

diofant.concrete.expr_with_intlimits.ExprWithIntLimits.reorder_limit (page 279), diofant.concrete.expr_with_intlimits.ExprWithIntLimits. reorder (page 278), diofant.concrete.summations.Sum.reverse_order (page 272), diofant.concrete.products. Product.reverse_order (page 273)
reorder (*arg)
Reorder limits in a expression containing a Sum or a Product.
Parameters *arg (list of tuples) - These tuples can contain numerical indices or index variable names or involve both.

Examples

```
>>> from diofant.abc import e, f
```

```
>>> Sum(x*y, (x, a, b), (y, c, d)).reorder((x, y))
Sum(x*y, (y, c, d), (x, a, b))
```

$\ggg \operatorname{Sum}\left(x^{*} y^{*} z,(x, a, b),(y, c, d),(z, e, f)\right) \cdot r e o r d e r((x, y),(x, z),(y, u$
\rightarrow Z)
$\operatorname{Sum}\left(x^{*} y^{*} z,(z, e, f),(y, c, d),(x, a, b)\right)$

```
>>> P = Product(x*y*z, (x, a, b), (y, c, d), (z, e, f))
>>> P.reorder((x, y), (x, z), (y, z))
Product(x*y*z, (z, e, f), (y, c, d), (x, a, b))
```

We can also select the index variables by counting them, starting with the inner-most one:

```
>>> Sum(x**2, (x, a, b), (x, c, d)).reorder((0, 1))
Sum(x**2, (x, c, d), (x, a, b))
```

And of course we can mix both schemes:

```
>>> Sum(x*y, (x, a, b), (y, c, d)).reorder((y, x))
Sum(x*y, (y, c, d), (x, a, b))
>>> Sum(x*y, (x, a, b), (y, c, d)).reorder((y, 0))
Sum(x*y, (y, c, d), (x, a, b))
```


See also:

diofant. concrete.expr_with_intlimits.ExprWithIntLimits.index (page 278), diofant. concrete.expr_with_intlimits.ExprWithIntLimits.reorder_limit (page 279), diofant.concrete.summations.Sum.reverse_order (page 272), diofant. concrete. products. Product. reverse_order (page 273)
reorder_limit (x, y)
Interchange two limit tuples of a Sum or Product expression.
Parameters \mathbf{x}, \mathbf{y} (int) - are integers corresponding to the index variables of the two limits which are to be interchanged.

Examples

```
>>> from diofant.abc import e, f
```

```
>>> Sum(x*y*z, (x, a, b), (y, c, d), (z, e, f)).reorder_limit(0, 2)
Sum(x*y*z, (z, e, f), (y, c, d), (x, a, b))
>>> Sum(x**2, (x, a, b), (x, c, d)).reorder_limit(1, 0)
Sum(x**2, (x, c, d), (x, a, b))
```

```
>>> Product(x*y*z, (x, a, b), (y, c, d), (z, e, f)).reorder_limit(0, 2)
Product(x*y*z, (z, e, f), (y, c, d), (x, a, b))
```


See also:

diofant. concrete.expr_with_intlimits.ExprWithIntLimits.index (page 278), diofant. concrete.expr_with_intlimits.ExprWithIntLimits.reorder
(page 278), diofant.concrete.summations.Sum.reverse_order (page 272), diofant. concrete.products. Product.reverse_order (page 273)

4.5.3 Concrete Functions Reference

diofant.concrete.summations.summation (f, *symbols, **kwargs)
Compute the summation of f with respect to symbols.
The notation for symbols is similar to the notation used in Integral. summation(f, (i, a, b)) computes the sum of f with respect to i from a to b, i.e.,

If it cannot compute the sum, it returns an unevaluated Sum object. Repeated sums can be computed by introducing additional symbols tuples:

```
>>> i = symbols('i', integer=True)
```

```
>>> summation(2*i - 1, (i, 1, n))
n**2
>>> summation(1/2**i, (i, 0, oo))
2
>>> summation(1/log(n)**n, (n, 2, oo))
Sum(log(n)**(-n), (n, 2, oo))
>> summation(i, (i, 0, n), (n, 0, m))
m**3/6 + m**2/2 + m/3
```

```
>>> summation(x**n/factorial(n), (n, 0, oo))
```

E**X

See also:

diofant.concrete.summations.Sum (page 270), diofant.concrete.products. Product (page 273), diofant. concrete. products.product (page 280)
diofant.concrete.products.product(*args, **kwargs)
Compute the product.
The notation for symbols is similar to the notation used in Sum or Integral. product(f, (i, $\mathrm{a}, \mathrm{b})$) computes the product of f with respect to i from a to b , i.e.,

If it cannot compute the product, it returns an unevaluated Product object. Repeated products can be computed by introducing additional symbols tuples:

```
>>> i = symbols('i', integer=True)
```

```
>>> product(i, (i, 1, k))
factorial(k)
>>> product(m, (i, 1, k))
m**k
>>> product(i, (i, 1, k), (k, 1, n))
Product(factorial(k), (k, 1, n))
```

diofant. concrete.gosper.gosper_normal (f, g, n)
Compute the Gosper's normal form of f and g.
Given relatively prime univariate polynomials f and g, rewrite their quotient to a normal form defined as follows:

$$
\frac{f(n)}{g(n)}=Z \cdot \frac{A(n) C(n+1)}{B(n) C(n)}
$$

where Z is an arbitrary constant and $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are monic polynomials in n with the following properties:

1. $\operatorname{gcd}(A(n), B(n+h))=1 \forall h \in \mathbb{N}$
2. $\operatorname{gcd}(B(n), C(n+1))=1$
3. $\operatorname{gcd}(A(n), C(n))=1$

This normal form, or rational factorization in other words, is a crucial step in Gosper's algorithm and in solving of difference equations. It can be also used to decide if two hypergeometric terms are similar or not.
This procedure will return a tuple containing elements of this factorization in the form (Z*A, B, C).

Examples

```
>>> gosper_normal(4*n + 5, 2*(4*n + 1)*(2*n + 3), n)
(Poly(1/4, n, domain='QQ'), Poly(n + 3/2, n, domain='QQ'),
    Poly(n + 1/4, n, domain='QQ'))
```

diofant.concrete.gosper.gosper_term(f, n)

Compute Gosper's hypergeometric term for f.
Suppose f is a hypergeometric term such that:

$$
s_{n}=\sum_{k=0}^{n-1} f_{k}
$$

and f_{k} doesn't depend on n. Returns a hypergeometric term g_{n} such that $g_{n+1}-g_{n}=f_{n}$.

Examples

```
>>> gosper term((4*n + 1)*factorial(n)/factorial(2*n + 1), n)
(-n - 1/2)/(n + 1/4)
```

diofant.concrete.gosper.gosper_sum (f,k)
Gosper's hypergeometric summation algorithm.

Given a hypergeometric term f such that:

$$
s_{n}=\sum_{k=0}^{n-1} f_{k}
$$

and $f(n)$ doesn't depend on n, returns $g_{n}-g(0)$ where $g_{n+1}-g_{n}=f_{n}$, or None if s_{n} can not be expressed in closed form as a sum of hypergeometric terms.

Examples

```
>>> gosper_sum((4*k + 1)*factorial(k)/factorial(2*k + 1), (k, 0, n))
(-factoria\overline{l}(n) + 2*factorial(2*n + 1))/factorial(2*n + 1)
```


References

- [PetkovvsekWZ97]

4.6 Mathematical Functions

All functions support the methods documented below, inherited from diofant.core. function. Function (page 130).
class diofant.core.function.Function(*args)
Base class for applied mathematical functions.
It also serves as a constructor for undefined function classes.

Examples

First example shows how to use Function as a constructor for undefined function classes:

```
>>> g = g(x)
>>> f
f
>>> f(x)
f(x)
>>> g
g(x)
>>> f(x).diff(x)
Derivative(f(x), x)
>>> g.diff(x)
Derivative(g(x), x)
```

In the following example Function is used as a base class for MyFunc that represents a mathematical function MyFunc. Suppose that it is well known, that MyFunc(0) is 1 and MyFunc at infinity goes to 0 , so we want those two simplifications to occur automatically. Suppose also that $\operatorname{MyFunc}(x)$ is real exactly when x is real. Here is an implementation that honours those requirements:

```
>>> class MyFunc(Function):
... @classmethod
... def eval(cls, x):
#. if x.is_Number:
#. if }\overline{x}== 0
#.. return Integer(1)
... elif x is 0o:
#. return Integer(0)
""." def eval is real(self):
#. \overline{return}
>>> MyFunc(0) + sin(0)
1
>>> MyFunc(oo)
0
>>> MyFunc(3.54).evalf() # Not yet implemented for MyFunc.
MyFunc(3.54)
>>> MyFunc(I).is_real
False
```

In order for MyFunc to become useful, several other methods would need to be implemented. See source code of some of the already implemented functions for more complete examples.
Also, if the function can take more than one argument, then nargs must be defined, e.g. if MyFunc can take one or two arguments then,

```
>>> class MyFunc(Function):
... nargs = (1, 2)
#"
>>>
```

as_base_exp()
Returns the method as the 2 -tuple (base, exponent).
classmethod class_key()
Nice order of classes.
fdiff(argindex=1)
Returns the first derivative of the function.

4.6.1 Elementary

This module implements elementary functions such as trigonometric, hyperbolic as well as functions like Abs, Max, sqrt etc.

4.6.2 diofant.functions.elementary.complexes

re
class diofant.functions.elementary.complexes.re(arg)
Returns real part of expression.
This function performs only elementary analysis and so it will fail to decompose properly more complicated expressions. If completely simplified result is needed then use Basic.as_real_imag() or perform complex expansion on instance of this function.

Examples

```
>>> re(2*E)
2*E
>>> re(2*I + 17)
17
>>> re(2*I)
0
>>> re(im(x) + x*I + 2)
2
```


See also:

diofant.functions.elementary.complexes.im (page 284)
as_real_imag (deep=True, **hints)
Returns the real number with a zero imaginary part.
im
class diofant.functions.elementary.complexes.im(arg)
Returns imaginary part of expression.
This function performs only elementary analysis and so it will fail to decompose properly more complicated expressions. If completely simplified result is needed then use Basic.as_real_imag() or perform complex expansion on instance of this function.

Examples

```
>>> im(2*E)
0
>>> re(2*I + 17)
17
>>> im(x*I)
re(x)
>> im(re(x) + y)
im(y)
```


See also:

diofant.functions.elementary.complexes.re (page 284)
as_real_imag (deep=True, **hints)
Return the imaginary part with a zero real part.

Examples

```
>>> im(2 + 3*I).as_real_imag()
(3, 0)
```

sign
class diofant.functions.elementary.complexes.sign(arg)
Returns the complex sign of an expression.
If the expression is real the sign will be:

- 1 if expression is positive
- 0 if expression is equal to zero
- -1 if expression is negative

If the expression is imaginary the sign will be:

- I if im(expression) is positive
- -I if im(expression) is negative

Otherwise an unevaluated expression will be returned. When evaluated, the result (in general) will be cos(arg(expr)) + I*sin(arg(expr)).

Examples

```
>>> sign(-1)
-1
>>> sign(0)
0
>>> sign(-3*I)
-I
>>> sign(1 + I)
sign(1 + I)
>>> _.evalf()
0.70\overline{7106781186548 + 0.707106781186548*I}
```


See also:

diofant.functions.elementary.complexes.Abs (page 285), diofant.functions. elementary. complexes. conjugate (page 287)

Abs
class diofant.functions.elementary.complexes.Abs(arg)
Return the absolute value of the argument.
This is an extension of the built-in function abs() to accept symbolic values. If you pass a Diofant expression to the built-in abs(), it will pass it automatically to Abs().

Diofant Documentation, Release 0.13.0

Examples

```
>>> Abs(-1)
1
>>> x = Symbol('x', real=True)
>> abs(-x) # The Python built-in
Abs(x)
>>> abs(x**2)
x**2
```

Note that the Python built-in will return either an Expr or int depending on the argument:

```
>>> type(abs(-1))
<... 'int'>
>>> type(abs(Integer(-1)))
<class 'diofant.core.numbers.One'>
```

Abs will always return a diofant object.

See also:

diofant.functions.elementary.complexes.sign (page 285), diofant.functions. elementary. complexes.conjugate (page 287)
fdiff(argindex=1)
Get the first derivative of the argument to Abs() .

Examples

```
>>> abs(-x).fdiff()
sign(x)
```

adjoint
class diofant.functions.elementary.complexes.adjoint(arg)
Conjugate transpose or Hermite conjugation.
arg
class diofant.functions.elementary.complexes.arg(arg)
Returns the argument (in radians) of a complex number.
For a real number, the argument is always 0 .

Examples

```
>>> arg(2.0)
0
>>> arg(I)
pi/2
>>> arg(sqrt(2) + I*sqrt(2))
pi/4
```


conjugate

class diofant.functions.elementary.complexes.conjugate(arg)
Returns the complex conjugate of an argument.
In mathematics, the complex conjugate of a complex number is given by changing the sign of the imaginary part.
Thus, the conjugate of the complex number $a+i b$ (where a and b are real numbers) is $a-i b$

Examples

```
>>> conjugate(2)
2
>>> conjugate(I)
-I
```


See also:

diofant.functions.elementary.complexes.sign (page 285), diofant.functions. elementary. complexes.Abs (page 285)

References

- https://en.wikipedia.org/wiki/Complex_conjugation
polar_lift
class diofant.functions.elementary.complexes.polar_lift(arg)
Lift argument to the Riemann surface of the logarithm, using the standard branch.

```
>>> p = Symbol('p', polar=True)
>>> polar_lift(4)
4*exp_polār(0)
>>> polar lift(-4)
4*exp_polār(I*pi)
>>> polar_lift(-I)
exp polar(-I*pi/2)
>>> polar_lift(I + 2)
polar_lift(2 + I)
```

>>> polar_lift(4*x)
4*polar_lift(x)
>>> polār_lift(4*p)
4*p

See also:

```
diofant.functions.elementary.exponential.exp_polar (page 306), diofant.
```

functions.elementary.complexes.periodic_argument (page 288)

periodic_argument

class diofant.functions.elementary.complexes.periodic_argument (ar, period) Represent the argument on a quotient of the Riemann surface of the logarithm. That is, given a period P , always return a value in ($-\mathrm{P} / 2, \mathrm{P} / 2$], by using $\exp \left(\mathrm{P}^{*} \mathrm{I}\right)==1$.

```
>>> unbranched_argument(exp(5*I*pi))
pi
>>> unbranched_argument(exp_polar(5*I*pi))
5*pi
>>> periodic_argument(exp_polar(5*I*pi), 2*pi)
pi
>>> periodic_argument(exp_polar(5*I*pi), 3*pi)
-pi
>>> periodic_argument(exp_polar(5*I*pi), pi)
0
```


See also:

diofant.functions.elementary.exponential.exp_polar (page 306)
diofant.functions.elementary.complexes.polar_lift (page 287) Lift argument to the Riemann surface of the logarithm
diofant.functions.elementary.complexes.principal_branch (page 288)

principal_branch

class diofant.functions.elementary.complexes.principal_branch(x, period)
Represent a polar number reduced to its principal branch on a quotient of the Riemann surface of the logarithm.
This is a function of two arguments. The first argument is a polar number z, and the second one a positive real number of infinity, p. The result is " z mod exp_polar($\left.I^{*} \mathrm{p}\right)$ ".

```
>>> principal_branch(z, oo)
z
>>> principal_branch(exp_polar(2*pi*I)*3, 2*pi)
3*exp_polar(0)
>> principal_branch(exp_polar(2*pi*I)*3*z, 2*pi)
3*principal_branch(z, 2*pi)
```


See also:

diofant.functions.elementary.exponential.exp_polar (page 306)
diofant.functions.elementary.complexes.polar_lift (page 287) Lift argument to the Riemann surface of the logarithm
diofant.functions.elementary.complexes.periodic_argument (page 288)

transpose

class diofant.functions.elementary.complexes.transpose(arg)
Linear map transposition.

4.6.3 diofant.functions.elementary.trigonometric

4.6.4 Trigonometric Functions

\sin
class diofant.functions.elementary.trigonometric.sin(arg)
The sine function.
Returns the sine of x (measured in radians).

Notes

This function will evaluate automatically in the case x / pi is some rational number. For example, if x is a multiple of $\mathrm{pi}, \mathrm{pi} / 2, \mathrm{pi} / 3, \mathrm{pi} / 4$ and $\mathrm{pi} / 6$.

Examples

```
>>> sin(x**2).diff(x)
2*x*\operatorname{cos(x**2)}
>>> sin(pi)
0
>>> sin(pi/2)
1
>>> sin(pi/6)
1/2
>>> sin(pi/12)
-sqrt(2)/4 + sqrt(6)/4
```


See also:

diofant.functions.elementary.trigonometric.csc (page 293), diofant. functions.elementary.trigonometric.cos (page 290), diofant.functions. elementary.trigonometric.sec (page 292), diofant.functions.elementary. trigonometric.tan (page 291), diofant.functions.elementary.trigonometric. cot (page 292), diofant.functions.elementary.trigonometric.asin (page 294), diofant.functions.elementary.trigonometric.acsc (page 298), diofant. functions.elementary.trigonometric.acos (page 295), diofant.functions. elementary.trigonometric.asec (page 296), diofant.functions.elementary. trigonometric.atan (page 297), diofant.functions.elementary.trigonometric. acot (page 298), diofant.functions.elementary.trigonometric.atan2 (page 299)

References

- https://en.wikipedia.org/wiki/Trigonometric_functions
- https://dlmf.nist.gov/4.14
- http://functions.wolfram.com/ElementaryFunctions/Sin
- https://mathworld.wolfram.com/TrigonometryAngles.html
cos
class diofant.functions.elementary.trigonometric. $\cos ($ arg $)$
The cosine function.
Returns the cosine of x (measured in radians).

Notes

See $\sin ()$ (page 289) for notes about automatic evaluation.

Examples

```
>>> cos(x**2).diff(x)
-2*x*}\operatorname{sin}(x**2
>>> cos(pi)
-1
>>> cos(pi/2)
0
>>> cos(2*pi/3)
-1/2
>>> cos(pi/12)
sqrt(2)/4 + sqrt(6)/4
```


See also:

diofant.functions.elementary.trigonometric.sin (page 289), diofant. functions.elementary.trigonometric.csc (page 293), diofant.functions. elementary.trigonometric.sec (page 292), diofant.functions.elementary. trigonometric.tan (page 291), diofant.functions.elementary.trigonometric. cot (page 292), diofant.functions.elementary.trigonometric.asin (page 294), diofant.functions.elementary.trigonometric.acsc (page 298), diofant. functions.elementary.trigonometric.acos (page 295), diofant.functions. elementary.trigonometric.asec (page 296), diofant.functions.elementary. trigonometric.atan (page 297), diofant.functions.elementary.trigonometric. acot (page 298), diofant.functions.elementary.trigonometric.atan2 (page 299)

References

- https://en.wikipedia.org/wiki/Trigonometric_functions
- https://dlmf.nist.gov/4.14
- http://functions.wolfram.com/ElementaryFunctions/Cos
tan
class diofant.functions.elementary.trigonometric.tan(arg)
The tangent function.
Returns the tangent of x (measured in radians).

Notes

See $\sin ()$ (page 289) for notes about automatic evaluation.

Examples

```
>>> tan(x**2).diff(x)
2*x*(tan(x**2)**2 + 1)
>>> tan(pi/8).expand()
-1 + sqrt(2)
```


See also:

diofant.functions.elementary.trigonometric.sin (page 289), diofant.
functions.elementary.trigonometric.csc (page 293), diofant.functions.
elementary.trigonometric.cos (page 290), diofant.functions.elementary.
trigonometric.sec (page 292), diofant.functions.elementary.trigonometric.
cot (page 292), diofant.functions.elementary.trigonometric.asin (page 294),
diofant.functions.elementary.trigonometric.acsc (page 298), diofant.
functions.elementary.trigonometric.acos (page 295), diofant.functions.
elementary.trigonometric.asec (page 296), diofant.functions.elementary.
trigonometric.atan (page 297), diofant.functions.elementary.trigonometric.
acot (page 298), diofant.functions.elementary.trigonometric.atan2 (page 299)

References

- https://en.wikipedia.org/wiki/Trigonometric_functions
- https://dlmf.nist.gov/4.14
- http://functions.wolfram.com/ElementaryFunctions/Tan
inverse(argindex=1)
Returns the inverse of this function.

Diofant Documentation, Release 0.13.0

cot
class diofant.functions.elementary.trigonometric.cot(arg)
The cotangent function.
Returns the cotangent of x (measured in radians).

Notes

See sin() (page 289) for notes about automatic evaluation.

Examples

```
>>> cot(x**2).diff(x)
2*x*(-cot(x**2)**2 - 1)
```


See also:

diofant.functions.elementary.trigonometric.sin (page 289), diofant. functions.elementary.trigonometric.csc (page 293), diofant.functions. elementary.trigonometric.cos (page 290), diofant.functions.elementary. trigonometric.sec (page 292), diofant.functions.elementary.trigonometric. tan (page 291), diofant.functions.elementary.trigonometric.asin (page 294), diofant.functions.elementary.trigonometric.acsc (page 298), diofant. functions.elementary.trigonometric.acos (page 295), diofant.functions. elementary.trigonometric.asec (page 296), diofant.functions.elementary. trigonometric.atan (page 297), diofant.functions.elementary.trigonometric. acot (page 298), diofant. functions.elementary.trigonometric.atan2 (page 299)

References

- https://en.wikipedia.org/wiki/Trigonometric_functions
- https://dlmf.nist.gov/4.14
- http://functions.wolfram.com/ElementaryFunctions/Cot
inverse (argindex=1)
Returns the inverse of this function.
sec
class diofant.functions.elementary.trigonometric.sec(arg)
The secant function.
Returns the secant of x (measured in radians).

Notes

See sin() (page 289) for notes about automatic evaluation.

Examples

```
>>> sec(x**2).diff(x)
2*x*\operatorname{tan}(x**2)*sec(x**2)
```


See also:

diofant.functions.elementary.trigonometric.sin (page 289), diofant. functions.elementary.trigonometric.csc (page 293), diofant.functions. elementary.trigonometric.cos (page 290), diofant.functions.elementary. trigonometric.tan (page 291), diofant.functions.elementary.trigonometric. cot (page 292), diofant.functions.elementary.trigonometric.asin (page 294), diofant.functions.elementary.trigonometric.acsc (page 298), diofant. functions.elementary.trigonometric.acos (page 295), diofant.functions. elementary.trigonometric.asec (page 296), diofant.functions.elementary. trigonometric.atan (page 297), diofant.functions.elementary.trigonometric. acot (page 298), diofant.functions.elementary.trigonometric.atan2 (page 299)

References

- https://en.wikipedia.org/wiki/Trigonometric_functions
- https://dlmf.nist.gov/4.14
- http://functions.wolfram.com/ElementaryFunctions/Sec

CSC

class diofant.functions.elementary.trigonometric.csc(arg)
The cosecant function.
Returns the cosecant of x (measured in radians).

Notes

See sin() (page 289) for notes about automatic evaluation.

Examples

```
>>> csc(x**2).diff(x)
-2*x*\operatorname{cot}(x**2)*\operatorname{csc}(x**2)
```


See also:

diofant.functions.elementary.trigonometric.sin (page 289), diofant. functions.elementary.trigonometric.cos (page 290), diofant.functions. elementary.trigonometric.sec (page 292), diofant.functions.elementary. trigonometric.tan (page 291), diofant.functions.elementary.trigonometric. cot (page 292), diofant.functions.elementary.trigonometric.asin (page 294), diofant.functions.elementary.trigonometric.acsc (page 298), diofant. functions.elementary.trigonometric.acos (page 295), diofant.functions. elementary.trigonometric.asec (page 296), diofant.functions.elementary. trigonometric.atan (page 297), diofant.functions.elementary.trigonometric. acot (page 298), diofant.functions.elementary.trigonometric.atan2 (page 299)

References

- https://en.wikipedia.org/wiki/Trigonometric_functions
- https://dlmf.nist.gov/4.14
- http://functions.wolfram.com/ElementaryFunctions/Csc

4.6.5 Trigonometric Inverses

asin
class diofant.functions.elementary.trigonometric.asin(arg)
The inverse sine function.
Returns the arcsine of x in radians.

Notes

$\operatorname{asin}(\mathrm{x})$ will evaluate automatically in the cases oo, -oo, $0,1,-1$ and for some instances when the result is a rational multiple of pi (see the eval class method).

Examples

```
>>> asin(1)
pi/2
>>> asin(-1)
-pi/2
```


See also:

diofant.functions.elementary.trigonometric.sin (page 289), diofant. functions.elementary.trigonometric.csc (page 293), diofant.functions. elementary.trigonometric.cos (page 290), diofant.functions.elementary. trigonometric.sec (page 292), diofant.functions.elementary.trigonometric. tan (page 291), diofant.functions.elementary.trigonometric.cot (page 292),
diofant.functions.elementary.trigonometric.acsc (page 298), diofant. functions.elementary.trigonometric.acos (page 295), diofant.functions. elementary.trigonometric.asec (page 296), diofant.functions.elementary. trigonometric.atan (page 297), diofant.functions.elementary.trigonometric. acot (page 298), diofant.functions.elementary.trigonometric.atan2 (page 299)

References

- https://en.wikipedia.org/wiki/Inverse_trigonometric_functions
- https://dlmf.nist.gov/4.23
- http://functions.wolfram.com/ElementaryFunctions/ArcSin
inverse $($ argindex $=1$)
Returns the inverse of this function.
acos
class diofant.functions.elementary.trigonometric.acos(arg)
The inverse cosine function.
Returns the arc cosine of x (measured in radians).

Notes

$\operatorname{acos}(\mathrm{x})$ will evaluate automatically in the cases $00,-00,0,1,-1$.
$\operatorname{acos}(z o o)$ evaluates to zoo (see note in :py:class`diofant.functions.elementary.trigonometric.asec`)

Examples

```
>>> acos(1)
0
>>> acos(0)
pi/2
>>> acos(0o)
00*I
```


See also:

diofant.functions.elementary.trigonometric.sin (page 289), diofant. functions.elementary.trigonometric.csc (page 293), diofant.functions. elementary.trigonometric.cos (page 290), diofant.functions.elementary. trigonometric.sec (page 292), diofant.functions.elementary.trigonometric. tan (page 291), diofant.functions.elementary.trigonometric.cot (page 292), diofant.functions.elementary.trigonometric.asin (page 294), diofant. functions.elementary.trigonometric.acsc (page 298), diofant.functions. elementary.trigonometric.asec (page 296), diofant.functions.elementary. trigonometric.atan (page 297), diofant.functions.elementary.trigonometric. acot (page 298), diofant.functions.elementary.trigonometric.atan2 (page 299)

References

- https://en.wikipedia.org/wiki/Inverse_trigonometric_functions
- https://dlmf.nist.gov/4.23
- http://functions.wolfram.com/ElementaryFunctions/ArcCos
inverse $($ argindex $=1$)
Returns the inverse of this function.
asec
class diofant.functions.elementary.trigonometric.asec (arg)
The inverse secant function.
Returns the arc secant of x (measured in radians).

Notes

$\operatorname{asec}(x)$ will evaluate automatically in the cases $00,-00,0,1,-1$.
$\operatorname{asec}(x)$ has branch cut in the interval [-1, 1]. For complex arguments, it can be defined as

$$
\sec ^{-1}(z)=-i *\left(\log \left(\sqrt{1-z^{2}}+1\right) / z\right)
$$

At $x=0$, for positive branch cut, the limit evaluates to zoo. For negative branch cut, the limit

$$
\lim _{z \rightarrow 0}-i *\left(\log \left(-\sqrt{1-z^{2}}+1\right) / z\right)
$$

simplifies to $-i * \log \left(z / 2+O\left(z^{3}\right)\right)$ which ultimately evaluates to zoo.
As $\operatorname{asex}(x)=\operatorname{asec}(1 / x)$, a similar argument can be given for $\operatorname{acos}(x)$.

Examples

```
>>> asec(1)
0
>>> asec(-1)
pi
```


See also:

diofant.functions.elementary.trigonometric.sin (page 289), diofant. functions.elementary.trigonometric.csc (page 293), diofant.functions. elementary.trigonometric.cos (page 290), diofant.functions.elementary. trigonometric.sec (page 292), diofant.functions.elementary.trigonometric. tan (page 291), diofant.functions.elementary.trigonometric.cot (page 292), diofant.functions.elementary.trigonometric.asin (page 294), diofant. functions.elementary.trigonometric.acsc (page 298), diofant.functions. elementary.trigonometric.acos (page 295), diofant.functions.elementary. trigonometric.atan (page 297), diofant.functions.elementary.trigonometric. acot (page 298), diofant.functions.elementary.trigonometric.atan2 (page 299)

References

- https://en.wikipedia.org/wiki/Inverse_trigonometric_functions
- https://dlmf.nist.gov/4.23
- http://functions.wolfram.com/ElementaryFunctions/ArcSec
- https://reference.wolfram.com/language/ref/ArcSec.html
inverse $($ argindex $=1$)
Returns the inverse of this function.

atan

class diofant.functions.elementary.trigonometric.atan(arg)
The inverse tangent function.
Returns the arc tangent of x (measured in radians).

Notes

$\operatorname{atan}(\mathrm{x})$ will evaluate automatically in the cases $00,-\mathrm{oo}, 0,1,-1$.

Examples

```
>>> atan(0)
0
>>> atan(1)
pi/4
>>> atan(oo)
pi/2
```


See also:

diofant.functions.elementary.trigonometric.sin (page 289), diofant.
functions.elementary.trigonometric.csc (page 293), diofant.functions.
elementary.trigonometric.cos (page 290), diofant. functions.elementary.
trigonometric.sec (page 292), diofant.functions.elementary.trigonometric.
tan (page 291), diofant.functions.elementary.trigonometric.cot (page 292),
diofant.functions.elementary.trigonometric.asin (page 294), diofant.
functions.elementary.trigonometric.acsc (page 298), diofant.functions.
elementary.trigonometric.acos (page 295), diofant.functions.elementary.
trigonometric.asec (page 296), diofant.functions.elementary.trigonometric.
acot (page 298), diofant.functions.elementary.trigonometric.atan2(page 299)

References

- https://en.wikipedia.org/wiki/Inverse_trigonometric_functions
- https://dlmf.nist.gov/4.23
- http://functions.wolfram.com/ElementaryFunctions/ArcTan
inverse $($ argindex=1)
Returns the inverse of this function.
acot
class diofant.functions.elementary.trigonometric.acot(arg)
The inverse cotangent function.
Returns the arc cotangent of x (measured in radians). This function has a branch cut discontinuity in the complex plane running from $-i$ to i.

See also:

diofant.functions.elementary.trigonometric.sin (page 289), diofant. functions.elementary.trigonometric.csc (page 293), diofant.functions. elementary.trigonometric.cos (page 290), diofant.functions.elementary. trigonometric.sec (page 292), diofant.functions.elementary.trigonometric. tan (page 291), diofant.functions.elementary.trigonometric.cot (page 292), diofant.functions.elementary.trigonometric.asin (page 294), diofant. functions.elementary.trigonometric.acsc (page 298), diofant.functions. elementary.trigonometric.acos (page 295), diofant.functions.elementary. trigonometric.asec (page 296), diofant.functions.elementary.trigonometric. atan (page 297), diofant.functions.elementary.trigonometric.atan2 (page 299)

References

- https://dlmf.nist.gov/4.23
- http://functions.wolfram.com/ElementaryFunctions/ArcCot
- https://en.wikipedia.org/wiki/Inverse_trigonometric_functions
inverse $($ argindex=1)
Returns the inverse of this function.
acsc
class diofant.functions.elementary.trigonometric.acsc(arg)
The inverse cosecant function.
Returns the arc cosecant of x (measured in radians).

Notes

$\operatorname{acsc}(\mathrm{x})$ will evaluate automatically in the cases $00,-\mathrm{oo}, 0,1,-1$.

Examples

```
>> acsc(1)
pi/2
>>> acsc(-1)
-pi/2
```


See also:

```
diofant.functions.elementary.trigonometric.sin (page 289), diofant.
functions.elementary.trigonometric.csc (page 293), diofant.functions.
elementary.trigonometric.cos (page 290), diofant.functions.elementary.
trigonometric.sec (page 292), diofant.functions.elementary.trigonometric.
tan (page 291), diofant.functions.elementary.trigonometric.cot (page 292),
diofant.functions.elementary.trigonometric.asin (page 294), diofant.
functions.elementary.trigonometric.acos (page 295), diofant.functions.
elementary.trigonometric.asec (page 296), diofant.functions.elementary.
trigonometric.atan (page 297), diofant.functions.elementary.trigonometric.
acot (page 298), diofant.functions.elementary.trigonometric.atan2 (page 299)
```


References

- https://en.wikipedia.org/wiki/Inverse_trigonometric_functions
- https://dlmf.nist.gov/4.23
- http://functions.wolfram.com/ElementaryFunctions/ArcCsc

inverse(argindex=1)

Returns the inverse of this function.

atan2

class diofant.functions.elementary.trigonometric.atan2 (y, x)
The function $\operatorname{atan} 2(\mathrm{y}, \mathrm{x})$ computes $\operatorname{atan}(y / x)$ taking two arguments y and x. Signs of both y and x are considered to determine the appropriate quadrant of atan (y / x). The range is $(-\pi, \pi]$. The complete definition reads as follows:

$$
\operatorname{atan} 2(y, x)= \begin{cases}\arctan \left(\frac{y}{x}\right) & x>0 \\ \arctan \left(\frac{y}{x}\right)+\pi & y \geq 0, x<0 \\ \arctan \left(\frac{y}{x}\right)-\pi & y<0, x<0 \\ +\frac{\pi}{2} & y>0, x=0 \\ -\frac{\pi}{2} & y<0, x=0 \\ \text { undefined } & y=0, x=0\end{cases}
$$

Attention: Note the role reversal of both arguments. The y-coordinate is the first argument and the x-coordinate the second.

Examples

Going counter-clock wise around the origin we find the following angles:

```
>>> atan2(0, 1)
0
>>> atan2(1, 1)
pi/4
>>> atan2(1, 0)
pi/2
>>> atan2(1, -1)
3*pi/4
>>> atan2(0, -1)
pi
>>> atan2(-1, -1)
-3*pi/4
>>> atan2(-1, 0)
-pi/2
>>> atan2(-1, 1)
-pi/4
```

which are all correct. Compare this to the results of the ordinary atan function for the point $(x, y)=(-1,1)$

```
>>> atan(Integer(1) / -1)
-pi/4
>>> atan2(1, -1)
3*pi/4
```

where only the atan2 function returns what we expect. We can differentiate the function with respect to both arguments:

```
>>> diff(atan2(y, x), x)
-y/(x**2 + y**2)
```

```
>>> diff(atan2(y, x), y)
x/(x**2 + y**2)
```

We can express the atan2 function in terms of complex logarithms:

```
>>> atan2(y, x).rewrite(log)
-I* log((x + I*y)/sqrt (x**2 + y**2))
```

and in terms of (atan):

```
>>> atan2(y, x).rewrite(atan)
2*atan(y/(x + sqrt(x**2 + y**2)))
```

but note that this form is undefined on the negative real axis.

See also:

diofant.functions.elementary.trigonometric.sin (page 289), diofant. functions.elementary.trigonometric.csc (page 293), diofant.functions. elementary.trigonometric.cos (page 290), diofant.functions.elementary. trigonometric.sec (page 292), diofant.functions.elementary.trigonometric. tan (page 291), diofant.functions.elementary.trigonometric.cot (page 292), diofant.functions.elementary.trigonometric.asin (page 294), diofant. functions.elementary.trigonometric.acsc (page 298), diofant.functions. elementary.trigonometric.acos (page 295), diofant.functions.elementary.
trigonometric.asec (page 296), diofant.functions.elementary.trigonometric. atan (page 297), diofant.functions.elementary.trigonometric.acot (page 298)

References

- https://en.wikipedia.org/wiki/Inverse_trigonometric_functions
- https://en.wikipedia.org/wiki/Atan2
- http://functions.wolfram.com/ElementaryFunctions/ArcTan2

4.6.6 diofant.functions.elementary.hyperbolic

4.6.7 Hyperbolic Functions

HyperbolicFunction

class diofant.functions.elementary.hyperbolic.HyperbolicFunction(*args)
Base class for hyperbolic functions.

See also:

diofant. functions.elementary.hyperbolic.sinh (page 301), diofant.functions. elementary.hyperbolic.cosh (page 302), diofant.functions.elementary. hyperbolic.tanh (page 302), diofant.functions.elementary.hyperbolic.coth (page 302)
sinh
class diofant.functions.elementary.hyperbolic.sinh(arg)
The hyperbolic sine function, $\frac{e^{x}-e^{-x}}{2}$.

- $\sinh (x)->$ Returns the hyperbolic sine of x

See also:

diofant.functions.elementary.hyperbolic.cosh (page 302), diofant.functions. elementary.hyperbolic.tanh (page 302), diofant.functions.elementary. hyperbolic.asinh (page 303)
as_real_imag (deep=True, **hints)
Returns this function as a complex coordinate.
fdiff(argindex=1)
Returns the first derivative of this function.
inverse(argindex=1)
Returns the inverse of this function.
static taylor_term(n, x, *previous_terms)
Returns the next term in the Taylor series expansion.
cosh
class diofant.functions.elementary.hyperbolic. cosh(arg)
The hyperbolic cosine function, $\frac{e^{x}+e^{-x}}{2}$.

- $\cosh (\mathrm{x})$-> Returns the hyperbolic cosine of x

See also:

diofant.functions.elementary.hyperbolic.sinh (page 301), diofant.functions. elementary.hyperbolic.tanh (page 302), diofant.functions.elementary. hyperbolic.acosh (page 303)

tanh

class diofant.functions.elementary.hyperbolic.tanh(arg)
The hyperbolic tangent function, $\frac{\sinh (x)}{\cosh (x)}$.

- $\tanh (\mathrm{x})$-> Returns the hyperbolic tangent of x

See also:

diofant.functions.elementary.hyperbolic.sinh (page 301), diofant.functions. elementary.hyperbolic.cosh (page 302), diofant.functions.elementary. hyperbolic.atanh (page 304)
inverse (argindex=1)
Returns the inverse of this function.
coth
class diofant.functions.elementary.hyperbolic. $\operatorname{coth}(\mathrm{arg})$
The hyperbolic cotangent function, $\frac{\cosh (x)}{\sinh (x)}$.

- $\operatorname{coth}(\mathrm{x})$-> Returns the hyperbolic cotangent of x
inverse (argindex=1)
Returns the inverse of this function.

sech

class diofant.functions.elementary.hyperbolic.sech (arg)
The hyperbolic secant function, $\frac{2}{e^{x}+e^{-x}}$

- $\operatorname{sech}(x)$-> Returns the hyperbolic secant of x

See also:

diofant.functions.elementary.hyperbolic.sinh (page 301), diofant.functions. elementary.hyperbolic.cosh (page 302), diofant.functions.elementary. hyperbolic.tanh (page 302), diofant.functions.elementary.hyperbolic. coth (page 302), diofant.functions.elementary.hyperbolic.csch (page 303), diofant.functions.elementary.hyperbolic.asinh (page 303), diofant.functions. elementary. hyperbolic. acosh (page 303)
csch
class diofant.functions.elementary.hyperbolic.csch (arg)
The hyperbolic cosecant function, $\frac{2}{e^{x}-e^{-x}}$

- $\operatorname{csch}(\mathrm{x})$-> Returns the hyperbolic cosecant of x

See also:

diofant.functions.elementary.hyperbolic.sinh (page 301), diofant.functions. elementary.hyperbolic.cosh (page 302), diofant.functions.elementary. hyperbolic.tanh (page 302), diofant.functions.elementary.hyperbolic.sech (page 302), diofant.functions.elementary. hyperbolic.asinh (page 303), diofant. functions.elementary.hyperbolic.acosh (page 303)
fdiff(argindex=1)
Returns the first derivative of this function.
static taylor_term(n, x, *previous_terms)
Returns the next term in the Taylor series expansion.

4.6.8 Hyperbolic Inverses

asinh
class diofant.functions.elementary.hyperbolic.asinh(arg)
The inverse hyperbolic sine function.

- $\operatorname{asinh}(\mathrm{x})$-> Returns the inverse hyperbolic sine of x

See also:

diofant.functions.elementary.hyperbolic.cosh (page 302), diofant.functions. elementary.hyperbolic.tanh (page 302), diofant.functions.elementary. hyperbolic.sinh (page 301)
inverse (argindex=1)
Returns the inverse of this function.
acosh
class diofant.functions.elementary.hyperbolic.acosh(arg)
The inverse hyperbolic cosine function.

- $\operatorname{acosh}(\mathrm{x})$-> Returns the inverse hyperbolic cosine of x

See also:

diofant. functions.elementary. hyperbolic.asinh (page 303), diofant.functions. elementary.hyperbolic.atanh (page 304), diofant.functions.elementary. hyperbolic.cosh (page 302)
inverse(argindex=1)
Returns the inverse of this function.

atanh

class diofant.functions.elementary.hyperbolic.atanh(arg)
The inverse hyperbolic tangent function.

- $\operatorname{atanh}(\mathrm{x})$-> Returns the inverse hyperbolic tangent of x

See also:

diofant.functions.elementary.hyperbolic.asinh (page 303), diofant.functions. elementary.hyperbolic.acosh (page 303), diofant.functions.elementary. hyperbolic. tanh (page 302)
inverse(argindex=1)
Returns the inverse of this function.

acoth

class diofant.functions.elementary.hyperbolic.acoth(arg)
The inverse hyperbolic cotangent function.

- $\operatorname{acoth}(\mathrm{x})->$ Returns the inverse hyperbolic cotangent of x
inverse (argindex=1)
Returns the inverse of this function.

4.6.9 diofant.functions.elementary.integers

ceiling
class diofant.functions.elementary.integers.ceiling(arg)
Ceiling is a univariate function which returns the smallest integer value not less than its argument. Ceiling function is generalized in this implementation to complex numbers.

Examples

```
>>> ceiling(17)
17
>>> ceiling(Rational(23, 10))
3
>>> ceiling(2*E)
6
>>> ceiling(-Float(0.567))
0
>>> ceiling(I/2)
I
```


See also:

diofant.functions.elementary.integers.floor (page 305)

References

- "Concrete mathematics" by Graham, pp. 87
- https://mathworld.wolfram.com/CeilingFunction.html

floor

class diofant.functions.elementary.integers.floor(arg)
Floor is a univariate function which returns the largest integer value not greater than its argument. However this implementation generalizes floor to complex numbers.

Examples

```
>>> floor(17)
17
>>> floor(Rational(23, 10))
2
>>> floor(2*E)
5
>>> floor(-Float(0.567))
-1
>>> floor(-I/2)
-I
```


See also:

diofant.functions.elementary.integers.ceiling (page 304)

References

- "Concrete mathematics" by Graham, pp. 87
- https://mathworld.wolfram.com/FloorFunction.html

RoundFunction

class diofant.functions.elementary.integers.RoundFunction(arg)
The base class for rounding functions.

4.6.10 diofant.functions.elementary.exponential

exp
diofant.functions.elementary.exponential.exp(arg, **kwargs)
The exponential function, e^{x}.
See also:
diofant.functions.elementary.exponential.log (page 307)

exp_polar

class diofant.functions.elementary.exponential.exp_polar(*args) Represent a 'polar number' (see g-function Sphinx documentation).
exp_polar represents the function $\operatorname{Exp}: \mathbb{C} \rightarrow \mathcal{S}$, sending the complex number $z=a+b i$ to the polar number $r=\exp (a), \theta=b$. It is one of the main functions to construct polar numbers.
The main difference is that polar numbers don't "wrap around" at 2π :

```
>>> exp(2*pi*I)
1
>>> exp_polar(2*pi*I)
exp_polar(2*I*pi)
```

apart from that they behave mostly like classical complex numbers:

```
>>> exp_polar(2)*exp_polar(3)
exp_polar(5)
```


See also:

diofant.simplify.powsimp.powsimp (page 694), diofant.functions.elementary. complexes.polar_lift (page 287), diofant.functions.elementary.complexes. periodic_argument (page 288), diofant.functions.elementary.complexes. principal_branch (page 288)
property exp
Returns the exponent of the function.

Lambertw

class diofant.functions.elementary.exponential.LambertW($x, k=$ None)
The Lambert W function $W(z)$ is defined as the inverse function of $w \exp (w)$.
In other words, the value of $W(z)$ is such that $z=W(z) \exp (W(z))$ for any complex number z. The Lambert W function is a multivalued function with infinitely many branches $W_{k}(z)$, indexed by $k \in \mathbb{Z}$. Each branch gives a different solution w of the equation $z=w \exp (w)$.
The Lambert W function has two partially real branches: the principal branch $(k=0)$ is real for real $z>-1 / e$, and the $k=-1$ branch is real for $-1 / e<z<0$. All branches except $k=0$ have a logarithmic singularity at $z=0$.

Examples

```
>>> LambertW(1.2)
0.635564016364870
>>> LambertW(1.2, -1).evalf()
-1.34747534407696 - 4.41624341514535*I
>>> LambertW(-1).is_real
False
```


References

- https://en.wikipedia.org/wiki/Lambert_W_function
fdiff($\operatorname{argindex}=1$)
Return the first derivative of this function.
log
class diofant.functions.elementary.exponential. $\log ($ arg, base=None)
The natural logarithm function $\ln (x)$ or $\log (x)$. Logarithms are taken with the natural base, e. To get a logarithm of a different base b , use $\log (\mathrm{x}, \mathrm{b})$, which is essentially short-hand for $\log (x) / \log (b)$.

See also:

diofant.functions.elementary.exponential.exp (page 305)
as_base_exp()
Returns this function in the form (base, exponent).
as_real_imag (deep=True, **hints)
Returns this function as a complex coordinate.

Examples

```
>>> log(x).as_real_imag()
(log(Abs(x)), arg(\overline{x}))
>>> log(I).as_real_imag()
(0, pi/2)
>>> log(1 + I).as_real_imag()
(log(sqrt(2)), pi/4)
>>> log(I*x).as_real_imag()
(log(Abs(x)), arg(I*x
```

fdiff(argindex=1)
Returns the first derivative of the function.
inverse (argindex=1)
Returns e^{x}, the inverse function of $\log (x)$.

4.6.11 diofant.functions.elementary.piecewise

ExprCondPair

class diofant.functions.elementary.piecewise.ExprCondPair(expr, cond)
Represents an expression, condition pair.

property cond

Returns the condition of this pair.
property expr
Returns the expression of this pair.

Piecewise

class diofant.functions.elementary.piecewise.Piecewise(*args)
Represents a piecewise function.
Usage:
Piecewise((expr,cond), (expr,cond), ...)

- Each argument is a 2-tuple defining an expression and condition
- The conds are evaluated in turn returning the first that is True. If any of the evaluated conds are not determined explicitly False, e.g. $x<1$, the function is returned in symbolic form.
- If the function is evaluated at a place where all conditions are False, a ValueError exception will be raised.
- Pairs where the cond is explicitly False, will be removed.

Examples

```
>>> f = x**2
>>>g=log(x)
>>> = Piecewise((0, x < -1), (f, x <= 1), (g, True))
>> p.subs({x: 1})
1
>>> p.subs({x: 5})
log(5)
```


See also:

diofant.functions.elementary.piecewise.piecewise_fold (page 308)
doit (**hints)
Evaluate this piecewise function.
diofant.functions.elementary.piecewise.piecewise_fold (expr)
Takes an expression containing a piecewise function and returns the expression in piecewise form.

Examples

```
>>> p = Piecewise((x, x < 1), (1, x >= 1))
>> piecewise fold(x*p)
Piecewise((x**2, x< 1), (x, x >= 1))
```

See also:
diofant.functions.elementary.piecewise.Piecewise (page 308)

4.6.12 diofant.functions.elementary.miscellaneous

IdentityFunction

class diofant.functions.elementary.miscellaneous.IdentityFunction(*args, **kwargs)
The identity function

Examples

```
>>> Id(x)
```

X

Min

class diofant.functions.elementary.miscellaneous. Min(*args)
Return, if possible, the minimum value of the list.
It is named Min and not min to avoid conflicts with the built-in function min.

Examples

```
>>> p = Symbol('p', positive=True)
>>> n = Symbol('n', negative=True)
```

```
>>> Min(x, -2)
Min(-2, x)
>> Min(x, -2).subs({x: 3})
-2
>>> Min(p, -3)
-3
>>> Min(x, y)
Min(x, y)
>> Min(n, 8, p, -7, p, oo)
Min(-7, n)
```


See also:

diofant. functions.elementary.miscellaneous.Max (page 309) find maximum values

Max

class diofant.functions.elementary.miscellaneous.Max(*args)
Return, if possible, the maximum value of the list.
When number of arguments is equal one, then return this argument.
When number of arguments is equal two, then return, if possible, the value from (a, b) that is $>=$ the other.

In common case, when the length of list greater than 2, the task is more complicated. Return only the arguments, which are greater than others, if it is possible to determine directional relation.
If is not possible to determine such a relation, return a partially evaluated result.
Assumptions are used to make the decision too.
Also, only comparable arguments are permitted.
It is named Max and not max to avoid conflicts with the built-in function max.

Examples

```
>> = Symbol('p', positive=True)
>> = Symbol('n', negative=True)
```

```
>>> Max(x, -2)
Max(-2, x)
>>> Max(x, -2).subs({x: 3})
3
>>> Max(p, -2)
p
>>> Max(x, y)
Max(x, y)
>>> Max(x, y) == Max(y, x)
True
>>> Max(x, Max(y, z))
Max(x, y, z)
>>> Max(n, 8, p, 7, -00)
Max(8, p)
>>> Max(1, x, 00)
OO
```


Notes

The task can be considered as searching of supremums in the directed complete partial orders.
The source values are sequentially allocated by the isolated subsets in which supremums are searched and result as Max arguments.
If the resulted supremum is single, then it is returned.
The isolated subsets are the sets of values which are only the comparable with each other in the current set. E.g. natural numbers are comparable with each other, but not comparable with the x symbol. Another example: the symbol x with negative assumption is comparable with a natural number.
Also there are "least" elements, which are comparable with all others, and have a zero property (maximum or minimum for all elements). E.g. oo. In case of it the allocation operation is terminated and only this value is returned.

Assumption:

- if $\mathrm{A}>\mathrm{B}>\mathrm{C}$ then $\mathrm{A}>\mathrm{C}$
- if $A==B$ then B can be removed

References

- https://en.wikipedia.org/wiki/Directed_complete_partial_order
- https://en.wikipedia.org/wiki/Lattice_\(order\)

See also:

diofant.functions.elementary.miscellaneous.Min (page 309) find minimum values
root
diofant.functions.elementary.miscellaneous. root(arg, $n, k=0, * * k w a r g s)$
Returns the k -th n-th root of arg, defaulting to the principle root.

Examples

```
>>> root(x, 2)
sqrt(x)
```

>> $\operatorname{root}(x, 3)$
$x^{* *}(1 / 3)$
$\ggg \operatorname{root}(x, n)$
$x^{* *}(1 / n)$
>>> root(x, -Rational $(2,3))$
$x^{* *}(-3 / 2)$

To get the k-th n-th root, specify k:

```
>>> root(-2, 3, 2)
-(-1)**(2/3)*2**(1/3)
```

To get all n n-th roots you can use the RootOf function. The following examples show the roots of unity for n equal 2,3 and 4 :

```
>>> [RootOf(x**2 - 1, i) for i in range(2)]
[-1, 1]
```

```
>>> [RootOf(x**3 - 1, i) for i in range(3)]
[1, -1/2 - sqrt(3)*I/2, -1/2 + sqrt(3)*I/2]
```

```
>>> [RootOf(x**4 - 1, i) for i in range(4)]
[-1, 1, -I, I]
```

Diofant, like other symbolic algebra systems, returns the complex root of negative numbers. This is the principal root and differs from the text-book result that one might be expecting. For example, the cube root of -8 does not come back as -2 :

```
>>> root(-8, 3)
2*(-1)**(1/3)
```

The real_root function can be used to either make the principle result real (or simply to return the real root directly):

```
>>> real_root(_)
-2
>>> real_root(-32, 5)
-2
```

Alternatively, the $\mathrm{n} / / 2$-th n -th root of a negative number can be computed with root:

```
>>> root(-32, 5, 5//2)
-2
```


See also:

diofant.polys.rootoftools.Root0f (page 622), diofant.core.power. integer_nthroot (page 103), diofant.functions.elementary.miscellaneous.sqrt (page 313), diofant.functions.elementary.miscellaneous.real_root (page 312)

References

- https://en.wikipedia.org/wiki/Square_root
- https://en.wikipedia.org/wiki/Real_root
- https://en.wikipedia.org/wiki/Root_of_unity
- https://en.wikipedia.org/wiki/Principal_value
- https://mathworld.wolfram.com/CubeRoot.html
real_root
diofant.functions.elementary.miscellaneous.real_root(arg, $n=N o n e)$
Return the real nth-root of arg if possible. If n is omitted then all instances of (-n$)^{* *}(1 /$ odd $)$ will be changed to - $n^{* *}(1 /$ odd $)$; this will only create a real root of a principle root - the presence of other factors may cause the result to not be real.

Examples

```
>>> real_root(-8, 3)
-2
>>> root(-8, 3)
2*(-1)**(1/3)
>>> real_root(_)
-2
```

If one creates a non-principle root and applies real_root, the result will not be real (so use with caution):

```
>>> root(-8, 3, 2)
-2*(-1)**(2/3)
>>> real_root(_)
-2*(-1)*\overline{*}}(2/3
```


See also:

diofant.polys.rootoftools.Root0f (page 622), diofant.core.power. integer_nthroot (page 103), diofant.functions.elementary.miscellaneous.root (page 311), diofant.functions.elementary.miscellaneous.sqrt (page 313)

sqrt

diofant.functions.elementary.miscellaneous.sqrt(arg, **kwargs)
The square root function
sqrt(x) -> Returns the principal square root of x .

Examples

```
>>> sqrt(x)
sqrt(x)
```

>>> $\operatorname{sqrt}(x)^{* * 2}$
X

Note that sqrt($\mathrm{x}^{* *} 2$) does not simplify to x .

```
>>> sqrt(x**2)
sqrt(x**2)
```

This is because the two are not equal to each other in general. For example, consider x $==-1$:

```
>>> Eq(sqrt(x**2), x).subs({x: -1})
false
```

This is because sqrt computes the principal square root, so the square may put the argument in a different branch. This identity does hold if x is positive:

```
>>> y = Symbol('y', positive=True)
>>> sqrt(y**2)
y
```

You can force this simplification by using the powdenest() function with the force option set to True:

```
>>> sqrt(x**2)
sqrt(x**2)
>> powdenest(sqrt(x**2), force=True)
X
```

To get both branches of the square root you can use the RootOf function:

```
>>> [RootOf(x**2 - 3, i) for i in (0, 1)]
[-sqrt(3), sqrt(3)]
```


See also:

diofant.polys.rootoftools.RootOf (page 622), diofant.functions.elementary. miscellaneous.root (page 311), diofant.functions.elementary.miscellaneous. real_root (page 312)

References

- https://en.wikipedia.org/wiki/Square_root
- https://en.wikipedia.org/wiki/Principal_value

4.6.13 Combinatorial

This module implements various combinatorial functions.
bell
class diofant.functions.combinatorial.numbers.bell($n, k_{\text {_sym }}=$ None, symbols=None)
Bell numbers / Bell polynomials
The Bell numbers satisfy $B_{0}=1$ and

$$
B_{n}=\sum_{k=0}^{n-1}\binom{n-1}{k} B_{k} .
$$

They are also given by:

$$
B_{n}=\frac{1}{e} \sum_{k=0}^{\infty} \frac{k^{n}}{k!} .
$$

The Bell polynomials are given by $B_{0}(x)=1$ and

$$
B_{n}(x)=x \sum_{k=1}^{n-1}\binom{n-1}{k-1} B_{k-1}(x) .
$$

The second kind of Bell polynomials (are sometimes called "partial" Bell polynomials or incomplete Bell polynomials) are defined as

$$
B_{n, k}\left(x_{1}, x_{2}, \ldots x_{n-k+1}\right)=\sum_{\substack{j_{1}+j_{2}+j_{2}+\ldots=k \\ j_{1}+2 j_{2}+3 j_{2}+\cdots=n}} \frac{n!}{j_{1}!j_{2}!\cdots j_{n-k+1}!}\left(\frac{x_{1}}{1!}\right)^{j_{1}}\left(\frac{x_{2}}{2!}\right)^{j_{2}} \cdots\left(\frac{x_{n-k+1}}{(n-k+1)!}\right)^{j_{n-k+1}} .
$$

- bell(n) gives the $n^{\text {th }}$ Bell number, B_{n}.
- bell(n, x) gives the $n^{\text {th }}$ Bell polynomial, $B_{n}(x)$.
- bell(n, k, (x1, x2, ...)) gives Bell polynomials of the second kind, $B_{n, k}\left(x_{1}, x_{2}, \ldots, x_{n-k+1}\right)$.

Notes

Not to be confused with Bernoulli numbers and Bernoulli polynomials, which use the same notation.

Examples

```
>>> [bell(n) for n in range(11)]
[1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115975]
>>> bell(30)
846749014511809332450147
>>> bell(4, Symbol('t'))
t**4 + 6*t**3 + 7*t**2 + t
>> bell(6, 2, symbols('x:6')[1:])
6*x1*x5 + 15*x2*x4 + 10*x3**2
```


References

- https://en.wikipedia.org/wiki/Bell_number
- https://mathworld.wolfram.com/BellNumber.html
- https://mathworld.wolfram.com/BellPolynomial.html

See also:

diofant.functions.combinatorial.numbers.bernoulli (page 315), diofant. functions.combinatorial.numbers.catalan (page 318), diofant.functions. combinatorial.numbers.euler (page 319), diofant.functions.combinatorial. numbers.fibonacci (page 323), diofant.functions.combinatorial.numbers. harmonic (page 324), diofant.functions. combinatorial. numbers.lucas (page 326)

bernoulli

class diofant.functions.combinatorial.numbers.bernoulli(n, sym=None)
Bernoulli numbers / Bernoulli polynomials
The Bernoulli numbers are a sequence of rational numbers defined by B_0 = 1 and the recursive relation ($\mathrm{n}>0$):

They are also commonly defined by their exponential generating function, which is $\mathrm{x} /(\exp (\mathrm{x})-1)$. For odd indices >1, the Bernoulli numbers are zero.

The Bernoulli polynomials satisfy the analogous formula:

Bernoulli numbers and Bernoulli polynomials are related as $B _n(0)=B _n$.
We compute Bernoulli numbers using Ramanujan's formula:

where $A(n)=(n+3) / 3$ when $n=0$ or $2(\bmod 6), A(n)=-(n+3) / 6$ when $n=4(\bmod 6)$, and:

This formula is similar to the sum given in the definition, but cuts $2 / 3$ of the terms. For Bernoulli polynomials, we use the formula in the definition.

- bernoulli(n) gives the nth Bernoulli number, B_n
- bernoulli(n, x) gives the nth Bernoulli polynomial in x, B_n(x)

Examples

```
>>> [bernoulli(n) for n in range(11)]
[1, -1/2, 1/6, 0, -1/30, 0, 1/42, 0, -1/30, 0, 5/66]
>>> bernoulli(1000001)
0
```


References

- https://en.wikipedia.org/wiki/Bernoulli_number
- https://en.wikipedia.org/wiki/Bernoulli_polynomial
- https://mathworld.wolfram.com/BernoulliNumber.html
- https://mathworld.wolfram.com/BernoulliPolynomial.html

See also:

diofant.functions.combinatorial.numbers.bell (page 314), diofant.functions. combinatorial.numbers.catalan (page 318), diofant.functions.combinatorial. numbers.euler (page 319), diofant.functions.combinatorial.numbers.fibonacci (page 323), diofant.functions.combinatorial.numbers.harmonic (page 324), diofant.functions. combinatorial.numbers.lucas (page 326)

binomial

class diofant.functions.combinatorial.factorials.binomial (n, k)
Implementation of the binomial coefficient. It can be defined in two ways depending on its desired interpretation:

$$
\mathrm{C}(\mathrm{n}, \mathrm{k})=\mathrm{n}!/(\mathrm{k}!(\mathrm{n}-\mathrm{k})!) \text { or } \mathrm{C}(\mathrm{n}, \mathrm{k})=\mathrm{ff}(\mathrm{n}, \mathrm{k}) / \mathrm{k}!
$$

First, in a strict combinatorial sense it defines the number of ways we can choose ' k ' elements from a set of ' n ' elements. In this case both arguments are nonnegative integers and binomial is computed using an efficient algorithm based on prime factorization.

The other definition is generalization for arbitrary ' n ', however ' k ' must also be nonnegative. This case is very useful when evaluating summations.
For the sake of convenience for negative ' k ' this function will return zero no matter what valued is the other argument.
To expand the binomial when n is a symbol, use either expand_func() or expand(func=True). The former will keep the polynomial in factored form while the latter will expand the polynomial itself. See examples for details.

Examples

```
>>> n = Symbol('n', integer=True, positive=True)
```

```
>>> binomial(15, 8)
```

6435

```
>>> binomial(n, -1)
```

0

Rows of Pascal's triangle can be generated with the binomial function:

```
>>> for N in range(8):
... [binomial(N, i) for i in range(N + 1)]
[1]
[1, 1]
[1, 2, 1]
[1, 3, 3, 1]
[1, 4, 6, 4, 1]
[1, 5, 10, 10, 5, 1]
[1, 6, 15, 20, 15, 6, 1]
[1, 7, 21, 35, 35, 21, 7, 1]
```

As can a given diagonal, e.g. the 4th diagonal:

```
>>> N = -4
>>> [binomial(N, i) for i in range(1 - N)]
[1, -4, 10, -20, 35]
```

```
>>> binomial(n, 3)
binomial(n, 3)
```

```
>>> binomial(n, 3).expand(func=True)
n**3/6 - n**2/2 + n/3
```

```
>>> expand_func(binomial(n, 3))
n*(n - 2)*\overline{(n - 1)/6}
```


Diofant Documentation, Release 0.13.0

catalan

class diofant.functions. combinatorial. numbers.catalan (n)
Catalan numbers
The n-th catalan number is given by:

	n + 1 \}	\ n

- catalan(n) gives the n-th Catalan number, C_n

Examples

```
>>> [catalan(i) for i in range(1, 10)]
[1, 2, 5, 14, 42, 132, 429, 1430, 4862]
```

```
>>> catalan(n)
catalan(n)
```

Catalan numbers can be transformed into several other, identical expressions involving other mathematical functions

```
>>> catalan(n).rewrite(binomial)
binomial(2*n, n)/(n + 1)
>>> catalan(n).rewrite(gamma)
4**n*gamma(n + 1/2)/(sqrt(pi)*gamma(n + 2))
```

```
>>> catalan(n).rewrite(hyper)
hyper((-n + 1, -n), (2,), 1)
```

For some non-integer values of n we can get closed form expressions by rewriting in terms of gamma functions:

```
>>> catalan(Rational(1, 2)).rewrite(gamma)
8/(3*pi)
```

We can differentiate the Catalan numbers $\mathrm{C}(\mathrm{n})$ interpreted as a continuous real function in n :

```
>>> diff(catalan(n), n)
(polygamma(0, n + 1/2) - polygamma(0, n + 2) + log(4))*catalan(n)
```

As a more advanced example consider the following ratio between consecutive numbers:

```
>>> combsimp((catalan(n + 1)/catalan(n)).rewrite(binomial))
2*(2*n + 1)/(n + 2)
```

The Catalan numbers can be generalized to complex numbers:

```
>>> catalan(I).rewrite(gamma)
4**I*gamma(1/2 + I)/(sqrt(pi)*gamma(2 + I))
```

and evaluated with arbitrary precision:

```
>>> catalan(I).evalf(20)
0.39764993382373624267-0.020884341620842555705*I
```


References

- https://en.wikipedia.org/wiki/Catalan_number
- https://mathworld.wolfram.com/CatalanNumber.html
- http://functions.wolfram.com/GammaBetaErf/CatalanNumber/
- http://geometer.org/mathcircles/catalan.pdf

See also:

diofant.functions.combinatorial.numbers.bell (page 314), diofant.functions. combinatorial.numbers.bernoulli (page 315), diofant.functions.combinatorial. numbers.euler (page 319), diofant.functions.combinatorial.numbers.fibonacci (page 323), diofant.functions.combinatorial.numbers.harmonic (page 324), diofant.functions.combinatorial.numbers.lucas (page 326), diofant.functions. combinatorial.factorials.binomial (page 316)
euler
class diofant.functions.combinatorial.numbers.euler (m)
Euler numbers
The euler numbers are given by:

- euler(n) gives the n-th Euler number, E_n

Examples

```
>>> from diofant.functions import euler
```

```
>>> [euler(n) for n in range(10)]
[1, 0, -1, 0, 5, 0, -61, 0, 1385, 0]
>>> euler(n+2*n)
euler(3*n)
```


References

- https://en.wikipedia.org/wiki/Euler_numbers
- https://mathworld.wolfram.com/EulerNumber.html
- https://en.wikipedia.org/wiki/Alternating_permutation
- https://mathworld.wolfram.com/AlternatingPermutation.html

See also:

diofant.functions.combinatorial.numbers.bell (page 314), diofant.functions. combinatorial.numbers.bernoulli (page 315), diofant.functions.combinatorial. numbers.fibonacci (page 323), diofant.functions.combinatorial.numbers. harmonic (page 324), diofant.functions. combinatorial. numbers.lucas (page 326)

factorial

class diofant.functions.combinatorial.factorials.factorial(n) Implementation of factorial function over nonnegative integers.
By convention (consistent with the gamma function and the binomial coefficients), factorial of a negative integer is complex infinity.
The factorial is very important in combinatorics where it gives the number of ways in which n objects can be permuted. It also arises in calculus, probability, number theory, etc.
There is strict relation of factorial with gamma function. In fact $n!=$ gamma($\mathrm{n}+1$) for nonnegative integers. Rewrite of this kind is very useful in case of combinatorial simplification.
Computation of the factorial is done using two algorithms. For small arguments naive product is evaluated. However for bigger input algorithm Prime-Swing is used. It is the fastest algorithm known and computes n ! via prime factorization of special class of numbers, called here the 'Swing Numbers'.

Examples

```
>>> factorial(0)
1
```

>>> factorial(7)
5040

```
>>> factorial(-2)
```

zoo

```
>>> factorial(n)
factorial(n)
```

```
>>> factorial(2*n)
```

factorial(2*n)

```
>>> factorial(Rational(1, 2))
factorial(1/2)
```


See also:

diofant.functions.combinatorial.factorials.factorial2 (page 322), diofant. functions.combinatorial.factorials.RisingFactorial (page 326), diofant. functions.combinatorial.factorials.FallingFactorial (page 322)

subfactorial

class diofant.functions.combinatorial.factorials.subfactorial(arg)
The subfactorial counts the derangements of n items and is defined for non-negative integers as:

```
!n={\begin{array}{ll}{l}&{\mathrm{ for n = 0}}\\{0}&{\mathrm{ for n = 1}}\\{|,(n-1)*(!(n-1)+!(n-2)) for n>1}\end{array}
```

It can also be written as int(round(n!/exp(1))) but the recursive definition with caching is implemented for this function.
An interesting analytic expression is the following

$$
!x=\Gamma(x+1,-1) / e
$$

which is valid for non-negative integers x . The above formula is not very useful in case of non-integers. $\Gamma(x+1,-1)$ is single-valued only for integral arguments x , elsewhere on the positive real axis it has an infinite number of branches none of which are real.

References

- https://en.wikipedia.org/wiki/Subfactorial
- https://mathworld.wolfram.com/Subfactorial.html

Examples

```
>>> subfactorial(n + 1)
subfactorial(n + 1)
>>> subfactorial(5)
4 4
```


See also:

diofant.functions.combinatorial.factorials.factorial (page 320), diofant. utilities.iterables.generate derangements (page 887), diofant.functions. special.gamma_functions.uppergamma (page 338)

factorial2 / double factorial

class diofant.functions.combinatorial.factorials.factorial2(n)
The double factorial n!!, not to be confused with (n!)!
The double factorial is defined for nonnegative integers and for odd negative integers as:

```
n!! ={ l n*(n - 2)*(n-4)* ...* * for n positive odd
n!! = { n*(n-2)*(n - 4)* ...* 2 for n positive even
    | l for n = 0
    |, (n+2)!! / (n+2) for n negative odd
```


References

- https://en.wikipedia.org/wiki/Double_factorial

Examples

```
>>> factorial2(n + 1)
factorial2(n + 1)
>>> factorial2(5)
1 5
>>> factorial2(-1)
1
>>> factorial2(-5)
1/3
```


See also:

diofant.functions.combinatorial.factorials.factorial (page 320), diofant. functions.combinatorial.factorials.RisingFactorial (page 326), diofant. functions.combinatorial.factorials.FallingFactorial (page 322)

FallingFactorial

class diofant.functions.combinatorial.factorials.FallingFactorial (x, k)
Falling factorial (related to rising factorial) is a double valued function arising in concrete mathematics, hypergeometric functions and series expansions.
It is defined by:

```
ff(x, k) = x * (x-1) * ...* * (x - k+1)
```

where ' x ' can be arbitrary expression and ' k ' is an integer. For more information check "Concrete mathematics" by Graham, pp. 66 or visit https://mathworld.wolfram.com/ FallingFactorial.html page.

```
>>> ff(x, 0)
1
>>> ff(5, 5)
120
```

```
>>> ff(x, 5) == x*(x-1)*(x-2)*(x-3)*(x-4)
True
```


See also:

diofant.functions.combinatorial.factorials.factorial (page 320), diofant. functions.combinatorial.factorials.factorial2 (page 322), diofant.functions. combinatorial.factorials.RisingFactorial (page 326)

fibonacci

class diofant.functions.combinatorial.numbers.fibonacci(n, sym=None)
Fibonacci numbers / Fibonacci polynomials
The Fibonacci numbers are the integer sequence defined by the initial terms F_ $0=0$, $F_{-} 1=1$ and the two-term recurrence relation $F_{-} n=F_{-}\{n-1\}+F_{-}\{n-2\}$. This definition extended to arbitrary real and complex arguments using the formula

$$
F_{z}=\frac{\phi^{z}-\cos (\pi z) \phi^{-z}}{\sqrt{5}}
$$

The Fibonacci polynomials are defined by $\mathrm{F}_{-} 1(\mathrm{x})=1, \mathrm{~F}_{-} 2(\mathrm{x})=\mathrm{x}$, and $\mathrm{F}_{-} \mathrm{n}(\mathrm{x})=\mathrm{x}^{*} \mathrm{~F}_{-}\{\mathrm{n}-$ $1\}(x)+F_{-}\{n-2\}(x)$ for $n>2$. For all positive integers $n, F_{-} n(1)=F_{-} n$.

- fibonacci(n) gives the nth Fibonacci number, F_n
- fibonacci(n, x) gives the nth Fibonacci polynomial in x, F_n(x)

Examples

```
>>> [fibonacci(x) for x in range(11)]
[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55]
>>> fibonacci(5, Symbol('t'))
t**4 + 3*t**2 + 1
```


References

- https://en.wikipedia.org/wiki/Fibonacci_number
- https://mathworld.wolfram.com/FibonacciNumber.html

See also:

diofant.functions.combinatorial.numbers.bell (page 314), diofant.functions. combinatorial. numbers.bernoulli (page 315), diofant. functions. combinatorial. numbers.catalan (page 318), diofant.functions.combinatorial.numbers.euler (page 319), diofant.functions.combinatorial.numbers.harmonic (page 324), diofant.functions. combinatorial. numbers. lucas (page 326)

harmonic

class diofant.functions.combinatorial.numbers.harmonic ($n, m=$ None)
Harmonic numbers
The nth harmonic number is given by $\mathrm{H}_{n}=1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n}$.
More generally:

$$
\mathrm{H}_{n, m}=\sum_{k=1}^{n} \frac{1}{k^{m}}
$$

As $n \rightarrow \infty, \mathrm{H}_{n, m} \rightarrow \zeta(m)$, the Riemann zeta function.

- harmonic (n) gives the nth harmonic number, H_{n}
- harmonic (n, m) gives the nth generalized harmonic number of order $m, \mathrm{H}_{n, m}$, where harmonic(n) == harmonic(n, 1)

Examples

```
>>> [harmonic(n) for n in range(6)]
[0, 1, 3/2, 11/6, 25/12, 137/60]
>>> [harmonic(n, 2) for n in range(6)]
[0, 1, 5/4, 49/36, 205/144, 5269/3600]
>>> harmonic(00, 2)
pi**2/6
```

```
>>> harmonic(n).rewrite(Sum)
Sum(1/_k, (_k, 1, n))
```

We can evaluate harmonic numbers for all integral and positive rational arguments:

```
>>> harmonic(8)
761/280
>>> harmonic(11)
83711/27720
```

```
>>> H = harmonic(Rational(1, 3))
>>> H
harmonic(1/3)
>>> He = expand_func(H)
>> He
-log(6) - sqrt(3)*pi/6 + 2*Sum(log(sin(pi*_k/3))*cos(2*pi*_k/3), (_k, 1, 1))
>>> He.doit()
-log(6) - sqrt(3)*pi/6 - log(sqrt(3)/2) + 3
>>> H = harmonic(Rational(25, 7))
>> He = simplify(expand_func(H).doit())
>> He
log(sin(pi/7)**(-2*cos(pi/7))*sin(2*pi/7)**(2*cos(16*pi/7))*cos(pi/14)**(-
->2*
+ pi*tan(pi/14)/2 + 30247/9900
>>> He.evalf(40)
1.983697455232980674869851942390639915940
>>> harmonic(Rational(25, 7)).evalf(40)
1.983697455232980674869851942390639915940
```

We can rewrite harmonic numbers in terms of polygamma functions:

```
>>> harmonic(n).rewrite(digamma)
polygamma(0, n + 1) + EulerGamma
```

```
>>> harmonic(n).rewrite(polygamma)
polygamma(0, n + 1) + EulerGamma
```

```
>>> harmonic(n, 3).rewrite(polygamma)
polygamma(2, n + 1)/2 - polygamma(2, 1)/2
```

```
>>> harmonic(n, m).rewrite(polygamma)
(-1)**m*(polygamma(m - 1, 1) - polygamma(m - 1, n + 1))/factorial(m - 1)
```

Integer offsets in the argument can be pulled out:

```
>>> expand func(harmonic(n+4))
harmonic(n) + 1/(n + 4) + 1/(n + 3) + 1/(n + 2) + 1/(n + 1)
```

```
>>> expand_func(harmonic(n-4))
harmonic(n)-1/(n-1)-1/(n-2) - 1/(n - 3) - 1/n
```

Some limits can be computed as well:

```
>>> limit(harmonic(n), n, oo)
OO
```

```
>>> limit(harmonic(n, 2), n, oo)
pi**2/6
```

>>> limit(harmonic(n, 3), n, oo)
-polygamma(2, 1)/2

However we can not compute the general relation yet:

```
>>> limit(harmonic(n, m), n, oo)
harmonic(00, m)
```

which equals zeta (m) for $\mathrm{m}>1$.

References

- https://en.wikipedia.org/wiki/Harmonic_number
- http://functions.wolfram.com/GammaBetaErf/HarmonicNumber/
- http://functions.wolfram.com/GammaBetaErf/HarmonicNumber2/

See also:

diofant.functions.combinatorial.numbers.bell (page 314), diofant.functions. combinatorial. numbers.bernoulli (page 315), diofant.functions.combinatorial. numbers.catalan (page 318), diofant.functions.combinatorial.numbers.euler (page 319), diofant.functions.combinatorial.numbers.fibonacci (page 323), diofant.functions.combinatorial.numbers.lucas (page 326)

lucas

class diofant.functions.combinatorial.numbers.lucas(n)
Lucas numbers
Lucas numbers satisfy a recurrence relation similar to that of the Fibonacci sequence, in which each term is the sum of the preceding two. They are generated by choosing the initial values $L_{-} 0=2$ and $L_{-} 1=1$.

- lucas(n) gives the nth Lucas number

Examples

```
>>> [lucas(x) for x in range(11)]
[2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123]
```


References

- https://en.wikipedia.org/wiki/Lucas_number
- https://mathworld.wolfram.com/LucasNumber.html

See also:

diofant.functions.combinatorial.numbers.bell (page 314), diofant.functions. combinatorial.numbers.bernoulli (page 315), diofant.functions.combinatorial. numbers.catalan (page 318), diofant.functions.combinatorial.numbers.euler (page 319), diofant.functions.combinatorial.numbers.fibonacci (page 323), diofant. functions. combinatorial. numbers.harmonic (page 324)

RisingFactorial

class diofant.functions.combinatorial.factorials.RisingFactorial(x, k)
Rising factorial (also called Pochhammer symbol) is a double valued function arising in concrete mathematics, hypergeometric functions and series expansions.

It is defined by:

$$
r f(x, k)=x *(x+1) * \ldots *(x+k-1)
$$

where ' x ' can be arbitrary expression and ' k ' is an integer. For more information check "Concrete mathematics" by Graham, pp. 66 or visit https://mathworld.wolfram.com/ RisingFactorial.html page.

Examples

```
>>> rf(x, 0)
```

1

```
>>> rf(1, 5)
```

120

```
>>> rf(x, 5) == x*(1 + x)*(2 + x)*(3 + x)*(4 + x)
True
```


See also:

diofant.functions.combinatorial.factorials.factorial (page 320), diofant. functions.combinatorial.factorials.factorial2 (page 322), diofant.functions. combinatorial.factorials.FallingFactorial (page 322)

stirling

diofant.functions.combinatorial.numbers.stirling($n, k, d=$ None, $k i n d=2$, signed=False)
Return Stirling number $\mathrm{S}(\mathrm{n}, \mathrm{k})$ of the first or second (default) kind.
The sum of all Stirling numbers of the second kind for $\mathrm{k}=1$ through n is bell(n). The recurrence relationship for these numbers is:

where \mathbf{j} is:: n for Stirling numbers of the first kind -n for signed Stirling numbers of the first kind k for Stirling numbers of the second kind

The first kind of Stirling number counts the number of permutations of n distinct items that have k cycles; the second kind counts the ways in which n distinct items can be partitioned into k parts. If dis given, the "reduced Stirling number of the second kind" is returned: $S^{\wedge}\{d\}(n, k)=S(n-d+1, k-d+1)$ with $n>=k>=d$. (This counts the ways to partition n consecutive integers into k groups with no pairwise difference less than d. See example below.)
To obtain the signed Stirling numbers of the first kind, use keyword signed=True. Using this keyword automatically sets kind to 1 .

Examples

```
>>> from diofant.utilities.iterables import (multiset_partitions,
... permutations, subsets)
```

First kind (unsigned by default):

```
>>> [stirling(6, i, kind=1) for i in range(7)]
[0, 120, 274, 225, 85, 15, 1]
>>> perms = list(permutations(range(4)))
>> [sum(Permutation(p).cycles == i for p in perms) for i in range(5)]
[0, 6, 11, 6, 1]
```

```
>>> [stirling(4, i, kind=1) for i in range(5)]
```

$[0,6,11,6,1]$

First kind (signed):

```
>>> [stirling(4, i, signed=True) for i in range(5)]
[0, -6, 11, -6, 1]
```

Second kind:

```
>>> [stirling(10, i) for i in range(12)]
[0, 1, 511, 9330, 34105, 42525, 22827, 5880, 750, 45, 1, 0]
>>> sum(_) == bell(10)
True
>>> len(list(multiset_partitions(range(4), 2))) == stirling(4, 2)
True
```

Reduced second kind:

```
>>> def delta(p):
#." if len(p) == 1:
... return 0o
# return min(abs(i[0] - i[1]) for i in subsets(p, 2))
>>> parts = multiset_partitions(range(5), 3)
>>> d = 2
>>> sum(1 for p in parts if all(delta(i) >= d for i in p))
7
>>> stirling(5, 3, 2)
7
```


References

- https://en.wikipedia.org/wiki/Stirling_numbers_of_the_first_kind
- https://en.wikipedia.org/wiki/Stirling_numbers_of_the_second_kind

See also:

diofant.utilities.iterables.multiset_partitions (page 890)

4.6.14 Enumeration

Three functions are available. Each of them attempts to efficiently compute a given combinatorial quantity for a given set or multiset which can be entered as an integer, sequence or multiset (dictionary with elements as keys and multiplicities as values). The k parameter indicates the number of elements to pick (or the number of partitions to make). When k is None, the sum of the enumeration for all k (from 0 through the number of items represented by n) is returned. A replacement parameter is recognized for combinations and permutations; this indicates that any item may appear with multiplicity as high as the number of items in the original set.
diofant.functions.combinatorial.numbers. $\mathrm{nC}(n, k=$ None, replacement=False)
Return the number of combinations of n items taken k at a time.
Possible values for n :: integer - set of length n sequence - converted to a multiset internally multiset - \{element: multiplicity

If k is None then the total of all combinations of length 0 through the number of items represented in n will be returned.
If replacement is True then a given item can appear more than once in the k items. (For example, for ' ab ' sets of 2 would include ' aa ', ' ab ', and ' bb '.) The multiplicity of elements in n is ignored when replacement is True but the total number of elements is considered since no element can appear more times than the number of elements in n.

Examples

```
>>> from diofant.utilities.iterables import multiset_combinations
>> nC(3, 2)
3
>>> nC('abc', 2)
3
>>> nC('aab', 2)
2
```

When replacement is True, each item can have multiplicity equal to the length represented by n :

```
>>> nC('aabc', replacement=True)
35
>>> [len(list(multiset_combinations('aaaabbbbcccc', i))) for i in range(5)]
[1, 3, 6, 10, 15]
>>> sum(_)
35
```

If there are k items with multiplicities $m _1, m_{_} 2, \ldots, m _k$ then the total of all combinations of length 0 through k is the product, $\left(m _1+1\right) *\left(m _2+1\right) * \ldots *\left(m _k+1\right)$. When the multiplicity of each item is 1 (i.e., k unique items) then there are $2^{* *} \mathrm{k}$ combinations. For example, if there are 4 unique items, the total number of combinations is 16:

```
>>> sum(nC(4, i) for i in range(5))
16
```


References

- https://en.wikipedia.org/wiki/Combination
- https://math.stackexchange.com/questions/4643/an-efficient-method-for-computing-the-number-c 4654

See also:

diofant.utilities.iterables.multiset_combinations (page 890)
diofant.functions.combinatorial.numbers.nP($n, k=$ None, replacement=False)
Return the number of permutations of n items taken k at a time.
Possible values for n :: integer - set of length n sequence - converted to a multiset internally multiset - \{element: multiplicity
If k is None then the total of all permutations of length 0 through the number of items represented by n will be returned.
If replacement is True then a given item can appear more than once in the k items. (For example, for 'ab' permutations of 2 would include ' $a a^{\prime}$ ', ' $a b$ ', ' $b a$ ' and ' $b b$ '.) The
multiplicity of elements in n is ignored when replacement is True but the total number of elements is considered since no element can appear more times than the number of elements in n .

Examples

>>> from diofant.utilities.iterables import multiset_permutations, multiset

```
>>> nP(3, 2)
6
>>> nP('abc', 2) == nP(multiset('abc'), 2) == 6
True
>>> nP('aab', 2)
3
>>> nP([1, 2, 2], 2)
3
>>> [nP(3, i) for i in range(4)]
[1, 3, 6, 6]
>> nP(3) == sum(_)
True
```

When replacement is True, each item can have multiplicity equal to the length represented by n :

```
>>> nP('aabc', replacement=True)
121
>>> [len(list(multiset_permutations('aaaabbbbcccc', i))) for i in range(5)]
[1, 3, 9, 27, 81]
>>> sum(_)
1 2 1
```


References

- https://en.wikipedia.org/wiki/Permutation

See also:

diofant.utilities.iterables.multiset_permutations (page 891)
diofant.functions.combinatorial. numbers. $\mathbf{n T}(n, k=N o n e)$
Return the number of k-sized partitions of n items.
Possible values for n :: integer - n identical items sequence - converted to a multiset internally multiset - \{element: multiplicity\}
Note: the convention for nT is different than that of nC and nP in that here an integer indicates n identical items instead of a set of length n ; this is in keeping with the partitions function which treats its integer-n input like a list of $n 1$ s. One can use range (n) for n to indicate n distinct items.
If k is None then the total number of ways to partition the elements represented in n will be returned.

Examples

Partitions of the given multiset:

```
>>> [nT('aabbc', i) for i in range(1, 7)]
[1, 8, 11, 5, 1, 0]
>>> nT('aabbc') == sum(_)
True
```

```
>>> [nT('mississippi', i) for i in range(1, 12)]
[1, 74, 609, 1521, 1768, 1224, 579, 197, 50, 9, 1]
```

Partitions when all items are identical:

```
>> [nT(5, i) for i in range(1, 6)]
[1, 2, 2, 1, 1]
>>> nT('1'*5) == sum(_)
True
```

When all items are different:

```
>>> [nT(range(5), i) for i in range(1, 6)]
[1, 15, 25, 10, 1]
>>> nT(range(5)) == sum(_)
True
```


References

- http://teaching.csse.uwa.edu.au/units/CITS7209/partition.pdf

See also:

diofant.utilities.iterables.partitions (page 895), diofant.utilities. iterables.multiset_partitions (page 890)
Note that the integer for n indicates identical items for nT but indicates n different items for nC and nP .

4.6.15 Special

DiracDelta

class diofant.functions.special.delta_functions.DiracDelta(arg, k=0)
The DiracDelta function and its derivatives.
DiracDelta function has the following properties:

1) $\operatorname{diff}(\operatorname{Heaviside}(x), x)=\operatorname{DiracDelta}(x)$
2) integrate (DiracDelta $(x-a) * f(x),(x,-\infty, 00))=f(a)$ and integrate (DiracDelta $(x-a) * f(x),(x, a-e, a+e))=f(a)$
3) DiracDelta $(x)=0$ for all $x \quad!=0$
4) DiracDelta(g(x)) = Sum_i(DiracDelta(x-x_i)/abs(g'(x_i))) Where x_i-s are the roots of g
Derivatives of k-th order of DiracDelta have the following property:
5) DiracDelta $(x, k)=0$, for all x ! $=0$

See also:

diofant.functions.special.delta_functions.Heaviside (page 333), diofant. simplify.simplify.simplify (page 678), diofant.functions.special. delta_functions.DiracDelta.is_simple (page 332), diofant.functions.special. tensor_functions.KroneckerDel̄̄a (page 399)

References

- https://mathworld.wolfram.com/DeltaFunction.html
is_simple(self, x)
Tells whether the argument(args[0]) of DiracDelta is a linear expression in x .
x can be:
- a symbol

Examples

```
>>> DiracDelta(x*y).is_simple(x)
True
>>> DiracDelta(x*y).is_simple(y)
True
```

```
>>> DiracDelta(x**2+x-2).is_simple(x)
False
```

```
>>> DiracDelta(cos(x)).is_simple(x)
False
```


See also:

diofant.simplify.simplify.simplify (page 678), diofant.functions.special. delta_functions.DiracDelta (page 331)
simplify (self, x)
Compute a simplified representation of the function using property number 4.
x can be:

- a symbol

Examples

```
>>> DiracDelta(x*y).simplify(x)
DiracDelta(x)/Abs(y)
>>> DiracDelta(x*y).simplify(y)
DiracDelta(y)/Abs(x)
```

```
>>> DiracDelta(x**2 + x - 2).simplify(x)
DiracDelta(x - 1)/3 + DiracDelta(x + 2)/3
```


See also:

diofant.functions.special.delta_functions.DiracDelta.is_simple (page 332), diofant.functions.special.delta_functions.DiracDelta (page 331)

Heaviside

class diofant.functions.special.delta_functions.Heaviside(arg)
Heaviside step function

$$
H(x)=\left\{\begin{array}{c}
0, x<0 \\
1 / 2, x=0 \\
1, x>0
\end{array}\right.
$$

See also:

diofant.functions.special.delta_functions.DiracDelta (page 331)

References

- https://en.wikipedia.org/wiki/Heaviside_step_function

Gamma, Beta and related Functions

class diofant.functions.special.gamma_functions.gamma(arg)
The gamma function

$$
\Gamma(x):=\int_{0}^{\infty} t^{x-1} e^{t} \mathrm{~d} t
$$

The gamma function implements the function which passes through the values of the factorial function, i.e. $\Gamma(n)=(n-1)$! when n is an integer. More general, $\Gamma(z)$ is defined in the whole complex plane except at the negative integers where there are simple poles.

Examples

Several special values are known:

```
>>> gamma(1)
1
>>> gamma(4)
6
>>> gamma(Rational(3, 2))
sqrt(pi)/2
```

The Gamma function obeys the mirror symmetry:

```
>>> conjugate(gamma(x))
gamma(conjugate(x))
```

Differentiation with respect to x is supported:

```
>>> diff(gamma(x), x)
gamma(x)*polygamma(0, x)
```

Series expansion is also supported:

```
>>> series(gamma(x), x, 0, 3)
1/x - EulerGamma + x*(EulerGamma**2/2 + pi**2/12) + x**2*(-EulerGamma*pi**2/12 + + +
\varphipolygamma(2, 1)/6 - EulerGamma**3/6) + 0(x**3)
```

We can numerically evaluate the gamma function to arbitrary precision on the whole complex plane:

```
>>> gamma(pi).evalf(40)
2.288037795340032417959588909060233922890
>>> gamma(1+I).evalf(20)
0.49801566811835604271 - 0.15494982830181068512*I
```


See also:

Zowergamma (page 340) Lower incomplete gamma function.
uppergamma (page 338) Upper incomplete gamma function.
polygamma (page 336) Polygamma function.
loggamma (page 334) Log Gamma function.
digamma (page 337) Digamma function.
trigamma (page 338) Trigamma function.
diofant.functions.special.beta_functions.beta (page 340) Euler Beta function.

References

- https://en.wikipedia.org/wiki/Gamma_function
- https://dlmf.nist.gov/5
- https://mathworld.wolfram.com/GammaFunction.html
- http://functions.wolfram.com/GammaBetaErf/Gamma/
class diofant.functions.special.gamma_functions.loggamma(z)
The loggamma function implements the logarithm of the gamma function i.e, $\log \Gamma(x)$.

Examples

Several special values are known. For numerical integral arguments we have:

```
>>> loggamma(-2)
00
>>> loggamma(0)
00
>>> loggamma(1)
0
>>> loggamma(2)
0
>>> loggamma(3)
log(2)
```

and for symbolic values:

```
>>> n = Symbol('n', integer=True, positive=True)
>>> loggamma(n)
log(gamma(n))
>>> loggamma(-n)
OO
```

for half-integral values:

```
>>> loggamma(Rational(5, 2))
log(3*sqrt(pi)/4)
>>> loggamma(n/2)
log(2**(-n + 1)*sqrt(pi)*gamma(n)/gamma(n/2 + 1/2))
```

and general rational arguments:

```
>>> L = loggamma(Rational(16, 3))
>>> expand_func(L).doit()
-5*log(3) + loggamma(1/3) + log(4) + log(7) + log(10) + log(13)
>>> L = loggamma(Rational(19, 4))
>>> expand_func(L).doit()
-4* log(4) + loggamma(3/4) + log(3) + log(7) + log(11) + log(15)
>>> L = loggamma(Rational(23, 7))
>>> expand func(L).doit()
-3*log(7) }\ddagger\operatorname{log}(2) + loggamma(2/7) + log(9) + log(16
```

The loggamma function has the following limits towards infinity:

```
>>> loggamma(00)
00
>>> loggamma(-00)
zOO
```

The loggamma function obeys the mirror symmetry if $x \in \mathbb{C} \backslash\{-\infty, 0\}$:

```
>>> c = Symbol('c', complex=True, real=False)
>>> conjugate(loggamma(c))
loggamma(conjugate(c))
```

Differentiation with respect to x is supported:

```
>>> diff(loggamma(x), x)
polygamma(0, x)
```

Series expansion is also supported:

```
>>> series(loggamma(x), x, 0, 4)
-log(x) - EulerGamma*x + pi**2*x**2/12 + x**3*polygamma(2, 1)/6 + 0(x**4)
```

We can numerically evaluate the gamma function to arbitrary precision on the whole complex plane:

```
>>> loggamma(5).evalf(30)
3.17805383034794561964694160130
>>> loggamma(I).evalf(20)
-0.65092319930185633889 - 1.8724366472624298171*I
```


See also:

gamma (page 333) Gamma function.
lowergamma (page 340) Lower incomplete gamma function.
uppergamma (page 338) Upper incomplete gamma function.
polygamma (page 336) Polygamma function.
digamma (page 337) Digamma function.
trigamma (page 338) Trigamma function.
diofant.functions.special.beta_functions.beta (page 340) Euler Beta function.

References

- https://en.wikipedia.org/wiki/Gamma_function
- https://dlmf.nist.gov/5
- https://mathworld.wolfram.com/LogGammaFunction.html
- http://functions.wolfram.com/GammaBetaErf/LogGamma/
class diofant.functions.special.gamma_functions.polygamma (n, z)
The function polygamma(n, z) returns log(gamma(z)).diff($n+1$).
It is a meromorphic function on \mathbb{C} and defined as the ($\mathrm{n}+1$)-th derivative of the logarithm of the gamma function:

$$
\psi^{(n)}(z):=\frac{\mathrm{d}^{n+1}}{\mathrm{~d} z^{n+1}} \log \Gamma(z)
$$

Examples

Several special values are known:

```
>>> polygamma(0, 1)
-EulerGamma
>>> polygamma(0, Rational(1, 2))
-2*log(2) - EulerGamma
>>> polygamma(0, Rational(1, 3))
-3*log(3)/2 - sqrt(3)*pi/6 - EulerGamma
>>> polygamma(0, Rational(1, 4))
-3*log(2) - pi/2 - EulerGamma
>>> polygamma(0, 2)
-EulerGamma + 1
>>> polygamma(0, 23)
-EulerGamma + 19093197/5173168
```

```
>>> polygamma(0, oo)
00
>>> polygamma(0, -0o)
00
>>> polygamma(0, I*oo)
00
>>> polygamma(0, -I*oo)
OO
```

Differentiation with respect to x is supported:

```
>>> diff(polygamma(0, x), x)
polygamma(1, x)
>>> diff(polygamma(0, x), (x, 2))
polygamma(2, x)
>>> diff(polygamma(0, x), (x, 3))
polygamma(3, x)
>>> diff(polygamma(1, x), x)
polygamma(2, x)
>>> diff(polygamma(1, x), (x, 2))
polygamma(3, x)
>>> diff(polygamma(2, x), x)
polygamma(3, x)
>>> diff(polygamma(2, x), (x, 2))
polygamma(4, x)
```

```
>>> diff(polygamma(n, x), x)
polygamma(n + 1, x)
>>> diff(polygamma(n, x), (x, 2))
polygamma(n + 2, x)
```

We can rewrite polygamma functions in terms of harmonic numbers:

```
>>> polygamma(0, x).rewrite(harmonic)
harmonic(x - 1) - EulerGamma
>>> polygamma(2, x).rewrite(harmonic)
2*harmonic(x - 1, 3) - 2*zeta(3)
>>> ni = Symbol('n', integer=True)
>>> polygamma(ni, x).rewrite(harmonic)
(-1)**(n + 1)*(-harmonic(x - 1, n + 1) + zeta(n + 1))*factorial(n)
```


See also:

gamma (page 333) Gamma function.
lowergamma (page 340) Lower incomplete gamma function.
uppergamma (page 338) Upper incomplete gamma function.
loggamma (page 334) Log Gamma function.
digamma (page 337) Digamma function.
trigamma (page 338) Trigamma function.
diofant.functions.special.beta_functions.beta (page 340) Euler Beta function.

References

- https://en.wikipedia.org/wiki/Polygamma_function
- https://mathworld.wolfram.com/PolygammaFunction.html
- http://functions.wolfram.com/GammaBetaErf/PolyGamma/
- http://functions.wolfram.com/GammaBetaErf/PolyGamma2/
diofant.functions.special.gamma_functions.digamma(x)
The digamma function is the first derivative of the loggamma function i.e,

$$
\psi(x):=\frac{\mathrm{d}}{\mathrm{~d} z} \log \Gamma(z)=\frac{\Gamma^{\prime}(z)}{\Gamma(z)}
$$

In this case, digamma(z) = polygamma(0, z).

See also:

gamma (page 333) Gamma function.
Lowergamma (page 340) Lower incomplete gamma function.
uppergamma (page 338) Upper incomplete gamma function.
polygamma (page 336) Polygamma function.
loggamma (page 334) Log Gamma function.
trigamma (page 338) Trigamma function.
diofant.functions.special.beta_functions.beta (page 340) Euler Beta function.

References

- https://en.wikipedia.org/wiki/Digamma_function
- https://mathworld.wolfram.com/DigammaFunction.html
- http://functions.wolfram.com/GammaBetaErf/PolyGamma2/
diofant.functions.special.gamma_functions.trigamma(x)
The trigamma function is the second derivative of the loggamma function i.e,

$$
\psi^{(1)}(z):=\frac{\mathrm{d}^{2}}{\mathrm{~d} z^{2}} \log \Gamma(z) .
$$

In this case, trigamma(z) = polygamma(1, z).

See also:

gamma (page 333) Gamma function.
Lowergamma (page 340) Lower incomplete gamma function.
uppergamma (page 338) Upper incomplete gamma function.
polygamma (page 336) Polygamma function.
loggamma (page 334) Log Gamma function.
digamma (page 337) Digamma function.
diofant.functions.special.beta_functions.beta (page 340) Euler Beta function.

References

- https://en.wikipedia.org/wiki/Trigamma_function
- https://mathworld.wolfram.com/TrigammaFunction.html
- http://functions.wolfram.com/GammaBetaErf/PolyGamma2/
class diofant.functions.special.gamma_functions.uppergamma (a, z)
The upper incomplete gamma function.
It can be defined as the meromorphic continuation of

$$
\Gamma(s, x):=\int_{x}^{\infty} t^{s-1} e^{-t} \mathrm{~d} t=\Gamma(s)-\gamma(s, x) .
$$

where $\gamma(s, x)$ is the lower incomplete gamma function, lowergamma (page 340). This can be shown to be the same as

$$
\Gamma(s, x)=\Gamma(s)-\frac{x^{s}}{s}{ }_{1} F_{1}\left(\left.\begin{array}{c}
s \\
s+1
\end{array} \right\rvert\,-x\right),
$$

where ${ }_{1} F_{1}$ is the (confluent) hypergeometric function.
The upper incomplete gamma function is also essentially equivalent to the generalized exponential integral:

$$
\mathrm{E}_{n}(x)=\int_{1}^{\infty} \frac{e^{-x t}}{t^{n}} d t=x^{n-1} \Gamma(1-n, x) .
$$

Examples

```
>>> from diofant.abc import s
>>> uppergamma(s, x)
uppergamma(s, x)
>> uppergamma( 3, x)
E**(-x)*x**2 + 2*E** (-x)*x + 2*E**(-x)
>>> uppergamma(-Rational(1, 2), x)
-2*sqrt(pi)*(-erf(sqrt(x)) + 1) + 2*E**(-x)/sqrt(x)
>>> uppergamma(-2, x)
expint(3, x)/x**2
```


See also:

gamma (page 333) Gamma function.
Zowergamma (page 340) Lower incomplete gamma function.
polygamma (page 336) Polygamma function.
loggamma (page 334) Log Gamma function.
digamma (page 337) Digamma function.
trigamma (page 338) Trigamma function.
diofant.functions.special.beta_functions.beta (page 340) Euler Beta function.

References

- https://en.wikipedia.org/wiki/Incomplete_gamma_function\#Upper_incomplete_ Gamma_function
- Abramowitz, Milton; Stegun, Irene A., eds. (1965), Chapter 6, Section 5, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables
- https://dlmf.nist.gov/8
- http://functions.wolfram.com/GammaBetaErf/Gamma2/
- http://functions.wolfram.com/GammaBetaErf/Gamma3/
- https://en.wikipedia.org/wiki/Exponential_integral\#Relation_with_other_functions
class diofant.functions.special.gamma_functions.lowergamma(a, x)
The lower incomplete gamma function.
It can be defined as the meromorphic continuation of

$$
\gamma(s, x):=\int_{0}^{x} t^{s-1} e^{-t} \mathrm{~d} t=\Gamma(s)-\Gamma(s, x)
$$

This can be shown to be the same as

$$
\gamma(s, x)=\frac{x^{s}}{s}{ }_{1} F_{1}\left(\left.\begin{array}{c}
s \\
s+1
\end{array} \right\rvert\,-x\right),
$$

where ${ }_{1} F_{1}$ is the (confluent) hypergeometric function.

Examples

```
>>> from diofant.abc import s
>>> lowergamma(s, x)
lowergamma(s, x)
>>> lowergamma(3, x)
2 - E**(-x)****2 - 2*E**(-x)*x - 2*E**(-x)
>>> lowergamma(-Rational(1, 2), x)
-2*sqrt(pi)*erf(sqrt(x)) - 2*E**(-x)/sqrt(x)
```


See also:

gamma (page 333) Gamma function.
uppergamma (page 338) Upper incomplete gamma function.
polygamma (page 336) Polygamma function.
loggamma (page 334) Log Gamma function.
digamma (page 337) Digamma function.
trigamma (page 338) Trigamma function.
diofant.functions.special.beta_functions.beta (page 340) Euler Beta function.

References

- https://en.wikipedia.org/wiki/Incomplete_gamma_function\#Lower_incomplete Gamma_function
- Abramowitz, Milton; Stegun, Irene A., eds. (1965), Chapter 6, Section 5, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables
- https://dlmf.nist.gov/8
- http://functions.wolfram.com/GammaBetaErf/Gamma2/
- http://functions.wolfram.com/GammaBetaErf/Gamma3/
class diofant.functions.special.beta_functions.beta(x, y)
The beta integral is called the Eulerian integral of the first kind by Legendre:

$$
\mathrm{B}(x, y):=\int_{0}^{1} t^{x-1}(1-t)^{y-1} \mathrm{~d} t .
$$

Beta function or Euler's first integral is closely associated with gamma function. The Beta function often used in probability theory and mathematical statistics. It satisfies properties like:

$$
\begin{array}{r}
\mathrm{B}(a, 1)=\frac{1}{a} \\
\mathrm{~B}(a, b)=\mathrm{B}(b, a) \\
\mathrm{B}(a, b)=\frac{\Gamma(a) \Gamma(b)}{\Gamma(a+b)}
\end{array}
$$

Therefore for integral values of a and b :

$$
\mathbf{B}=\frac{(a-1)!(b-1)!}{(a+b-1)!}
$$

Examples

The Beta function obeys the mirror symmetry:

```
>>> conjugate(beta(x, y))
beta(conjugate(x), conjugate(y))
```

Differentiation with respect to both x and y is supported:

```
>>> diff(beta(x, y), x)
(polygamma(0, x) - polygamma(0, x + y))*beta(x, y)
```

>>> diff(beta(x, y), y)
(polygamma(0, y) - polygamma(0, $x+y)$) $\operatorname{beta}(x, y)$

We can numerically evaluate the gamma function to arbitrary precision on the whole complex plane:

```
>>> beta(pi, pi).evalf(40)
0.02671848900111377452242355235388489324562
```

```
>>> beta(1 + I, 1 + I).evalf(20)
-0.2112723729365330143-0.7655283165378005676*I
```


See also:

diofant.functions.special.gamma_functions.gamma (page 333) Gamma function.
diofant.functions.special.gamma_functions.uppergamma (page 338) Upper incomplete gamma function.
diofant.functions.special.gamma_functions. Zowergamma (page 340) Lower incomplete gamma function.
diofant.functions.special.gamma_functions.polygamma (page 336) Polygamma function.
diofant.functions.special.gamma_functions.loggamma (page 334) Log Gamma function.
diofant.functions.special.gamma_functions.digamma (page 337) Digamma function.
diofant.functions.special.gamma_functions.trigamma (page 338) Trigamma function.

References

- https://en.wikipedia.org/wiki/Beta_function
- https://mathworld.wolfram.com/BetaFunction.html
- https://dlmf.nist.gov/5.12

Error Functions and Fresnel Integrals

class diofant.functions.special.error_functions.erf(arg)
The Gauss error function. This function is defined as:

$$
\operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^{2}} \mathrm{~d} t
$$

Examples

Several special values are known:

```
>>> erf(0)
0
>>> erf(oo)
1
>>> erf(-00)
-1
>>> erf(I*0o)
00*I
>>> erf(-I*00)
-00*I
```

In general one can pull out factors of -1 and I from the argument:

```
>>> erf(-z)
-erf(z)
```

The error function obeys the mirror symmetry:

```
>>> conjugate(erf(z))
erf(conjugate(z))
```

Differentiation with respect to z is supported:

```
>>> diff(erf(z), z)
2*E**(-z**2)/sqrt(pi)
```

We can numerically evaluate the error function to arbitrary precision on the whole complex plane:
>>> erf(4).evalf(30)
0.999999984582742099719981147840

```
>>> erf(-4*I).evalf(30)
-1296959.73071763923152794095062*I
```


See also:

erfc (page 343) Complementary error function.
erfi (page 344) Imaginary error function.
erf2 (page 345) Two-argument error function.
erfinv (page 346) Inverse error function.
erfcinv (page 347) Inverse Complementary error function.
erf2inv (page 348) Inverse two-argument error function.

References

- https://en.wikipedia.org/wiki/Error_function
- https://dlmf.nist.gov/7
- https://mathworld.wolfram.com/Erf.html
- http://functions.wolfram.com/GammaBetaErf/Erf
class diofant.functions.special.error_functions.erfc(arg)
Complementary Error Function. The function is defined as:

$$
\operatorname{erfc}(x)=\frac{2}{\sqrt{\pi}} \int_{x}^{\infty} e^{-t^{2}} \mathrm{~d} t
$$

Examples

Several special values are known:

```
>>> erfc(0)
1
>>> erfc(oo)
0
>>> erfc(-00)
2
>>> erfc(I*oo)
-00*I
>>> erfc(-I*oo)
00*I
```

The error function obeys the mirror symmetry:

```
>>> conjugate(erfc(z))
erfc(conjugate(z))
```

Differentiation with respect to z is supported:

```
>>> diff(erfc(z), z)
-2*E**(-z**2)/sqrt(pi)
```

It also follows

```
>>> erfc(-z)
-erfc(z) + 2
```

We can numerically evaluate the complementary error function to arbitrary precision on the whole complex plane:

```
>>> erfc(4).evalf(30)
0.0000000154172579002800188521596734869
```

>>> erfc(4*I).evalf(30)
1.0-1296959.73071763923152794095062*I

See also:

erf (page 342) Gaussian error function.
erfi (page 344) Imaginary error function.
erf2 (page 345) Two-argument error function.
erfinv (page 346) Inverse error function.
erfcinv (page 347) Inverse Complementary error function.
erf2inv (page 348) Inverse two-argument error function.

References

- https://en.wikipedia.org/wiki/Error_function
- https://dlmf.nist.gov/7
- https://mathworld.wolfram.com/Erfc.html
- http://functions.wolfram.com/GammaBetaErf/Erfc
class diofant.functions.special.error_functions.erfi(z) Imaginary error function. The function erfi is defined as:

$$
\operatorname{erfi}(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{t^{2}} \mathrm{~d} t
$$

Examples

Several special values are known:

```
>>> erfi(0)
0
>>> erfi(oo)
00
>>> erfi(-00)
-00
>>> erfi(I*OO)
```

```
I
>>> erfi(-I*Oo)
-I
```

In general one can pull out factors of -1 and I from the argument:

```
>>> erfi(-z)
-erfi(z)
```

```
>>> conjugate(erfi(z))
erfi(conjugate(z))
```

Differentiation with respect to z is supported:

```
>>> diff(erfi(z), z)
2*E**(z**2)/sqrt(pi)
```

We can numerically evaluate the imaginary error function to arbitrary precision on the whole complex plane:

```
>>> erfi(2).evalf(30)
18.5648024145755525987042919132
```

>>> erfi(-2*I).evalf(30)
-0.995322265018952734162069256367*I

See also:

erf (page 342) Gaussian error function.
erfc (page 343) Complementary error function.
erf2 (page 345) Two-argument error function.
erfinv (page 346) Inverse error function.
erfcinv (page 347) Inverse Complementary error function.
erf2inv (page 348) Inverse two-argument error function.

References

- https://en.wikipedia.org/wiki/Error_function
- https://mathworld.wolfram.com/Erfi.html
- http://functions.wolfram.com/GammaBetaErf/Erfi
class diofant.functions.special.error_functions.erf2 (x, y)
Two-argument error function. This function is defined as:

$$
\operatorname{erf2}(x, y)=\frac{2}{\sqrt{\pi}} \int_{x}^{y} e^{-t^{2}} \mathbf{d} t
$$

Examples

Several special values are known:

```
>>> erf2(0, 0)
0
>>> erf2(x, x)
0
>>> erf2(x, oo)
-erf(x) + 1
>>> erf2(x, -oo)
-erf(x) - 1
>>> erf2(oo, y)
erf(y) - 1
>>> erf2(-0o, y)
erf(y) + 1
```

In general one can pull out factors of -1 :

```
>>> erf2(-x, -y)
-erf2(x, y)
```

The error function obeys the mirror symmetry:

```
>>> conjugate(erf2(x, y))
erf2(conjugate(x), conjugate(y))
```

Differentiation with respect to x, y is supported:

```
>>> diff(erf2(x, y), x)
-2*E**(-x**2)/sqrt(pi)
>>> diff(erf2(x, y), y)
2*E**(-y**2)/sqrt(pi)
```


See also:

erf (page 342) Gaussian error function.
erfc (page 343) Complementary error function.
erfi (page 344) Imaginary error function.
erfinv (page 346) Inverse error function.
erfcinv (page 347) Inverse Complementary error function.
erf2inv (page 348) Inverse two-argument error function.

References

- http://functions.wolfram.com/GammaBetaErf/Erf2/
class diofant.functions.special.error_functions.erfinv(z)
Inverse Error Function. The erfinv function is defined as:

$$
\operatorname{erf}(x)=y \quad \Rightarrow \quad \operatorname{erfinv}(y)=x
$$

Examples

Several special values are known:

```
>>> erfinv(0)
0
>>> erfinv(1)
00
```

Differentiation with respect to x is supported:

```
>>> diff(erfinv(x), x)
E**(erfinv(x)**2)*sqrt(pi)/2
```

We can numerically evaluate the inverse error function to arbitrary precision on [-1, 1]:

```
>>> erfinv(0.2)
0.179143454621292
```


See also:

erf (page 342) Gaussian error function.
erfc (page 343) Complementary error function.
erfi (page 344) Imaginary error function.
erf2 (page 345) Two-argument error function.
erfcinv (page 347) Inverse Complementary error function.
erf2inv (page 348) Inverse two-argument error function.

References

- https://en.wikipedia.org/wiki/Error_function\#Inverse_functions
- http://functions.wolfram.com/GammaBetaErf/InverseErf/
class diofant.functions.special.error_functions.erfcinv(z)
Inverse Complementary Error Function. The erfcinv function is defined as:

$$
\operatorname{erfc}(x)=y \quad \Rightarrow \quad \operatorname{erfcinv}(y)=x
$$

Examples

Several special values are known:

```
>>> erfcinv(1)
0
>>> erfcinv(0)
OO
```

Differentiation with respect to x is supported:

```
>>> diff(erfcinv(x), x)
-E**(erfcinv(x)**2)*sqrt(pi)/2
```


See also:

erf (page 342) Gaussian error function.
erfc (page 343) Complementary error function.
erfi (page 344) Imaginary error function.
erf2 (page 345) Two-argument error function.
erfinv (page 346) Inverse error function.
erf2inv (page 348) Inverse two-argument error function.

References

- https://en.wikipedia.org/wiki/Error_function\#Inverse_functions
- http://functions.wolfram.com/GammaBetaErf/InverseErfc/
class diofant.functions.special.error functions.erf2inv (x, y)
Two-argument Inverse error function. The erf2inv function is defined as:

$$
\operatorname{erf} 2(x, w)=y \quad \Rightarrow \quad \operatorname{erf2} 2 \operatorname{inv}(x, y)=w
$$

Examples

Several special values are known:

```
>>> erf2inv(0, 0)
0
>>> erf2inv(1, 0)
1
>>> erf2inv(0, 1)
00
>>> erf2inv(0, y)
erfinv(y)
>>> erf2inv(oo, y)
erfcinv(-y)
```

Differentiation with respect to x and y is supported:

```
>>> diff(erf2inv(x, y), x)
E**(-x**2 + erf2inv(x, y)**2)
>>> diff(erf2inv(x, y), y)
E**(erf2inv(x, y)**2)*sqrt(pi)/2
```


See also:

erf (page 342) Gaussian error function.
erfc (page 343) Complementary error function.
erfi (page 344) Imaginary error function.
erf2 (page 345) Two-argument error function.
erfinv (page 346) Inverse error function.
erfcinv (page 347) Inverse complementary error function.

References

- http://functions.wolfram.com/GammaBetaErf/InverseErf2/
class diofant.functions.special.error_functions.FresnelIntegral(z)
Base class for the Fresnel integrals.
class diofant.functions.special.error_functions.fresnels(z)
Fresnel integral S.
This function is defined by

$$
\mathrm{S}(z)=\int_{0}^{z} \sin \frac{\pi}{2} t^{2} \mathrm{~d} t
$$

It is an entire function.

Examples

Several special values are known:

```
>>> fresnels(0)
0
>>> fresnels(oo)
1/2
>>> fresnels(-00)
-1/2
>>> fresnels(I*Oo)
-I/2
>>> fresnels(-I*00)
I/2
```

In general one can pull out factors of -1 and i from the argument:

```
>>> fresnels(-z)
-fresnels(z)
>>> fresnels(I*z)
-I*fresnels(z)
```

The Fresnel S integral obeys the mirror symmetry $\overline{S(z)}=S(\bar{z})$:

```
>>> conjugate(fresnels(z))
fresnels(conjugate(z))
```

Differentiation with respect to z is supported:

```
>>> diff(fresnels(z), z)
sin(pi*z**2/2)
```

Defining the Fresnel functions via an integral

```
>>> integrate(sin(pi*z**2/2), z)
3*fresnels(z)*gamma(3/4)/(4*gamma(7/4))
>>> expand_func(integrate(sin(pi*z**2/2), z))
fresnels(z)
```

We can numerically evaluate the Fresnel integral to arbitrary precision on the whole complex plane:

See also:

fresnelc (page 350) Fresnel cosine integral.

References

- https://en.wikipedia.org/wiki/Fresnel_integral
- https://dlmf.nist.gov/7
- https://mathworld.wolfram.com/FresnelIntegrals.html
- http://functions.wolfram.com/GammaBetaErf/FresnelS
- The converging factors for the fresnel integrals by John W. Wrench Jr. and Vicki Alley
class diofant.functions.special.error_functions.fresnelc (z)
Fresnel integral C.
This function is defined by

$$
\mathrm{C}(z)=\int_{0}^{z} \cos \frac{\pi}{2} t^{2} \mathrm{~d} t
$$

It is an entire function.

Examples

Several special values are known:

```
>>> fresnelc(0)
0
>>> fresnelc(oo)
1/2
>>> fresnelc(-00)
-1/2
>>> fresnelc(I*Oo)
I/2
>>> fresnelc(-I*0o)
-I/2
```

In general one can pull out factors of -1 and i from the argument:

```
>>> fresnelc(-z)
-fresnelc(z)
>>> fresnelc(I*z)
I*fresnelc(z)
```

The Fresnel C integral obeys the mirror symmetry $\overline{C(z)}=C(\bar{z})$:

```
>>> conjugate(fresnelc(z))
fresnelc(conjugate(z))
```

Differentiation with respect to z is supported:

```
>>> diff(fresnelc(z), z)
cos(pi*z**2/2)
```

Defining the Fresnel functions via an integral

```
>>> integrate(cos(pi*z**2/2), z)
fresnelc(z)*gamma(1/4)/(4*gamma(5/4))
>>> expand func(integrate(cos(pi*z**2/2), z))
fresnelc(z)
```

We can numerically evaluate the Fresnel integral to arbitrary precision on the whole complex plane:

```
>>> fresnelc(2).evalf(30)
0.488253406075340754500223503357
```

```
>>> fresnelc(-2*I).evalf(30)
-0.488253406075340754500223503357*I
```


See also:

fresnels (page 349) Fresnel sine integral.

References

- https://en.wikipedia.org/wiki/Fresnel_integral
- https://dlmf.nist.gov/7
- https://mathworld.wolfram.com/FresnelIntegrals.html
- http://functions.wolfram.com/GammaBetaErf/FresnelC
- The converging factors for the fresnel integrals by John W. Wrench Jr. and Vicki Alley

Exponential, Logarithmic and Trigonometric Integrals

class diofant.functions.special.error_functions.Ei(z)
The classical exponential integral.
For use in Diofant, this function is defined as

$$
\operatorname{Ei}(x)=\sum_{n=1}^{\infty} \frac{x^{n}}{n n!}+\log (x)+\gamma,
$$

where γ is the Euler-Mascheroni constant.
If x is a polar number, this defines an analytic function on the Riemann surface of the logarithm. Otherwise this defines an analytic function in the cut plane $\mathbb{C} \backslash(-\infty, 0]$.

Background

The name exponential integral comes from the following statement:

$$
\operatorname{Ei}(x)=\int_{-\infty}^{x} \frac{e^{t}}{t} \mathrm{~d} t
$$

If the integral is interpreted as a Cauchy principal value, this statement holds for $x>0$ and $\mathrm{Ei}(x)$ as defined above.
Note that we carefully avoided defining $\operatorname{Ei}(x)$ for negative real x. This is because above integral formula does not hold for any polar lift of such x, indeed all branches of $\operatorname{Ei}(x)$ above the negative reals are imaginary.
However, the following statement holds for all $x \in \mathbb{R}^{*}$:

$$
\int_{-\infty}^{x} \frac{e^{t}}{t} \mathrm{~d} t=\frac{\operatorname{Ei}\left(|x| e^{i \arg (x)}\right)+\operatorname{Ei}\left(|x| e^{-i \arg (x)}\right)}{2}
$$

where the integral is again understood to be a principal value if $x>0$, and $|x| e^{i \arg (x)}$, $|x| e^{-i \arg (x)}$ denote two conjugate polar lifts of x.

Examples

The exponential integral in Diofant is strictly undefined for negative values of the argument. For convenience, exponential integrals with negative arguments are immediately converted into an expression that agrees with the classical integral definition:

```
>>> Ei(-1)
-I*pi + Ei(exp_polar(I*pi))
```

This yields a real value:

```
>>> Ei(-1).evalf(chop=True)
-0.219383934395520
```

On the other hand the analytic continuation is not real:

```
>>> Ei(polar lift(-1)).evalf(chop=True)
-0.219383934\overline{3}9552 + 3.14159265358979*I
```

The exponential integral has a logarithmic branch point at the origin:

```
>>> Ei(x*exp_polar(2*I*pi))
Ei(x) + 2*I*pi
```

Differentiation is supported:

```
>>> Ei(x).diff(x)
E**x/x
```

The exponential integral is related to many other special functions. For example:

```
>>> Ei(x).rewrite(expint)
-expint(1, x*exp_polar(I*pi)) - I*pi
>>> Ei(x).rewrite(Shi)
Chi(x) + Shi(x)
```


See also:

expint (page 353) Generalized exponential integral.
E1 (page 354) Special case of the generalized exponential integral.
li (page 355) Logarithmic integral.
Li (page 356) Offset logarithmic integral.

Si (page 357) Sine integral.
Ci (page 358) Cosine integral.
Shi (page 359) Hyperbolic sine integral.
Chi (page 360) Hyperbolic cosine integral.
diofant.functions.special.gamma_functions.uppergamma (page 338) Upper incomplete gamma function.

References

- https://dlmf.nist.gov/6.6
- https://en.wikipedia.org/wiki/Exponential_integral
- Abramowitz \& Stegun, section 5: http://people.math.sfu.ca/~cbm/aands/page_228. htm
class diofant.functions.special.error_functions.expint(nu,z)
Generalized exponential integral.
This function is defined as

$$
\mathrm{E}_{\nu}(z)=z^{\nu-1} \Gamma(1-\nu, z),
$$

where $\Gamma(1-\nu, z)$ is the upper incomplete gamma function (uppergamma).
Hence for z with positive real part we have

$$
\mathbf{E}_{\nu}(z)=\int_{1}^{\infty} \frac{e^{-z t}}{t^{\nu}} \mathbf{d} t
$$

which explains the name.
The representation as an incomplete gamma function provides an analytic continuation for $\mathrm{E}_{\nu}(z)$. If ν is a non-positive integer the exponential integral is thus an unbranched function of z, otherwise there is a branch point at the origin. Refer to the incomplete gamma function documentation for details of the branching behavior.

Examples

>>> from diofant.abc import nu
Differentiation is supported. Differentiation with respect to z explains further the name: for integral orders, the exponential integral is an iterated integral of the exponential function.

```
>>> expint(nu, z).diff(z)
-expint(nu - 1, z)
```

Differentiation with respect to nu has no classical expression:

```
>>> expint(nu, z).diff(nu)
-z**(nu - 1)*meijerg(((), (1, 1)), ((0, 0, -nu + 1), ()), z)
```

At non-postive integer orders, the exponential integral reduces to the exponential function:

```
>>> expint(0, z)
E**(-z)/z
>>> expint(-1, z)
E**(-z)/z + E**(-z)/z**2
```

At half-integers it reduces to error functions:

```
>>> expint(Rational(1, 2), z)
-sqrt(pi)*erf(sqrt(z))/sqrt(z) + sqrt(pi)/sqrt(z)
```

At positive integer orders it can be rewritten in terms of exponentials and expint(1, z). Use expand_func() to do this:

```
>>> expand_func(expint(5, z))
z**4*expin\overline{t}(1, z)/24 + E**(-z)*(-z**3 + z**2 - 2*z + 6)/24
```

The generalized exponential integral is essentially equivalent to the incomplete gamma function:

```
>>> expint(nu, z).rewrite(uppergamma)
z**(nu - 1)*uppergamma(-nu + 1, z)
```

As such it is branched at the origin:

```
>>> expint(4, z*exp_polar(2*pi*I))
I*pi*z**3/3 + expint}(4, z
>>> expint(nu, z*exp_polar(2*pi*I))
z**(nu - 1)*(E**(2*I*pi*nu) - 1)*gamma(-nu + 1) + expint(nu, z)
```


See also:

Ei (page 351) Another related function called exponential integral.
E1 (page 354) The classical case, returns expint(1, z).
li (page 355) Logarithmic integral.
Li (page 356) Offset logarithmic integral.
Si (page 357) Sine integral.
Ci (page 358) Cosine integral.
Shi (page 359) Hyperbolic sine integral.
Chi (page 360) Hyperbolic cosine integral.
diofant.functions.special.gamma_functions.uppergamma (page 338)

References

- https://dlmf.nist.gov/8.19
- http://functions.wolfram.com/GammaBetaErf/ExpIntegralE/
- https://en.wikipedia.org/wiki/Exponential_integral
diofant.functions.special.error functions.E1(z)
Classical case of the generalize \bar{d} exponential integral.
This is equivalent to expint (1, z).

See also:

Ei (page 351) Exponential integral.
expint (page 353) Generalized exponential integral.
li (page 355) Logarithmic integral.
Li (page 356) Offset logarithmic integral.
Si (page 357) Sine integral.
Ci (page 358) Cosine integral.
Shi (page 359) Hyperbolic sine integral.
Chi (page 360) Hyperbolic cosine integral.
class diofant.functions.special.error_functions.li(z)
The classical logarithmic integral.
For the use in Diofant, this function is defined as

$$
\operatorname{li}(x)=\int_{0}^{x} \frac{1}{\log (t)} \mathrm{d} t
$$

Examples

Several special values are known:

```
>>> li(0)
0
>>> li(1)
-00
>>> li(00)
00
```

Differentiation with respect to z is supported:

```
>>> diff(li(z), z)
1/log(z)
```

Defining the $l i$ function via an integral:
The logarithmic integral can also be defined in terms of Ei:

```
>>> li(z).rewrite(Ei)
Ei(log(z))
>>> diff(li(z).rewrite(Ei), z)
1/log(z)
```

We can numerically evaluate the logarithmic integral to arbitrary precision on the whole complex plane (except the singular points):

```
>>> li(2).evalf(30)
1.04516378011749278484458888919
```

>>> li(2*I).evalf(30)
$1.0652795784357498247001125598+3.08346052231061726610939702133 * \mathrm{I}$

We can even compute Soldner's constant by the help of mpmath:

```
>>> from mpmath import findroot
>>> print(findroot(li, 2))
1.45136923488338
```

Further transformations include rewriting $l i$ in terms of the trigonometric integrals Si , Ci, Shi and Chi:

```
>>> li(z).rewrite(Si)
-log(I* log(z)) - log(1/log(z))/2 + log(log(z))/2 + Ci(I* log(z)) + Shi(log(z))
>>> li(z).rewrite(Ci)
-log(I* log(z)) - log(1/log(z))/2 + log(log(z))/2 + Ci(I* log(z)) + Shi(log(z))
>>> li(z).rewrite(Shi)
-log(1/log(z))/2 + log(log(z))/2 + Chi(log(z)) - Shi(log(z))
>>> li(z).rewrite(Chi)
-log(1/log(z))/2 + log(log(z))/2 + Chi(log(z)) - Shi(log(z))
```


See also:

Li (page 356) Offset logarithmic integral.
Ei (page 351) Exponential integral.
expint (page 353) Generalized exponential integral.
E1 (page 354) Special case of the generalized exponential integral.
Si (page 357) Sine integral.
Ci (page 358) Cosine integral.
Shi (page 359) Hyperbolic sine integral.
Chi (page 360) Hyperbolic cosine integral.

References

- https://en.wikipedia.org/wiki/Logarithmic_integral
- https://mathworld.wolfram.com/LogarithmicIntegral.html
- https://dlmf.nist.gov/6
- https://mathworld.wolfram.com/SoldnersConstant.html
class diofant.functions.special.error_functions.Li(z)
The offset logarithmic integral.
For the use in Diofant, this function is defined as

$$
\operatorname{Li}(x)=\operatorname{li}(x)-\operatorname{li}(2)
$$

Examples

The following special value is known:

```
>>> Li(2)
```

0

Differentiation with respect to z is supported:

```
>>> diff(Li(z), z)
1/log(z)
```

The shifted logarithmic integral can be written in terms of $l i(z)$:

```
>>> Li(z).rewrite(li)
li(z) - li(2)
```

We can numerically evaluate the logarithmic integral to arbitrary precision on the whole complex plane (except the singular points):

```
>>> Li(2).evalf(30)
0
```

```
>>> Li(4).evalf(30)
1.92242131492155809316615998938
```


See also:

li (page 355) Logarithmic integral.
Ei (page 351) Exponential integral.
expint (page 353) Generalized exponential integral.
E1 (page 354) Special case of the generalized exponential integral.
Si (page 357) Sine integral.
Ci (page 358) Cosine integral.
Shi (page 359) Hyperbolic sine integral.
Chi (page 360) Hyperbolic cosine integral.

References

- https://en.wikipedia.org/wiki/Logarithmic_integral
- https://mathworld.wolfram.com/LogarithmicIntegral.html
- https://dlmf.nist.gov/6
class diofant.functions.special.error_functions.Si(z)
Sine integral.
This function is defined by

$$
\mathrm{Si}(z)=\int_{0}^{z} \frac{\sin t}{t} \mathrm{~d} t .
$$

It is an entire function.

Diofant Documentation, Release 0.13.0

Examples

The sine integral is an antiderivative of $\sin (\mathrm{z}) / \mathrm{z}$:

```
>>> Si(z).diff(z)
sin(z)/z
```

It is unbranched:

```
>>> Si(z*exp_polar(2*I*pi))
Si(z)
```

Sine integral behaves much like ordinary sine under multiplication by I:

```
>>> Si(I*z)
I*Shi(z)
>>> Si(-z)
-Si(z)
```

It can also be expressed in terms of exponential integrals, but beware that the latter is branched:

```
>>> Si(z).rewrite(expint)
-I*(-expint(1, z*exp_polar(-I*pi/2))/2 +
    expint(1, z*exp_polar(I*pi/2))/2) + pi/2
```


See also:

Ci (page 358) Cosine integral.
Shi (page 359) Hyperbolic sine integral.
Chi (page 360) Hyperbolic cosine integral.
Ei (page 351) Exponential integral.
expint (page 353) Generalized exponential integral.
E1 (page 354) Special case of the generalized exponential integral.
li (page 355) Logarithmic integral.
Li (page 356) Offset logarithmic integral.

References

- https://en.wikipedia.org/wiki/Trigonometric_integral
class diofant.functions.special.error_functions.Ci(z)
Cosine integral.
This function is defined for positive x by

$$
\operatorname{Ci}(x)=\gamma+\log x+\int_{0}^{x} \frac{\cos t-1}{t} \mathrm{~d} t=-\int_{x}^{\infty} \frac{\cos t}{t} \mathrm{~d} t
$$

where γ is the Euler-Mascheroni constant.
We have

$$
\operatorname{Ci}(z)=-\frac{\mathrm{E}_{1}\left(e^{i \pi / 2} z\right)+\mathrm{E}_{1}\left(e^{-i \pi / 2} z\right)}{2}
$$

which holds for all polar z and thus provides an analytic continuation to the Riemann surface of the logarithm.
The formula also holds as stated for $z \in \mathbb{C}$ with $\Re(z)>0$. By lifting to the principal branch we obtain an analytic function on the cut complex plane.

Examples

The cosine integral is a primitive of $\cos (z) / z$:

```
>>> Ci(z).diff(z)
cos(z)/z
```

It has a logarithmic branch point at the origin:

```
>>> Ci(z*exp_polar(2*I*pi))
Ci(z) + 2*I*pi
```

The cosine integral behaves somewhat like ordinary cos under multiplication by i :

```
>>> Ci(polar_lift(I)*z)
Chi(z) + I*pí/2
>>> Ci(polar_lift(-1)*z)
Ci(z) + I*pi
```

It can also be expressed in terms of exponential integrals:

```
>>> Ci(z).rewrite(expint)
-expint(1, z*exp_polar(-I*pi/2))/2 - expint(1, z*exp_polar(I*pi/2))/2
```


See also:

Si (page 357) Sine integral.
Shi (page 359) Hyperbolic sine integral.
Chi (page 360) Hyperbolic cosine integral.
Ei (page 351) Exponential integral.
expint (page 353) Generalized exponential integral.
E1 (page 354) Special case of the generalized exponential integral.
li (page 355) Logarithmic integral.
Li (page 356) Offset logarithmic integral.

References

- https://en.wikipedia.org/wiki/Trigonometric_integral
class diofant.functions.special.error_functions.Shi(z)
Sinh integral.
This function is defined by

$$
\operatorname{Shi}(z)=\int_{0}^{z} \frac{\sinh t}{t} \mathrm{~d} t .
$$

It is an entire function.

Examples

The Sinh integral is a primitive of $\sinh (z) / z$:

```
>>> Shi(z).diff(z)
sinh(z)/z
```

It is unbranched:

```
>>> Shi(z*exp_polar(2*I*pi))
Shi(z)
```

The sinh integral behaves much like ordinary sinh under multiplication by i :

```
>>> Shi(I*z)
I*Si(z)
>>> Shi(-z)
-Shi(z)
```

It can also be expressed in terms of exponential integrals, but beware that the latter is branched:

```
>>> Shi(z).rewrite(expint)
expint(1, z)/2 - expint(1, z*exp_polar(I*pi))/2 - I*pi/2
```


See also:

Si (page 357) Sine integral.
Ci (page 358) Cosine integral.
Chi (page 360) Hyperbolic cosine integral.
Ei (page 351) Exponential integral.
expint (page 353) Generalized exponential integral.
E1 (page 354) Special case of the generalized exponential integral.
li (page 355) Logarithmic integral.
Li (page 356) Offset logarithmic integral.

References

- https://en.wikipedia.org/wiki/Trigonometric_integral
class diofant.functions.special.error_functions.Chi(z)
Cosh integral.
This function is defined for positive x by

$$
\operatorname{Chi}(x)=\gamma+\log x+\int_{0}^{x} \frac{\cosh t-1}{t} \mathrm{~d} t,
$$

where γ is the Euler-Mascheroni constant.
We have

$$
\operatorname{Chi}(z)=\operatorname{Ci}\left(e^{i \pi / 2} z\right)-i \frac{\pi}{2},
$$

which holds for all polar z and thus provides an analytic continuation to the Riemann surface of the logarithm. By lifting to the principal branch we obtain an analytic function on the cut complex plane.

Examples

The cosh integral is a primitive of $\cosh (z) / z$:

```
>>> Chi(z).diff(z)
cosh(z)/z
```

It has a logarithmic branch point at the origin:

```
>>> Chi(z*exp_polar(2*I*pi))
Chi(z) + 2*I*pi
```

The cosh integral behaves somewhat like ordinary cosh under multiplication by i :

```
>>> Chi(polar_lift(I)*z)
Ci(z) + I*pi/\overline{2}
>>> Chi(polar_lift(-1)*z)
Chi(z) + I*pi
```

It can also be expressed in terms of exponential integrals:

```
>>> Chi(z).rewrite(expint)
-expint(1, z)/2 - expint(1, z*exp_polar(I*pi))/2 - I*pi/2
```


See also:

Si (page 357) Sine integral.
Ci (page 358) Cosine integral.
Shi (page 359) Hyperbolic sine integral.
Ei (page 351) Exponential integral.
expint (page 353) Generalized exponential integral.
E1 (page 354) Special case of the generalized exponential integral.
li (page 355) Logarithmic integral.
Li (page 356) Offset logarithmic integral.

References

- https://en.wikipedia.org/wiki/Trigonometric_integral

Bessel Type Functions

class diofant.functions.special.bessel.BesselBase(nu,z)
Abstract base class for bessel-type functions.
This class is meant to reduce code duplication. All Bessel type functions can 1) be differentiated, and the derivatives expressed in terms of similar functions and 2) be rewritten in terms of other bessel-type functions.
Here "bessel-type functions" are assumed to have one complex parameter.
To use this base class, define class attributes _a and _b such that 2 *F_n' = -_a*F_\{n+1\} + b*F_\{n-1\}.
property argument
The argument of the bessel-type function.
property order
The order of the bessel-type function.
class diofant.functions.special.bessel.besselj $(n u, z)$
Bessel function of the first kind.
The Bessel J function of order ν is defined to be the function satisfying Bessel's differential equation

$$
z^{2} \frac{\mathrm{~d}^{2} w}{\mathrm{~d} z^{2}}+z \frac{\mathrm{~d} w}{\mathrm{~d} z}+\left(z^{2}-\nu^{2}\right) w=0
$$

with Laurent expansion

$$
J_{\nu}(z)=z^{\nu}\left(\frac{1}{\Gamma(\nu+1) 2^{\nu}}+O\left(z^{2}\right)\right),
$$

if ν is not a negative integer. If $\nu=-n \in \mathbb{Z}_{<0}$ is a negative integer, then the definition is

$$
J_{-n}(z)=(-1)^{n} J_{n}(z) .
$$

Examples

Create a Bessel function object:
>>> b = besselj(n, z)
Differentiate it:

```
>>> b.diff(z)
besselj(n - 1, z)/2 - besselj(n + 1, z)/2
```

Rewrite in terms of spherical Bessel functions:

```
>>> b.rewrite(jn)
sqrt(2)*sqrt(z)*jn(n - 1/2, z)/sqrt(pi)
```

Access the parameter and argument:

```
>>> b.order
n
>>> b.argument
Z
```


See also:

bessely (page 363), besseli (page 363), besselk (page 364)

References

- Abramowitz, Milton; Stegun, Irene A., eds. (1965), "Chapter 9", Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables
- Luke, Y. L. (1969), The Special Functions and Their Approximations, Volume 1
- https://en.wikipedia.org/wiki/Bessel_function
- http://functions.wolfram.com/Bessel-TypeFunctions/BesselJ/
class diofant.functions.special. bessel.bessely (nu,z)
Bessel function of the second kind.
The Bessel Y function of order ν is defined as

$$
Y_{\nu}(z)=\lim _{\mu \rightarrow \nu} \frac{J_{\mu}(z) \cos (\pi \mu)-J_{-\mu}(z)}{\sin (\pi \mu)}
$$

where $J_{\mu}(z)$ is the Bessel function of the first kind.
It is a solution to Bessel's equation, and linearly independent from J_{ν}.

Examples

```
>>> b = bessely(n, z)
>>> b.diff(z)
bessely(n - 1, z)/2 - bessely(n + 1, z)/2
>>> b.rewrite(yn)
sqrt(2)*sqrt(z)*yn(n - 1/2, z)/sqrt(pi)
```


See also:

besselj (page 362), besseli (page 363), besselk (page 364)

References

- http://functions.wolfram.com/Bessel-TypeFunctions/BesselY/
class diofant.functions.special.bessel.besseli(nu,z)
Modified Bessel function of the first kind.
The Bessel I function is a solution to the modified Bessel equation

$$
z^{2} \frac{\mathrm{~d}^{2} w}{\mathrm{~d} z^{2}}+z \frac{\mathrm{~d} w}{\mathrm{~d} z}+\left(z^{2}+\nu^{2}\right)^{2} w=0
$$

It can be defined as

$$
I_{\nu}(z)=i^{-\nu} J_{\nu}(i z),
$$

where $J_{\nu}(z)$ is the Bessel function of the first kind.

Examples

```
>>> besseli(n, z).diff(z)
besseli(n - 1, z)/2 + besseli(n + 1, z)/2
```


See also:

besselj (page 362), bessely (page 363), besselk (page 364)

References

- http://functions.wolfram.com/Bessel-TypeFunctions/BesselI/
class diofant.functions.special. bessel.besselk(nu,z)
Modified Bessel function of the second kind.
The Bessel K function of order ν is defined as

$$
K_{\nu}(z)=\lim _{\mu \rightarrow \nu} \frac{\pi}{2} \frac{I_{-\mu}(z)-I_{\mu}(z)}{\sin (\pi \mu)},
$$

where $I_{\mu}(z)$ is the modified Bessel function of the first kind.
It is a solution of the modified Bessel equation, and linearly independent from Y_{ν}.

Examples

```
>>> besselk(n, z).diff(z)
-besselk(n - 1, z)/2 - besselk(n + 1, z)/2
```


See also:

besselj (page 362), besseli (page 363), bessely (page 363)

References

- http://functions.wolfram.com/Bessel-TypeFunctions/BesselK/
class diofant.functions.special.bessel.hankell(nu,z)
Hankel function of the first kind.
This function is defined as

$$
H_{\nu}^{(1)}=J_{\nu}(z)+i Y_{\nu}(z),
$$

where $J_{\nu}(z)$ is the Bessel function of the first kind, and $Y_{\nu}(z)$ is the Bessel function of the second kind.
It is a solution to Bessel's equation.

Examples

>>> hankel1(n, z).diff(z)
hankel1(n - 1, z)/2 - hankel1(n + 1, z)/2

See also:

hankel2 (page 365), besselj (page 362), bessely (page 363)

References

- http://functions.wolfram.com/Bessel-TypeFunctions/HankelH1/
class diofant.functions.special. bessel. hankel2 (nu, z)
Hankel function of the second kind.
This function is defined as

$$
H_{\nu}^{(2)}=J_{\nu}(z)-i Y_{\nu}(z),
$$

where $J_{\nu}(z)$ is the Bessel function of the first kind, and $Y_{\nu}(z)$ is the Bessel function of the second kind.
It is a solution to Bessel's equation, and linearly independent from $H_{\nu}^{(1)}$.

Examples

```
>>> hankel2(n, z).diff(z)
hankel2(n - 1, z)/2 - hankel2(n + 1, z)/2
```


See also:

hankell (page 364), besselj (page 362), bessely (page 363)

References

- http://functions.wolfram.com/Bessel-TypeFunctions/HankelH2/

class diofant.functions.special.bessel.jn(nu,z)
Spherical Bessel function of the first kind.
This function is a solution to the spherical Bessel equation

$$
z^{2} \frac{\mathrm{~d}^{2} w}{\mathrm{~d} z^{2}}+2 z \frac{\mathrm{~d} w}{\mathrm{~d} z}+\left(z^{2}-\nu(\nu+1)\right) w=0 .
$$

It can be defined as

$$
j_{\nu}(z)=\sqrt{\frac{\pi}{2 z}} J_{\nu+\frac{1}{2}}(z),
$$

where $J_{\nu}(z)$ is the Bessel function of the first kind.

Examples

```
>>> print(jn(0, z).expand(func=True))
sin(z)/z
>>> jn(1, z).expand(func=True) == sin(z)/z**2 - cos(z)/z
True
>>> expand_func(jn(3, z))
(-6/z**2 +' 15/z**4)*sin(z) + (1/z - 15/z**3)*\operatorname{cos(z)}
```

The spherical Bessel functions of integral order are calculated using the formula:

$$
j_{n}(z)=f_{n}(z) \sin z+(-1)^{n+1} f_{-n-1}(z) \cos z,
$$

where the coefficients $f_{n}(z)$ are available as diofant.polys.orthopolys. spherical_bessel_fn() (page 624).

See also:

besselj (page 362), bessely (page 363), besselk (page 364), yn (page 366)
class diofant.functions.special. bessel. yn ($n u, z$)
Spherical Bessel function of the second kind.
This function is another solution to the spherical Bessel equation, and linearly independent from j_{n}. It can be defined as

$$
j_{\nu}(z)=\sqrt{\frac{\pi}{2 z}} Y_{\nu+\frac{1}{2}}(z),
$$

where $Y_{\nu}(z)$ is the Bessel function of the second kind.

Examples

```
>>> expand_func(yn(0, z))
-cos(z)/z
>>> expand_func(yn(1, z)) == - cos(z)/z**2-\operatorname{sin}(z)/z
True
```

For integral orders n, y_{n} is calculated using the formula:

$$
y_{n}(z)=(-1)^{n+1} j_{-n-1}(z)
$$

See also:

besselj (page 362), bessely (page 363), besselk (page 364), jn (page 365)
diofant.functions.special.bessel.jn_zeros(n, k, method='diofant', $d p s=15$)
Zeros of the spherical Bessel function of the first kind.
This returns an array of zeros of jn up to the k-th zero.

- method = "diofant": uses mpmath's function besseljzero
- method = "scipy": uses scipy.special.spherical_jn(). and scipy.optimize. newton () to find all roots, which is faster than computing the zeros using a general numerical solver, but it requires SciPy and only works with low precision floating point numbers. [The function used with method="diofant" is a recent addition to mpmath, before that a general solver was used.]

Examples

>>> jn zeros(2, 4, dps=5)
[5.7635, 9.095, 12.323, 15.515]

See also:

jn (page 365), yn (page 366), besselj (page 362), besselk (page 364), bessely (page 363)

Airy Functions

class diofant.functions.special.bessel.AiryBase(*args)
Abstract base class for Airy functions.
This class is meant to reduce code duplication.
class diofant.functions.special.bessel.airyai(arg)
The Airy function Ai of the first kind.
The Airy function $\operatorname{Ai}(z)$ is defined to be the function satisfying Airy's differential equation

$$
\frac{\mathrm{d}^{2} w(z)}{\mathrm{d} z^{2}}-z w(z)=0 .
$$

Equivalently, for real z

$$
\operatorname{Ai}(z):=\frac{1}{\pi} \int_{0}^{\infty} \cos \left(\frac{t^{3}}{3}+z t\right) \mathrm{d} t
$$

Examples

Create an Airy function object:

```
>>> airyai(z)
airyai(z)
```

Several special values are known:

```
>>> airyai(0)
3**(1/3)/(3*gamma(2/3))
>>> airyai(oo)
0
>>> airyai(-0o)
0
```

The Airy function obeys the mirror symmetry:

```
>>> conjugate(airyai(z))
airyai(conjugate(z))
```

Differentiation with respect to z is supported:

```
>>> diff(airyai(z), z)
airyaiprime(z)
>>> diff(airyai(z), (z, 2))
z*airyai(z)
```

Series expansion is also supported:

```
>>> series(airyai(z), z, 0, 3)
3**(5/6)*gamma(1/3)/(6*pi)' - 3**(1/6)*z*gamma(2/3)/(2*pi) + 0(z**3)
```

We can numerically evaluate the Airy function to arbitrary precision on the whole complex plane:

```
>>> airyai(-2).evalf(50)
0.22740742820168557599192443603787379946077222541710
```

Rewrite $\mathrm{Ai}(\mathrm{z})$ in terms of hypergeometric functions:

```
>>> airyai(z).rewrite(hyper)
-3**(2/3)*z*hyper((), (4/3,), z**3/9)/(3*gamma(1/3)) + 3**(1/3)*hyper((), (2/3,),, ь
->**3/9)/(3*gamma(2/3))
```


See also:

airybi (page 368) Airy function of the second kind.
airyaiprime (page 369) Derivative of the Airy function of the first kind.
airybiprime (page 371) Derivative of the Airy function of the second kind.

References

- https://en.wikipedia.org/wiki/Airy_function
- https://dlmf.nist.gov/9
- https://www.encyclopediaofmath.org/index.php/Airy_functions
- https://mathworld.wolfram.com/AiryFunctions.html
class diofant.functions.special. bessel.airybi(arg)
The Airy function Bi of the second kind.
The Airy function $\operatorname{Bi}(z)$ is defined to be the function satisfying Airy's differential equation

$$
\frac{\mathrm{d}^{2} w(z)}{\mathrm{d} z^{2}}-z w(z)=0
$$

Equivalently, for real z

$$
\operatorname{Bi}(z):=\frac{1}{\pi} \int_{0}^{\infty} \exp \left(-\frac{t^{3}}{3}+z t\right)+\sin \left(\frac{t^{3}}{3}+z t\right) \mathrm{d} t .
$$

Examples

Create an Airy function object:

```
>>> airybi(z)
airybi(z)
```

Several special values are known:

```
>>> airybi(0)
3**(5/6)/(3*gamma(2/3))
>>> airybi(oo)
00
>>> airybi(-00)
0
```

The Airy function obeys the mirror symmetry:

```
>>> conjugate(airybi(z))
airybi(conjugate(z))
```

Differentiation with respect to z is supported:

```
>>> diff(airybi(z), z)
airybiprime(z)
>>> diff(airybi(z), (z, 2))
z*airybi(z)
```

Series expansion is also supported:

```
>>> series(airybi(z), z, 0, 3)
3**(1/3)*gamma(1/3)/(2*pi) + 3**(2/3)*z*gamma(2/3)/(2*pi) + 0(z**3)
```

We can numerically evaluate the Airy function to arbitrary precision on the whole complex plane:

```
>>> airybi(-2).evalf(50)
-0.41230258795639848808323405461146104203453483447240
```

Rewrite $\operatorname{Bi}(z)$ in terms of hypergeometric functions:

```
>>> airybi(z).rewrite(hyper)
3**(1/6)*z*hyper((), (4/3,), z**3/9)/gamma(1/3) + 3**(5/6)*hyper((), (2/3,), z**3/
\leftrightarrows9)/(3*gamma(2/3))
```


See also:

airyai (page 367) Airy function of the first kind.
airyaiprime (page 369) Derivative of the Airy function of the first kind.
airybiprime (page 371) Derivative of the Airy function of the second kind.

References

- https://en.wikipedia.org/wiki/Airy_function
- https://dlmf.nist.gov/9
- https://www.encyclopediaofmath.org/index.php/Airy_functions
- https://mathworld.wolfram.com/AiryFunctions.html
class diofant.functions.special.bessel.airyaiprime(arg)
The derivative Ai^{\prime} of the Airy function of the first kind.
The Airy function $\mathrm{Ai}^{\prime}(z)$ is defined to be the function

$$
\operatorname{Ai}^{\prime}(z):=\frac{\mathrm{dAi}(z)}{\mathrm{d} z}
$$

Diofant Documentation, Release 0.13.0

Examples

Create an Airy function object:

```
>>> airyaiprime(z)
airyaiprime(z)
```

Several special values are known:

```
>>> airyaiprime(0)
-3**(2/3)/(3*gamma(1/3))
>>> airyaiprime(oo)
0
```

The Airy function obeys the mirror symmetry:

```
>>> conjugate(airyaiprime(z))
airyaiprime(conjugate(z))
```

Differentiation with respect to z is supported:

```
>>> diff(airyaiprime(z), z)
z*airyai(z)
>>> diff(airyaiprime(z), (z, 2))
z*airyaiprime(z) + airyai(z)
```

Series expansion is also supported:

```
>>> series(airyaiprime(z), z, 0, 3)
-3**(2/3)/(3*gamma(1/3)) + 3**(1/3)*z**2/(6*gamma(2/3)) + 0(z**3)
```

We can numerically evaluate the Airy function to arbitrary precision on the whole complex plane:

```
>>> airyaiprime(-2).evalf(50)
0.61825902074169104140626429133247528291577794512415
```

Rewrite $\mathrm{Ai}^{\prime}(\mathrm{z})$ in terms of hypergeometric functions:

```
>>> airyaiprime(z).rewrite(hyper)
3**(1/3)*z**2*hyper((), (5/3,), z**3/9)/(6*gamma(2/3)) - 3**(2/3)*hyper((), (1/3,
->), z**3/9)/(3*gamma(1/3))
```


See also:

airyai (page 367) Airy function of the first kind.
airybi (page 368) Airy function of the second kind.
airybiprime (page 371) Derivative of the Airy function of the second kind.

References

- https://en.wikipedia.org/wiki/Airy_function
- https://dlmf.nist.gov/9
- https://www.encyclopediaofmath.org/index.php/Airy_functions
- https://mathworld.wolfram.com/AiryFunctions.html
class diofant.functions.special.bessel.airybiprime(arg)
The derivative Bi^{\prime} of the Airy function of the first kind.
The Airy function $\operatorname{Bi}^{\prime}(z)$ is defined to be the function

$$
\operatorname{Bi}^{\prime}(z):=\frac{\mathrm{dBi}(z)}{\mathrm{d} z} .
$$

Examples

Create an Airy function object:

```
>>> airybiprime(z)
airybiprime(z)
```

Several special values are known:

```
>>> airybiprime(0)
3**(1/6)/gamma(1/3)
>>> airybiprime(00)
OO
>>> airybiprime(-00)
0
```

The Airy function obeys the mirror symmetry:

```
>>> conjugate(airybiprime(z))
airybiprime(conjugate(z))
```

Differentiation with respect to z is supported:

```
>>> diff(airybiprime(z), z)
z*airybi(z)
>>> diff(airybiprime(z), (z, 2))
z*airybiprime(z) + airybi(z)
```

Series expansion is also supported:

```
>>> series(airybiprime(z), z, 0, 3)
3**(1/6)/gamma(1/3) + 3**(5/6)*z**2/(6*gamma(2/3)) + 0(z**3)
```

We can numerically evaluate the Airy function to arbitrary precision on the whole complex plane:

```
>>> airybiprime(-2).evalf(50)
0.27879516692116952268509756941098324140300059345163
```

Rewrite $\mathrm{Bi}^{\prime}(\mathrm{z})$ in terms of hypergeometric functions:

```
>>> airybiprime(z).rewrite(hyper)
3**(5/6)*z**2*hyper((), (5/3,), z**3/9)/(6*gamma(2/3)) + 3**(1/6)*hyper((), (1/3,
->), z**3/9)/gamma(1/3)
```


See also:

airyai (page 367) Airy function of the first kind.
airybi (page 368) Airy function of the second kind.
airyaiprime (page 369) Derivative of the Airy function of the first kind.

References

- https://en.wikipedia.org/wiki/Airy_function
- https://dlmf.nist.gov/9
- https://www.encyclopediaofmath.org/index.php/Airy_functions
- https://mathworld.wolfram.com/AiryFunctions.html

B-Splines

diofant.functions.special.bsplines.bspline_basis(d, knots, n, x, close=True)
The n-th B-spline at x of degree d with knots.
B-Splines are piecewise polynomials of degree d. They are defined on a set of knots, which is a sequence of integers or floats.
The 0th degree splines have a value of one on a single interval:

```
>>> d = 0
>>> knots = range(5)
>>> bspline_basis(d, knots, 0, x)
Piecewise((\overline{1}, (x >= 0) & (x <= 1)), (0, true))
```

For a given (d, knots) there are len(knots)-d-1 B-splines defined, that are indexed by n (starting at 0).
Here is an example of a cubic B-spline:

```
>>> bspline_basis(3, range(5), 0, x)
Piecewise((的**3/6, (x >= 0) & (x < 1)),
    (-x**3/2 + 2*x**2 - 2*x + 2/3,
    (x >= 1) & (x < 2)),
    (x**3/2 - 4*x**2 + 10*x - 22/3,
    (x >= 2) & (x < 3)),
    (-x**3/6 + 2*x**2 - 8*x + 32/3,
        (x >= 3) & (x <= 4)),
    (0, true))
```

By repeating knot points, you can introduce discontinuities in the B-splines and their derivatives:

```
>>> d = 1
>> knots = [0, 0, 2, 3, 4]
>>> bspline basis(d, knots, 0, x)
Piecewise((-x/2 + 1, (x >= 0) & (x <= 2)), (0, true))
```

It is quite time consuming to construct and evaluate B-splines. If you need to evaluate a B-splines many times, it is best to lambdify them first:

```
>>> d = 3
>>> knots = range(10)
>>> b0 = bspline_basis(d, knots, 0, x)
>>> f = lambdify(x, b0)
>>> y = f(0.5)
```


See also:

diofant.functions.special.bsplines.bspline_basis_set (page 373)

References

- https://en.wikipedia.org/wiki/B-spline
diofant.functions.special.bsplines.bspline_basis_set(d, knots, x)
Return the len(knots)-d-1 B-splines at x of degree d with knots.
This function returns a list of Piecewise polynomials that are the len(knots)-d-1 Bsplines of degree d for the given knots. This function calls bspline_basis(d, knots, n, x) for different values of n.

Examples

```
>>> d = 2
>>> knots = range(5)
>>> splines = bspline_basis_set(d, knots, x)
>>> splines
[Piecewise((x**2/2, (x >= 0) & (x < 1)),
    (-x**2 + 3*x - 3/2, (x >= 1) & (x < 2)),
    (x**2/2 - 3*x + 9/2, (x >= 2) & (x <= 3)),
    (0, true)),
Piecewise(( }\mp@subsup{x}{}{***2/2 - x + 1/2, (x >= 1) & (x < 2)),
    (-x**2 + 5*x - 11/2, (x >= 2) & (x < 3)),
    (x**2/2 - 4*x + 8, (x >= 3) & (x <= 4)),
    (0, true))]
```


See also:

diofant.functions.special.bsplines.bspline_basis (page 372)

Riemann Zeta and Related Functions

class diofant.functions.special.zeta_functions.zeta $\left(z, a_{-}=\right.$None $)$
Hurwitz zeta function (or Riemann zeta function).
For $\operatorname{Re}(a)>0$ and $\operatorname{Re}(s)>1$, this function is defined as

$$
\zeta(s, a)=\sum_{n=0}^{\infty} \frac{1}{(n+a)^{s}},
$$

where the standard choice of argument for $n+a$ is used. For fixed a with $\operatorname{Re}(a)>0$ the Hurwitz zeta function admits a meromorphic continuation to all of \mathbb{C}, it is an unbranched function with a simple pole at $s=1$.

Analytic continuation to other a is possible under some circumstances, but this is not typically done.
The Hurwitz zeta function is a special case of the Lerch transcendent:

$$
\zeta(s, a)=\Phi(1, s, a) .
$$

This formula defines an analytic continuation for all possible values of s and a (also $\operatorname{Re}(a)<0$), see the documentation of lerchphi (page 377) for a description of the branching behavior.
If no value is passed for a, by this function assumes a default value of $a=1$, yielding the Riemann zeta function.

See also:

dirichlet_eta (page 375), lerchphi (page 377), polylog (page 375)

References

- https://dlmf.nist.gov/25.11
- https://en.wikipedia.org/wiki/Hurwitz_zeta_function

Examples

For $a=1$ the Hurwitz zeta function reduces to the famous Riemann zeta function:

$$
\zeta(s, 1)=\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}} .
$$

```
>>> from diofant.abc import s
>>> zeta(s, 1)
zeta(s)
>>> zeta(s)
zeta(s)
```

The Riemann zeta function can also be expressed using the Dirichlet eta function:

```
>>> zeta(s).rewrite(dirichlet eta)
dirichlet_eta(s)/(-2**(-s + 1) + 1)
```

The Riemann zeta function at positive even integer and negative odd integer values is related to the Bernoulli numbers:

```
>>> zeta(2)
pi**2/6
>>> zeta(4)
pi**4/90
>>> zeta(-1)
-1/12
```

The specific formulae are:

$$
\zeta(2 n)=(-1)^{n+1} \frac{B_{2 n}(2 \pi)^{2 n}}{2(2 n)!}
$$

$$
\zeta(-n)=-\frac{B_{n+1}}{n+1}
$$

At negative even integers the Riemann zeta function is zero:

```
>>> zeta(-4)
0
```

No closed-form expressions are known at positive odd integers, but numerical evaluation is possible:

```
>>> zeta(3).evalf()
1.20205690315959
```

The derivative of $\zeta(s, a)$ with respect to a is easily computed:

```
>>> zeta(s, a).diff(a)
-s*zeta(s + 1, a)
```

However the derivative with respect to s has no useful closed form expression:

```
>>> zeta(s, a).diff(s)
Derivative(zeta(s, a), s)
```

The Hurwitz zeta function can be expressed in terms of the Lerch transcendent, diofant.functions.special.zeta_functions.lerchphi (page 377):

```
>>> zeta(s, a).rewrite(lerchphi)
lerchphi(1, s, a)
```

class diofant.functions.special.zeta_functions.dirichlet_eta(s) Dirichlet eta function.

For $\operatorname{Re}(s)>0$, this function is defined as

$$
\eta(s)=\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^{s}} .
$$

It admits a unique analytic continuation to all of \mathbb{C}. It is an entire, unbranched function.

See also:

zeta (page 373)

References

- https://en.wikipedia.org/wiki/Dirichlet_eta_function
- https://mathworld.wolfram.com/DirichletEtaFunction.html

Examples

The Dirichlet eta function is closely related to the Riemann zeta function:

```
>>> from diofant.abc import s
>>> dirichlet_eta(s).rewrite(zeta)
(-2**(-s + 1)-}+1)*zeta(s
```

class diofant.functions.special.zeta_functions.polylog(s,z)
Polylogarithm function.
For $|z|<1$ and $s \in \mathbb{C}$, the polylogarithm is defined by

$$
\mathrm{Li}_{s}(z)=\sum_{n=1}^{\infty} \frac{z^{n}}{n^{s}},
$$

where the standard branch of the argument is used for n. It admits an analytic continuation which is branched at $z=1$ (notably not on the sheet of initial definition), $z=0$ and $z=\infty$.

The name polylogarithm comes from the fact that for $s=1$, the polylogarithm is related to the ordinary logarithm (see examples), and that

$$
\mathrm{Li}_{s+1}(z)=\int_{0}^{z} \frac{\operatorname{Li}_{s}(t)}{t} \mathrm{~d} t .
$$

The polylogarithm is a special case of the Lerch transcendent:

$$
\mathrm{Li}_{s}(z)=z \Phi(z, s, 1)
$$

See also:

zeta (page 373), lerchphi (page 377)

Examples

For $z \in\{0,1,-1\}$, the polylogarithm is automatically expressed using other functions:

```
>>> from diofant.abc import s
>>> polylog(s, 0)
0
>>> polylog(s, 1)
zeta(s)
>>> polylog(s, -1)
-dirichlet_eta(s)
```

If s is a negative integer, 0 or 1 , the polylogarithm can be expressed using elementary functions. This can be done using expand_func():

```
>>> expand_func(polylog(1, z))
-log(-z + 1)
>>> expand_func(polylog(0, z))
z/(-z + 1)
```

The derivative with respect to z can be computed in closed form:

```
>>> polylog(s, z).diff(z)
polylog(s - 1, z)/z
```

The polylogarithm can be expressed in terms of the lerch transcendent:

```
>>> polylog(s, z).rewrite(lerchphi)
z*lerchphi(z, s, 1)
```


References

- https://en.wikipedia.org/wiki/Polylogarithm
- https://mathworld.wolfram.com/Polylogarithm.html
class diofant.functions.special.zeta_functions.lerchphi(*args)
Lerch transcendent (Lerch phi function).
For $\operatorname{Re}(a)>0,|z|<1$ and $s \in \mathbb{C}$, the Lerch transcendent is defined as

$$
\Phi(z, s, a)=\sum_{n=0}^{\infty} \frac{z^{n}}{(n+a)^{s}},
$$

where the standard branch of the argument is used for $n+a$, and by analytic continuation for other values of the parameters.
A commonly used related function is the Lerch zeta function, defined by

$$
L(q, s, a)=\Phi\left(e^{2 \pi i q}, s, a\right) .
$$

Analytic Continuation and Branching Behavior

It can be shown that

$$
\Phi(z, s, a)=z \Phi(z, s, a+1)+a^{-s} .
$$

This provides the analytic continuation to $\operatorname{Re}(a) \leq 0$.
Assume now $\operatorname{Re}(a)>0$. The integral representation

$$
\Phi_{0}(z, s, a)=\int_{0}^{\infty} \frac{t^{s-1} e^{-a t}}{1-z e^{-t}} \frac{\mathrm{~d} t}{\Gamma(s)}
$$

provides an analytic continuation to $\mathbb{C}-[1, \infty)$. Finally, for $x \in(1, \infty)$ we find

$$
\lim _{\epsilon \rightarrow 0^{+}} \Phi_{0}(x+i \epsilon, s, a)-\lim _{\epsilon \rightarrow 0^{+}} \Phi_{0}(x-i \epsilon, s, a)=\frac{2 \pi i \log ^{s-1} x}{x^{a} \Gamma(s)}
$$

using the standard branch for both $\log x$ and $\log \log x$ (a branch of $\log \log x$ is needed to evaluate $\log x^{s-1}$). This concludes the analytic continuation. The Lerch transcendent is thus branched at $z \in\{0,1, \infty\}$ and $a \in \mathbb{Z}_{\leq 0}$. For fixed z, a outside these branch points, it is an entire function of s.

See also:

polylog (page 375), zeta (page 373)

References

- Bateman, H.; Erdélyi, A. (1953), Higher Transcendental Functions, Vol. I, New York: McGraw-Hill. Section 1.11.
- https://dlmf.nist.gov/25.14
- https://en.wikipedia.org/wiki/Lerch_transcendent

Examples

The Lerch transcendent is a fairly general function, for this reason it does not automatically evaluate to simpler functions. Use expand_func() to achieve this.
If $z=1$, the Lerch transcendent reduces to the Hurwitz zeta function:

```
>>> from diofant.abc import s
>>> expand_func(lerchphi(1, s, a))
zeta(s, a)
```

More generally, if z is a root of unity, the Lerch transcendent reduces to a sum of Hurwitz zeta functions:

```
>>> expand_func(lerchphi(-1, s, a))
2**(-s)*ze\overline{ta(s,a/2) - 2**(-s)*zeta(s, a/2 + 1/2)}
```

If $a=1$, the Lerch transcendent reduces to the polylogarithm:

```
>>> expand_func(lerchphi(z, s, 1))
polylog(s, - z)/z
```

More generally, if a is rational, the Lerch transcendent reduces to a sum of polylogarithms:

```
>>> expand_func(lerchphi(z, s, Rational(1, 2)))
2**(s - 1)*(polylog(s, sqrt(z))/sqrt(z) -
    polylog(s, sqrt(z)*exp_polar(I*pi))/sqrt(z))
>>> expand_func(lerchphi(z, s, Rational(3, 2)))
-2**s/z + 2**(s - 1)*(polylog(s, sqrt(z))/sqrt(z) -
        polylog(s, sqrt(z)*exp_polar(I*pi))/sqrt(z))/z
```

The derivatives with respect to z and a can be computed in closed form:

```
>>> lerchphi(z, s, a).diff(z)
(-a*lerchphi(z, s, a) + lerchphi(z, s - 1, a))/z
>>> lerchphi(z, s, a).diff(a)
-s*lerchphi(z, s + 1, a)
```


Hypergeometric Functions

class diofant.functions.special.hyper.hyper (ap, $b q, z$)
The (generalized) hypergeometric function is defined by a series where the ratios of successive terms are a rational function of the summation index. When convergent, it is continued analytically to the largest possible domain.
The hypergeometric function depends on two vectors of parameters, called the numerator parameters a_{p}, and the denominator parameters b_{q}. It also has an argument z. The series definition is

$$
{ }_{p} F_{q}\left(\left.\begin{array}{c}
a_{1}, \ldots, a_{p} \\
b_{1}, \ldots, b_{q}
\end{array} \right\rvert\, z\right)=\sum_{n=0}^{\infty} \frac{\left(a_{1}\right)_{n} \ldots\left(a_{p}\right)_{n}}{\left(b_{1}\right)_{n} \ldots\left(b_{q}\right)_{n}} \frac{z^{n}}{n!},
$$

where $(a)_{n}=(a)(a+1) \ldots(a+n-1)$ denotes the rising factorial.
If one of the b_{q} is a non-positive integer then the series is undefined unless one of the a_{p} is a larger (i.e. smaller in magnitude) non-positive integer. If none of the b_{q} is a nonpositive integer and one of the a_{p} is a non-positive integer, then the series reduces to a
polynomial. To simplify the following discussion, we assume that none of the a_{p} or b_{q} is a non-positive integer. For more details, see the references.
The series converges for all z if $p \leq q$, and thus defines an entire single-valued function in this case. If $p=q+1$ the series converges for $|z|<1$, and can be continued analytically into a half-plane. If $p>q+1$ the series is divergent for all z.
Note: The hypergeometric function constructor currently does not check if the parameters actually yield a well-defined function.

Examples

The parameters a_{p} and b_{q} can be passed as arbitrary iterables, for example:

```
>>> hyper((1, 2, 3), [3, 4], x)
hyper((1, 2, 3), (3, 4), x)
```

There is also pretty printing (it looks better using unicode):

```
>>> pprint(hyper((1, 2, 3), [3, 4], x), use_unicode=False)
|
```

The parameters must always be iterables, even if they are vectors of length one or zero:

```
>>> hyper([1], [], x)
hyper((1,), (), x)
```

But of course they may be variables (but if they depend on x then you should not expect much implemented functionality):

```
>>> hyper([n, a], [n**2], x)
hyper((n, a), (n**2,), x)
```

The hypergeometric function generalizes many named special functions. The function hyperexpand() tries to express a hypergeometric function using named special functions. For example:

```
>>> hyperexpand(hyper([], [], x))
E**X
```

You can also use expand_func:

```
>>> expand_func(x*hyper([1, 1], [2], -x))
log(x + 1)
```

More examples:

```
>>> hyperexpand(hyper([], [Rational(1, 2)], -x**2/4))
cos(x)
>>> hyperexpand(x*hyper([Rational(1, 2), Rational(1, 2)], [Rational(3, 2)], x**2))
asin(x)
```

We can also sometimes hyperexpand parametric functions:

```
>>> hyperexpand(hyper([-a], [], x))
(-x + 1)**a
```


See also:

diofant.simplify.hyperexpand (page 702), diofant.functions.special. gamma_functions.gamma (page 333), diofant.functions.special.hyper.meijerg (page $\overline{380)}$

References

- Luke, Y. L. (1969), The Special Functions and Their Approximations, Volume 1
- https://en.wikipedia.org/wiki/Generalized_hypergeometric_function

property ap

Numerator parameters of the hypergeometric function.

property argument

Argument of the hypergeometric function.

property bq

Denominator parameters of the hypergeometric function.
property convergence_statement
Return a condition on z under which the series converges.
property eta
A quantity related to the convergence of the series.
property radius_of_convergence
Compute the radius of convergence of the defining series.
Note that even if this is not oo, the function may still be evaluated outside of the radius of convergence by analytic continuation. But if this is zero, then the function is not actually defined anywhere else.

```
>>> hyper((1, 2), [3], z).radius_of_convergence
1
>>> hyper((1, 2, 3), [4], z).radius_of_convergence
0
>>> hyper((1, 2), (3, 4), z).radius_of_convergence
00
```

class diofant.functions.special. hyper.meijerg(*args)
The Meijer G-function is defined by a Mellin-Barnes type integral that resembles an inverse Mellin transform. It generalizes the hypergeometric functions.
The Meijer G-function depends on four sets of parameters. There are "numerator parameters" a_{1}, \ldots, a_{n} and a_{n+1}, \ldots, a_{p}, and there are "denominator parameters" b_{1}, \ldots, b_{m} and b_{m+1}, \ldots, b_{q}. Confusingly, it is traditionally denoted as follows (note the position of m, n, p, q, and how they relate to the lengths of the four parameter vectors):

$$
G_{p, q}^{m, n}\left(\left.\begin{array}{ll}
a_{1}, \ldots, a_{n} & a_{n+1}, \ldots, a_{p} \\
b_{1}, \ldots, b_{m} & b_{m+1}, \ldots, b_{q}
\end{array} \right\rvert\, z\right)
$$

However, in diofant the four parameter vectors are always available separately (see examples), so that there is no need to keep track of the decorating sub- and super-scripts on the G symbol.

The G function is defined as the following integral:

$$
\frac{1}{2 \pi i} \int_{L} \frac{\prod_{j=1}^{m} \Gamma\left(b_{j}-s\right) \prod_{j=1}^{n} \Gamma\left(1-a_{j}+s\right)}{\prod_{j=m+1}^{q} \Gamma\left(1-b_{j}+s\right) \prod_{j=n+1}^{p} \Gamma\left(a_{j}-s\right)} z^{s} \mathrm{~d} s
$$

where $\Gamma(z)$ is the gamma function. There are three possible contours which we will not describe in detail here (see the references). If the integral converges along more than one of them the definitions agree. The contours all separate the poles of $\Gamma\left(1-a_{j}+s\right)$ from the poles of $\Gamma\left(b_{k}-s\right)$, so in particular the G function is undefined if $a_{j}-b_{k} \in \mathbb{Z}_{>0}$ for some $j \leq n$ and $k \leq m$.

The conditions under which one of the contours yields a convergent integral are complicated and we do not state them here, see the references.

Note: Currently the Meijer G-function constructor does not check any convergence conditions.

Examples

You can pass the parameters either as four separate vectors:

```
>>> pprint(meijerg([1, 2], [a, 4], [5], [], x), use_unicode=False)
\_1, 2 /1, 2 a, 4 | \
```

or as two nested vectors:

```
>>> pprint(meijerg(([1, 2], [3, 4]), ([5], []), x), use_unicode=False)
\begin{tabular}{|c|c|}
\hline 1, \(2 / 1,2\) 3, 4 & \} \\
\hline /_ | & \(x \mid\) \\
\hline \(\backslash \ \mid 4,1 \backslash 5\) & / \\
\hline
\end{tabular}
```

As with the hypergeometric function, the parameters may be passed as arbitrary iterables. Vectors of length zero and one also have to be passed as iterables. The parameters need not be constants, but if they depend on the argument then not much implemented functionality should be expected.
All the subvectors of parameters are available:

```
>>> g = meijerg([1], [2], [3], [4], x)
>>> pprint(g, use_unicode=False)
```



```
>>> g.an
(1,)
>>> g.ap
(1, 2)
>>> g.aother
(2,)
>>> g.bm
(3,)
>>> g.bq
(3, 4)
>>> g.bother
(4,)
```

The Meijer G-function generalizes the hypergeometric functions. In some cases it can be expressed in terms of hypergeometric functions, using Slater's theorem. For example:

```
>>> hyperexpand(meijerg([a], [], [c], [b], x), allow_hyper=True)
x**c*gamma(-a + c + 1)*hyper((-a + c + 1,),
    (-b + c + 1,), -x)/gamma(-b + c + 1)
```

Thus the Meijer G-function also subsumes many named functions as special cases. You can use expand_func or hyperexpand to (try to) rewrite a Meijer G-function in terms of named special functions. For example:

```
>> expand_func(meijerg([[], []], [[0], []], -x))
E**X
>>> hyperexpand(meijerg([[], []], [[Rational(1, 2)], [0]], (x/2)**2))
sin(x)/sqrt(pi)
```


See also:

diofant.functions.special.hyper.hyper (page 378), diofant.simplify. hyperexpand (page 702)

References

- Luke, Y. L. (1969), The Special Functions and Their Approximations, Volume 1
- https://en.wikipedia.org/wiki/Meijer_G-function

property an

First set of numerator parameters.
property aother
Second set of numerator parameters.
property ap
Combined numerator parameters.

property argument

Argument of the Meijer G-function.
property bm
First set of denominator parameters.
property bother
Second set of denominator parameters.
property bq
Combined denominator parameters.
property delta
A quantity related to the convergence region of the integral, c.f. references.
get_period()
Return a number P such that $\mathrm{G}\left(\mathrm{x}^{*} \exp \left(\mathrm{I}^{*} \mathrm{P}\right)\right)==\mathrm{G}(\mathrm{x})$.

```
>>> meijerg([1], [], [], [], z).get_period()
2*pi
>>> meijerg([pi], [], [], [], z).get_period()
00
>>> meijerg([1, 2], [], [], [], z).get_period()
00
>>> meijerg([1, 1], [2], [1, Rational(1, 2), Rational(1, 3)], [1], z).get_
Mperiod()
12*pi
```

integrand (s)
Get the defining integrand $\mathrm{D}(\mathrm{s})$.

property nu

A quantity related to the convergence region of the integral, c.f. references.

Elliptic integrals

class diofant.functions.special.elliptic_integrals.elliptic_k(m)
The complete elliptic integral of the first kind, defined by

$$
K(m)=F\left(\left.\frac{\pi}{2} \right\rvert\, m\right)
$$

where $F(z \mid m)$ is the Legendre incomplete elliptic integral of the first kind.
The function $K(m)$ is a single-valued function on the complex plane with branch cut along the interval $(1, \infty)$.

Examples

```
>>> elliptic_k(0)
pi/2
>>> elliptic k(1.0 + I)
1.50923695405127 + 0.625146415202697*I
>>> elliptic_k(m).series(m, n=3)
pi/2 + pi*m/\overline{8}+9*pi*m**2/128 + 0(m**3)
```


References

- https://en.wikipedia.org/wiki/Elliptic_integrals
- http://functions.wolfram.com/EllipticIntegrals/EllipticK

See also:

elliptic_f (page 383)
class diofant.functions.special.elliptic_integrals.elliptic_f (z, m)
The Legendre incomplete elliptic integral of the first kind, defined by

$$
F(z \mid m)=\int_{0}^{z} \frac{d t}{\sqrt{1-m \sin ^{2} t}}
$$

This function reduces to a complete elliptic integral of the first kind, $K(m)$, when $z=\pi / 2$.

Examples

```
>>> elliptic_f(z, m).series(z)
z + z**5*(3*m**2/40 - m/30) + m*z**3/6 + 0(z**6)
>>> elliptic_f(3.0 + I/2, 1.0 + I)
2.9094498414\overline{8}3 + 1.74720545502474*I
```


References

- https://en.wikipedia.org/wiki/Elliptic_integrals
- http://functions.wolfram.com/EllipticIntegrals/EllipticF

See also:

elliptic_k (page 383)
class diofant.functions.special.elliptic_integrals.elliptic_e $(z, m=N o n e)$
Called with two arguments z and m, evaluates the incomplete elliptic integral of the second kind, defined by

$$
E(z \mid m)=\int_{0}^{z} \sqrt{1-m \sin ^{2} t} d t
$$

Called with a single argument m, evaluates the Legendre complete elliptic integral of the second kind

$$
E(m)=E\left(\left.\frac{\pi}{2} \right\rvert\, m\right)
$$

The function $E(m)$ is a single-valued function on the complex plane with branch cut along the interval $(1, \infty)$.

Examples

```
>>> elliptic_e(z, m).series(z)
z + z**5*(-m**2/40 + m/30) - m*z**3/6 + 0(z**6)
>>> elliptic_e(m).series(m, n=4)
pi/2 - pi*m/8 - 3*pi*m**2/128 - 5*pi*m**3/512 + 0(m**4)
>>> elliptic e(1 + I, 2 - I/2).evalf()
1.55203744279}187 + 0.290764986058437*I
>>> elliptic_e(0)
pi/2
>>> elliptic_e(2.0 - I)
0.99105260132\overline{2069 + 0.81879421395609*I}
```


References

- https://en.wikipedia.org/wiki/Elliptic_integrals
- http://functions.wolfram.com/EllipticIntegrals/EllipticE2
- http://functions.wolfram.com/EllipticIntegrals/EllipticE
class diofant.functions.special.elliptic_integrals.elliptic_pi($n, m, z=$ None $)$
Called with three arguments n, z and m, evaluates the Legendre incomplete elliptic integral of the third kind, defined by

$$
\Pi(n ; z \mid m)=\int_{0}^{z} \frac{d t}{\left(1-n \sin ^{2} t\right) \sqrt{1-m \sin ^{2} t}}
$$

Called with two arguments n and m, evaluates the complete elliptic integral of the third kind:

$$
\Pi(n \mid m)=\Pi\left(n ; \left.\frac{\pi}{2} \right\rvert\, m\right)
$$

Examples

```
>>> elliptic_pi(n, z, m).series(z, n=4)
z + z****(m/6 + n/3) + O(z**4)
>>> elliptic_pi(0.5 + I, 1.0 - I, 1.2)
2.50232379629182 - 0.760939574180767*I
>>> elliptic_pi(0, 0)
pi/2
>>> elliptic_pi(1.0 - I/3, 2.0 + I)
3.2913644341\overline{7283 + 0.32555634906645*I}
```


References

- https://en.wikipedia.org/wiki/Elliptic_integrals
- http://functions.wolfram.com/EllipticIntegrals/EllipticPi3
- http://functions.wolfram.com/EllipticIntegrals/EllipticPi

Orthogonal Polynomials

This module mainly implements special orthogonal polynomials.
See also functions.combinatorial.numbers which contains some combinatorial polynomials.

Jacobi Polynomials

class diofant.functions.special.polynomials.jacobi(n, a, b, x)
Jacobi polynomial $P_{n}^{(\alpha, \beta)}(x)$
jacobi(n, alpha, beta, x) gives the nth Jacobi polynomial in $\mathrm{x}, P_{n}^{(\alpha, \beta)}(x)$.
The Jacobi polynomials are orthogonal on $[-1,1]$ with respect to the weight $(1-x)^{\alpha}(1+x)^{\beta}$.

Examples

```
>>> jacobi(0, a, b, x)
1
>>> jacobi(1, a, b, x)
a/2 - b/2 + x*(a/2 + b/2 + 1)
```

```
>>> jacobi(n, a, b, x)
```

jacobi(n, a, b, x)

```
>>> jacobi(n, a, a, x)
RisingFactorial(a + 1, n)*gegenbauer(n,
    a + 1/2, x)/RisingFactorial(2*a + 1, n)
```

```
>>> jacobi(n, 0, 0, x)
legendre(n, x)
```

```
>>> jacobi(n, Rational(1, 2), Rational(1, 2), x)
RisingFactorial(3/2, n)*chebyshevu(n, x)/factorial(n + 1)
```

```
>>> jacobi(n, -Rational(1, 2), -Rational(1, 2), x)
RisingFactorial(1/2, n)*chebyshevt(n, x)/factorial(n)
```

>>> jacobi(n, a, b, -x)
(-1)**n*jacobi(n, b, a, x)
>>> jacobi(n, a, b, 0)
$2 * *(-n) * \operatorname{gamma}(a+n+1) * h y p e r((-b-n,-n),(a+1),-1) /,\left(f a c t o r i a l(n) * g a m m a\left(a_{u}\right.\right.$
$\rightarrow+$ 1)
>>> jacobi(n, a, b, 1)
RisingFactorial(a + 1, n)/factorial(n)

```
>>> conjugate(jacobi(n, a, b, x))
jacobi(n, conjugate(a), conjugate(b), conjugate(x))
```

```
>>> diff(jacobi(n, a, b, x), x)
(a + b + n + 1)*jacobi(n - 1, a + 1, b + 1, x)/2
```


See also:

gegenbauer (page 387), chebyshevt_root (page 390), chebyshevu (page 389), chebyshevu_root (page 390), legendre (page 391), assoc_legendre (page 392), hermite (page 393), laguerre (page 393), assoc_laguerré (page 394), diofant.polys. orthopolys.jacobi poly (page 624), diofānt.polys.orthopolys.gegenbauer poly (page 624), diofant.polys.orthopolys.chebyshevt_poly (page 624), diofant. polys.orthopolys.chebyshevu poly (page 624), diofant.polys.orthopolys. hermite_poly (page 624), diofant.polys.orthopolys.legendre_poly (page 624), diofant. polys.orthopolys.laguerre_poly (page 624)

References

- https://en.wikipedia.org/wiki/Jacobi_polynomials
- https://mathworld.wolfram.com/JacobiPolynomial.html
- http://functions.wolfram.com/Polynomials/JacobiP/
diofant.functions.special. polynomials.jacobi_normalized(n, a, b, x)
Jacobi polynomial $P_{n}^{(\alpha, \beta)}(x)$
jacobi_normalized(n, alpha, beta, x) gives the nth Jacobi polynomial in $\mathrm{x}, P_{n}^{(\alpha, \beta)}(x)$.
The Jacobi polynomials are orthogonal on $[-1,1]$ with respect to the weight $(1-x)^{\alpha}(1+x)^{\beta}$.

This functions returns the polynomials normilzed:

$$
\int_{-1}^{1} P_{m}^{(\alpha, \beta)}(x) P_{n}^{(\alpha, \beta)}(x)(1-x)^{\alpha}(1+x)^{\beta} \mathrm{d} x=\delta_{m, n}
$$

Examples

```
>>> jacobi_normalized(n, a, b, x)
jacobi(n, a, b, x)/sqrt(2**(a + b + l)*gamma(a + n + l)*gamma(b + n + l)/((a + b
\hookrightarrow+2*n + 1)*factorial(n)*gamma(a + b + n + 1)))
```


See also:

gegenbauer (page 387), chebyshevt_root (page 390), chebyshevu (page 389), chebyshevu_root (page 390), legendre (page 391), assoc_legendre (page 392), hermite (page 393), laguerre (page 393), assoc laguerre (page 394), diofant.polys. orthopolys.jacobi_poly (page 624), diofānt.polys.orthopolys.gegenbauer_poly (page 624), diofant.polys.orthopolys.chebyshevt poly (page 624), diofant. polys.orthopolys.chebyshevu poly (page 624), diofant.polys.orthopolys. hermite_poly (page 624), diofant.polys.orthopolys.legendre_poly (page 624), diofant.polys.orthopolys.laguerre_poly (page 624)

References

- https://en.wikipedia.org/wiki/Jacobi_polynomials
- https://mathworld.wolfram.com/JacobiPolynomial.html
- http://functions.wolfram.com/Polynomials/JacobiP/

Gegenbauer Polynomials

class diofant.functions.special. polynomials.gegenbauer (n, a, x)
Gegenbauer polynomial $C_{n}^{(\alpha)}(x)$
gegenbauer(n , alpha, x) gives the nth Gegenbauer polynomial in $\mathrm{x}, C_{n}^{(\alpha)}(x)$.
The Gegenbauer polynomials are orthogonal on $[-1,1]$ with respect to the weight $\left(1-x^{2}\right)^{\alpha-\frac{1}{2}}$.

Examples

```
>>> gegenbauer(0, a, x)
1
>>> gegenbauer(1, a, x)
2*a*x
>>> gegenbauer(2, a, x)
-a + x**2*(2*a**2 + 2*a)
>>> gegenbauer(3, a, x)
x**3*(4*a**3/3 + 4*a**2 + 8*a/3) + x*(-2*a**2 - 2*a)
```

```
>>> gegenbauer(n, a, x)
gegenbauer(n, a, x)
>>> gegenbauer(n, a, -x)
(-1)**n*gegenbauer(n, a, x)
```

```
>>> gegenbauer(n, a, 0)
2**n*sqrt(pi)*gamma(a + n/2)/(gamma(a)*gamma(-n/2 + 1/2)*gamma(n + 1))
>>> gegenbauer(n, a, 1)
gamma(2*a + n)/(gamma(2*a)*gamma(n + 1))
```

```
>>> conjugate(gegenbauer(n, a, x))
gegenbauer(n, conjugate(a), conjugate(x))
```

```
>>> diff(gegenbauer(n, a, x), x)
```

2*a*gegenbauer(n - 1, a + 1, x)

See also:

jacobi (page 385), chebyshevt_root (page 390), chebyshevu (page 389), chebyshevu_root (page 390), legendre (page 391), assoc_legendre (page 392), hermite (page 393), laguerre (page 393), assoc_laguerre (page 394), diofant.polys. orthopolys.jacobi_poly (page 624), diofant.polys.orthopolys.gegenbauer_poly (page 624), diofant.polys.orthopolys.chebyshevt_poly (page 624), diofant. polys.orthopolys.chebyshevu_poly (page 624), diofant.polys.orthopolys. hermite_poly (page 624), diofant.polys.orthopolys.legendre_poly (page 624), diofant.polys.orthopolys.laguerre_poly (page 624)

References

- https://en.wikipedia.org/wiki/Gegenbauer_polynomials
- https://mathworld.wolfram.com/GegenbauerPolynomial.html
- http://functions.wolfram.com/Polynomials/GegenbauerC3/

Chebyshev Polynomials

class diofant.functions.special.polynomials.chebyshevt(n, x)
Chebyshev polynomial of the first kind, $T_{n}(x)$
chebyshevt(n, x) gives the nth Chebyshev polynomial (of the first kind) in $\mathrm{x}, T_{n}(x)$.
The Chebyshev polynomials of the first kind are orthogonal on $[-1,1]$ with respect to the weight $\frac{1}{\sqrt{1-x^{2}}}$.

Examples

```
>>> chebyshevt(0, x)
1
>>> chebyshevt(1, x)
x
>>> chebyshevt(2, x)
2*x**2 - 1
```

>>> chebyshevt(n, x)
chebyshevt(n, x)
>>> chebyshevt ($\mathrm{n},-\mathrm{x}$)
(-1)**n*chebyshevt (n, x)
>>> chebyshevt(-n, x)
chebyshevt(n, x)

```
>>> chebyshevt(n, 0)
cos(pi*n/2)
>>> chebyshevt(n, -1)
(-1)**n
```

```
>>> diff(chebyshevt(n, x), x)
n*chebyshevu(n - 1, x)
```


See also:

jacobi (page 385), gegenbauer (page 387), chebyshevt_root (page 390), chebyshevu (page 389), chebyshevu_root (page 390), legendre (page 391), assoc_legendre (page 392), hermite (page 393), laguerre (page 393), assoc_laguerre (page 394), diofant.polys.orthopolys.jacobi poly (page 624), diofañt.polys.orthopolys. gegenbauer poly (page 624), diofant.polys.orthopolys.chebyshevt poly (page 624), diofant.polys.orthopolys.chebyshevu_poly (page 624), diofant. polys.orthopolys.hermite_poly (page 624), diofant.polys.orthopolys. legendre_poly (page 624), diofant.polys.orthopolys.laguerre_poly (page 624)

References

- https://en.wikipedia.org/wiki/Chebyshev_polynomial
- https://mathworld.wolfram.com/ChebyshevPolynomialoftheFirstKind.html
- https://mathworld.wolfram.com/ChebyshevPolynomialoftheSecondKind.html
- http://functions.wolfram.com/Polynomials/ChebyshevT/
- http://functions.wolfram.com/Polynomials/ChebyshevU/
class diofant.functions.special.polynomials.chebyshevu(n, x)
Chebyshev polynomial of the second kind, $U_{n}(x)$
chebyshevu(n, x) gives the nth Chebyshev polynomial of the second kind in $\mathrm{x}, U_{n}(x)$.
The Chebyshev polynomials of the second kind are orthogonal on $[-1,1]$ with respect to the weight $\sqrt{1-x^{2}}$.

Examples

```
>>> chebyshevu(0, x)
1
>>> chebyshevu(1, x)
2*x
>>> chebyshevu(2, x)
4*x**2 - 1
```

```
>>> chebyshevu(n, x)
chebyshevu(n, x)
>>> chebyshevu(n, -x)
(-1)**n*chebyshevu(n, x)
>>> chebyshevu(-n, x)
-chebyshevu(n - 2, x)
```

```
>>> chebyshevu(n, 0)
cos(pi*n/2)
>>> chebyshevu(n, 1)
n + 1
```

```
>>> diff(chebyshevu(n, x), x)
(-x*chebyshevu(n, x) + (n + 1)*chebyshevt(n + 1, x))/(x**2 - 1)
```


See also:

jacobi (page 385), gegenbauer (page 387), chebyshevt (page 388), chebyshevt_root (page 390), chebyshevu_root (page 390), legendre (page 391), assoc_legēndre (page 392), hermite (page 393), laguerre (page 393), assoc_laguerre (page 394), diofant.polys.orthopolys.jacobi_poly (page 624), diofant.polys.orthopolys. gegenbauer_poly (page 624), diofant.polys.orthopolys.chebyshevt poly (page 624), diofant.polys.orthopolys.chebyshevu_poly (page 624), diofant. polys.orthopolys.hermite poly (page 624), diofant.polys.orthopolys. legendre_poly (page 624), diofant.polys.orthopolys.laguerre_poly (page 624)

References

- https://en.wikipedia.org/wiki/Chebyshev_polynomial
- https://mathworld.wolfram.com/ChebyshevPolynomialoftheFirstKind.html
- https://mathworld.wolfram.com/ChebyshevPolynomialoftheSecondKind.html
- http://functions.wolfram.com/Polynomials/ChebyshevT/
- http://functions.wolfram.com/Polynomials/ChebyshevU/
class diofant.functions.special. polynomials.chebyshevt_root (n, k)
chebyshev_root(n, k) returns the kth root (indexed from zero) of the nth Chebyshev polynomial of the first kind; that is, if $0<=\mathrm{k}<\mathrm{n}$, chebyshevt(n , chebyshevt_root(n, k)) == 0.

Examples

>>> chebyshevt_root $(3,2)$
-sqrt(3)/2
>>> chebyshevt(3, chebyshevt_root $(3,2)$)
0

See also:

jacobi (page 385), gegenbauer (page 387), chebyshevt (page 388), chebyshevu (page 389), chebyshevu_root (page 390), legendre (page 391), assoc_legendre (page 392), hermite (page 393), laguerre (page 393), assoc_laguerre (page 394), diofant.polys.orthopolys.jacobi_poly (page 624), diofant.polys.orthopolys. gegenbauer_poly (page 624), diofant.polys.orthopolys.chebyshevt_poly (page 624), diofant.polys.orthopolys.chebyshevu_poly (page 624), diofant. polys.orthopolys.hermite_poly (page 624), diofant.polys.orthopolys. legendre_poly (page 624), diofant.polys.orthopolys.laguerre_poly (page 624)
class diofant.functions.special. polynomials.chebyshevu_root (n, k)
chebyshevu_root(n, k) returns the kth root (indexed from zero) of the nth Chebyshev polynomial of the second kind; that is, if $0<=\mathrm{k}<\mathrm{n}$, chebyshevu(n , chebyshevu_root(n , $\mathrm{k})==0$.

Examples

```
>>> chebyshevu_root(3, 2)
-sqrt(2)/2
>>> chebyshevu(3, chebyshevu_root(3, 2))
0
```


See also:

chebyshevt (page 388), chebyshevt_root (page 390), chebyshevu (page 389), legendre (page 391), assoc_legendre (page 392), hermite (page 393), laguerre (page 393), assoc_laguerre (page 394), diofant.polys.orthopolys.jacobi_poly (page 624), diofant.polys.orthopolys.gegenbauer_poly (page 624), diofant. polys.orthopolys.chebyshevt_poly (page 624), diofant.polys.orthopolys. chebyshevu poly (page 624), diofant.polys.orthopolys.hermite_poly (page 624), diofant.polys.orthopolys.legendre_poly (page 624), diofant.polys.orthopolys. laguerre poly (page 624)

Legendre Polynomials

class diofant.functions.special.polynomials.legendre(n, x) legendre(n, x) gives the nth Legendre polynomial of $\mathrm{x}, P_{n}(x)$
The Legendre polynomials are orthogonal on $[-1,1]$ with respect to the constant weight 1. They satisfy $P_{n}(1)=1$ for all n ; further, P_{n} is odd for odd n and even for even n .

Examples

```
>>> legendre(0, x)
1
>>> legendre(1, x)
x
>>> legendre(2, x)
3*x**2/2 - 1/2
>>> legendre(n, x)
legendre(n, x)
>>> diff(legendre(n, x), x)
n*(x*legendre(n, x) - legendre(n - 1, x))/(x**2 - 1)
```


See also:

jacobi (page 385), gegenbauer (page 387), chebyshevt (page 388), chebyshevt_root (page 390), chebyshevu (page 389), chebyshevu_root (page 390), assoc_legendre (page 392), hermite (page 393), laguerre (page 393), assoc laguerre (page 394), diofant.polys.orthopolys.jacobi_poly (page 624), diofant.polys.orthopolys. gegenbauer_poly (page 624), diofant.polys.orthopolys.chebyshevt_poly (page 624), diofant.polys.orthopolys.chebyshevu_poly (page 624), diofant. polys.orthopolys.hermite_poly (page 624), diofant.polys.orthopolys. legendre poly (page 624), diofant.polys.orthopolys.laguerre_poly (page 624)

References

- https://en.wikipedia.org/wiki/Legendre_polynomial
- https://mathworld.wolfram.com/LegendrePolynomial.html
- http://functions.wolfram.com/Polynomials/LegendreP/
- http://functions.wolfram.com/Polynomials/LegendreP2/
class diofant.functions.special.polynomials.assoc_legendre (n, m, x) assoc_legendre $(\mathrm{n}, \mathrm{m}, \mathrm{x})$ gives $P_{n}^{m}(x)$, where n and m are the degree and order or an expression which is related to the nth order Legendre polynomial, $P_{n}(x)$ in the following manner:

$$
P_{n}^{m}(x)=(-1)^{m}\left(1-x^{2}\right)^{\frac{m}{2}} \frac{\mathrm{~d}^{m} P_{n}(x)}{\mathrm{d} x^{m}}
$$

Associated Legendre polynomial are orthogonal on [-1, 1] with:

- weight $=1$ for the same m, and different n.
- weight $=1 /\left(1-x^{* *} 2\right)$ for the same n, and different m.

Examples

```
>>> assoc_legendre(0, 0, x)
1
>>> assoc_legendre(1, 0, x)
X
>>> assoc_legendre(1, 1, x)
-sqrt(-x*\overline{*}2 + 1)
>>> assoc_legendre(n, m, x)
assoc_legèndre(n, m, x)
```


See also:

jacobi (page 385), gegenbauer (page 387), chebyshevt (page 388), chebyshevt_root (page 390), chebyshevu (page 389), chebyshevu_root (page 390), legendre (page 391), hermite (page 393), laguerre (page 393), assoc_laguerre (page 394), diofant. polys. orthopolys.jacobi_poly (page 624), diofant. polys.orthopolys.gegenbauer_poly (page 624), diofant.polys.orthopolys.chebyshevt_poly (page 624), diofant. polys.orthopolys.chebyshevu poly (page 624), diofant.polys.orthopolys. hermite_poly (page 624), diofant.polys.orthopolys.legendre_poly (page 624), diofant.polys.orthopolys.laguerre_poly (page 624)

References

- https://en.wikipedia.org/wiki/Associated_Legendre_polynomials
- https://mathworld.wolfram.com/LegendrePolynomial.html
- http://functions.wolfram.com/Polynomials/LegendreP/
- http://functions.wolfram.com/Polynomials/LegendreP2/

Hermite Polynomials

class diofant.functions.special.polynomials.hermite (n, x)
hermite(n, x) gives the nth Hermite polynomial in $\mathrm{x}, H_{n}(x)$
The Hermite polynomials are orthogonal on $(-\infty, \infty)$ with respect to the weight exp $\left(-x^{2}\right)$.

Examples

```
>>> hermite(0, x)
1
>>> hermite(1, x)
2*x
>>> hermite(2, x)
4*x**2 - 2
>>> hermite(n, x)
hermite(n, x)
>>> diff(hermite(n, x), x)
2*n*hermite(n - 1, x)
>>> hermite(n, -x)
(-1)**n*hermite(n, x)
```


See also:

jacobi (page 385), gegenbauer (page 387), chebyshevt (page 388), chebyshevt_root (page 390), chebyshevu (page 389), chebyshevu_root (page 390), legendre (page 391), assoc_legendre (page 392), laguerre (page 393), assoc_laguerre (page 394), diofant.polys.orthopolys.jacobi_poly (page 624), diofant. polys.orthopolys.gegenbauer poly (page 624), diofant.polys.orthopolys. chebyshevt_poly (page 624), diofant.polys.orthopolys.chebyshevu_poly (page 624), diofant.polys.orthopolys.hermite_poly (page 624), diofant.polys. orthopolys.legendre_poly (page 624), diofant.polys.orthopolys.laguerre_poly (page 624)

References

- https://en.wikipedia.org/wiki/Hermite_polynomial
- https://mathworld.wolfram.com/HermitePolynomial.html
- http://functions.wolfram.com/Polynomials/HermiteH/

Laguerre Polynomials

class diofant.functions.special.polynomials.laguerre(n, x)
Returns the nth Laguerre polynomial in $\mathrm{x}, L_{n}(x)$.
Parameters \mathbf{n} (int) - Degree of Laguerre polynomial. Must be $\mathrm{n}>=0$.

Examples

```
>>> laguerre(0, x)
1
>>> laguerre(1, x)
-x + 1
>>> laguerre(2, x)
x**2/2 - 2*x + 1
>>> laguerre(3, x)
-x**3/6 + 3* ***2/2 - 3*x + 1
```

```
>>> laguerre(n, x)
laguerre(n, x)
```

```
>>> diff(laguerre(n, x), x)
-assoc_laguerre(n - 1, 1, x)
```


See also:

jacobi (page 385), gegenbauer (page 387), chebyshevt (page 388), chebyshevt_root (page 390), chebyshevu (page 389), chebyshevu_root (page 390), legendre (page 391), assoc_legendre (page 392), hermite (page 393), assoc_laguerre (page 394), diofant.polys.orthopolys.jacobi poly (page 624), diofant. polys.orthopolys.gegenbauer poly (page 624), diofant.polys.orthopolys. chebyshevt_poly (page 624), diofant.polys.orthopolys.chebyshevu_poly (page 624), diofant.polys.orthopolys.hermite_poly (page 624), diofant.polys. orthopolys.legendre_poly (page 624), diofant.polys.orthopolys.laguerre_poly (page 624)

References

- https://en.wikipedia.org/wiki/Laguerre_polynomial
- https://mathworld.wolfram.com/LaguerrePolynomial.html
- http://functions.wolfram.com/Polynomials/LaguerreL/
- http://functions.wolfram.com/Polynomials/LaguerreL3/
class diofant.functions.special.polynomials.assoc_laguerre(n, alpha, x)
Returns the nth generalized Laguerre polynomial in $\mathrm{x}, L_{n}(x)$.

Parameters

- n (int) - Degree of Laguerre polynomial. Must be $\mathrm{n}>=0$.
- alpha (Expr) - Arbitrary expression. For alpha=0 regular Laguerre polynomials will be generated.

Examples

```
>>> assoc_laguerre(0, a, x)
1
>>> assoc laguerre(1, a, x)
a - x + 1
>>> assoc laguerre(2, a, x)
a**2/2 + \overline{3}a/2 + x**2/2 + x*(-a - 2) + 1
>>> assoc_laguerre(3, a, x)
a**3/6 + \overline{a**2 + 11*a/6 - x**3/6 + x**2*(a/2 + 3/2) +}
    x*(-a**2/2 - 5*a/2 - 3) + 1
```

```
>>> assoc_laguerre(n, a, 0)
binomial(\overline{a}+ n, a)
```

```
>>> assoc_laguerre(n, a, x)
```

assoc_laguerre(n, a, x)

```
>>> assoc_laguerre(n, 0, x)
laguerre(\overline{n}, x)
```

```
>>> diff(assoc_laguerre(n, a, x), x)
-assoc_laguerre(n - 1, a + 1, x)
```

```
>>> diff(assoc_laguerre(n, a, x), a)
Sum(assoc_laguērre(_k, a, x)/(-a + n), (_k, 0, n - 1))
```


See also:

jacobi (page 385), gegenbauer (page 387), chebyshevt (page 388), chebyshevt_root (page 390), chebyshevu (page 389), chebyshevu_root (page 390), legendre (page 391), assoc_legendre (page 392), hermite (page 393), laguerre (page 393), diofant. polys. orthopolys.jacobi_poly (page 624), diofant.polys.orthopolys.gegenbauer_poly (page 624), diofant.polys.orthopolys.chebyshevt poly (page 624), diofant. polys.orthopolys.chebyshevu_poly (page 624), diofant.polys.orthopolys. hermite_poly (page 624), diofant.polys.orthopolys.legendre_poly (page 624), diofant.polys.orthopolys.laguerre_poly (page 624)

References

- https://mathworld.wolfram.com/AssociatedLaguerrePolynomial.html
- http://functions.wolfram.com/Polynomials/LaguerreL/
- http://functions.wolfram.com/Polynomials/LaguerreL3/

Spherical Harmonics

class diofant.functions.special.spherical_harmonics. Ynm(n, m, theta, phi)
Spherical harmonics defined as

$$
Y_{n}^{m}(\theta, \varphi):=\sqrt{\frac{(2 n+1)(n-m)!}{4 \pi(n+m)!}} \exp (i m \varphi) \mathrm{P}_{n}^{m}(\cos (\theta))
$$

Ynm() gives the spherical harmonic function of order n and m in θ and $\varphi, Y_{n}^{m}(\theta, \varphi)$. The four parameters are as follows: $n \geq 0$ an integer and m an integer such that $-n \leq m \leq n$ holds. The two angles are real-valued with $\theta \in[0, \pi]$ and $\varphi \in[0,2 \pi]$.

Examples

```
>>> theta = Symbol('theta')
>>> phi = Symbol('phi')
```

```
>>> Ynm(n, m, theta, phi)
```

Ynm(n, m, theta, phi)

Several symmetries are known, for the order

```
>>> theta = Symbol('theta')
>>> phi = Symbol('phi')
```

>>> $\mathrm{Ynm}(\mathrm{n},-\mathrm{m}$, theta, phi)
(-1)**m*E**(-2*I*m*phi)*Ynm(n, m, theta, phi)
as well as for the angles

```
>>> theta = Symbol('theta')
>>> phi = Symbol('phi')
```

```
>>> Ynm(n, m, -theta, phi)
Ynm(n, m, theta, phi)
```

```
>>> Ynm(n, m, theta, -phi)
E**(-2*I*m*phi)*Ynm(n, m, theta, phi)
```

For specific integers n and m we can evaluate the harmonics to more useful expressions

```
>>> simplify(Ynm(0, 0, theta, phi).expand(func=True))
1/(2*sqrt(pi))
```

```
>>> simplify(Ynm(1, -1, theta, phi).expand(func=True))
sqrt(6)*E**(-I*phi)*sin(theta)/(4*sqrt(pi))
```

```
>>> simplify(Ynm(1, 0, theta, phi).expand(func=True))
sqrt(3)*\operatorname{cos(theta)/(2*sqrt(pi))}
```

```
>>> simplify(Ynm(1, 1, theta, phi).expand(func=True))
-sqrt(6)*E**(I*phi)*sin(theta)/(4*sqrt(pi))
```

```
>>> simplify(Ynm(2, -2, theta, phi).expand(func=True))
sqrt(30)*E**(-2*I*phi)*sin(theta)**2/(8*sqrt(pi))
```

```
>>> simplify(Ynm(2, -1, theta, phi).expand(func=True))
sqrt(30)*E**(-I*phi)*sin(2*theta)/(8*sqrt(pi))
```

```
>>> simplify(Ynm(2, 0, theta, phi).expand(func=True))
sqrt(5)*(3*cos(theta)**2 - 1)/(4*sqrt(pi))
```

```
>>> simplify(Ynm(2, 1, theta, phi).expand(func=True))
-sqrt(30)*E**(I*phi)*sin(2*theta)/(8*sqrt(pi))
```

```
>>> simplify(Ynm(2, 2, theta, phi).expand(func=True))
```

sqrt(30)*E**(2*I*phi)*sin(theta)**2/(8*sqrt(pi))

We can differentiate the functions with respect to both angles

```
>>> theta = Symbol('theta')
>>> phi = Symbol('phi')
>>> diff(Ynm(n, m, theta, phi), theta)
m*cot(theta)*Ynm(n, m, theta, phi) + E**(-I*phi)*sqrt((-m + n)*(m + n + 1))*Ynm(n,
G m + 1, theta, phi)
```

```
>> diff(Ynm(n, m, theta, phi), phi)
I*m*Ynm(n, m, theta, phi)
```

Further we can compute the complex conjugation

```
>>> theta = Symbol('theta')
>>> phi = Symbol('phi')
>>> m = Symbol('m')
```

```
>>> conjugate(Ynm(n, m, theta, phi))
(-1)**(2*m)*E**(-2*I*m*phi)*Ynm(n, m, theta, phi)
```

To get back the well known expressions in spherical coordinates we use full expansion

```
>>> theta = Symbol('theta')
>>> phi = Symbol('phi')
```

```
>>> expand func(Ynm(n, m, theta, phi))
```

>>> expand func(Ynm(n, m, theta, phi))
E**(I*m*ph\overline{i})*sqrt((2*n + 1)*factorial(-m + n)/factorial(m + n))*assoc_legendre(n,七
E**(I*m*ph\overline{i})*sqrt((2*n + 1)*factorial(-m + n)/factorial(m + n))*assoc_legendre(n,七
->m, cos(theta))/(2*sqrt(pi))

```
->m, cos(theta))/(2*sqrt(pi))
```


See also:

diofant.functions.special.spherical_harmonics.Ynm_c (page 397), diofant. functions.special.spherical_harmonics.Znm (page 398)

References

- https://en.wikipedia.org/wiki/Spherical_harmonics
- https://mathworld.wolfram.com/SphericalHarmonic.html
- http://functions.wolfram.com/Polynomials/SphericalHarmonicY/
- https://dlmf.nist.gov/14.30
diofant.functions.special.spherical_harmonics.Ynm_c (n, m, theta, phi)
Conjugate spherical harmonics defined as

$$
\overline{Y_{n}^{m}(\theta, \varphi)}:=(-1)^{m} Y_{n}^{-m}(\theta, \varphi)
$$

See also:

diofant.functions.special.spherical_harmonics.Ynm (page 396), diofant.
functions.special.spherical_harmonic̄s.Znm (page 398)

References

- https://en.wikipedia.org/wiki/Spherical_harmonics
- https://mathworld.wolfram.com/SphericalHarmonic.html
- http://functions.wolfram.com/Polynomials/SphericalHarmonicY/
class diofant.functions.special.spherical_harmonics.Znm(n, m, theta, phi)
Real spherical harmonics defined as

$$
Z_{n}^{m}(\theta, \varphi):= \begin{cases}\frac{Y_{n}^{m}(\theta, \varphi)+\overline{Y_{n}^{m}(\theta, \varphi)}}{\sqrt{2}} & m>0 \\ Y_{n}^{m}(\theta, \varphi) & m=0 \\ \frac{Y_{n}^{m}(\theta, \varphi)-\overline{Y_{n}^{m}(\theta, \varphi)}}{i \sqrt{2}} & m<0\end{cases}
$$

which gives in simplified form

$$
Z_{n}^{m}(\theta, \varphi)= \begin{cases}\frac{Y_{n}^{m}(\theta, \varphi)+(-1)^{m} Y_{n}^{-m}(\theta, \varphi)}{\sqrt{2}} & m>0 \\ Y_{n}^{m}(\theta, \varphi) & m=0 \\ \frac{Y_{n}^{m}(\theta, \varphi)-(-1)^{m} Y_{n}^{-m}(\theta, \varphi)}{i \sqrt{2}} & m<0\end{cases}
$$

See also:

diofant.functions.special.spherical_harmonics.Ynm (page 396), diofant. functions.special.spherical_harmonics.Ynm_c (page 397)

References

- https://en.wikipedia.org/wiki/Spherical_harmonics
- https://mathworld.wolfram.com/SphericalHarmonic.html
- http://functions.wolfram.com/Polynomials/SphericalHarmonicY/

Tensor Functions

diofant.functions.special.tensor_functions.Eijk(*args, **kwargs)
Represent the Levi-Civita symbol.
This is just compatibility wrapper to LeviCivita().

See also:

diofant.functions.special.tensor_functions.LeviCivita (page 399)
diofant.functions.special.tensor_functions.eval_levicivita(*args)
Evaluate Levi-Civita symbol.
class diofant.functions.special.tensor_functions.LeviCivita(*args)
Represent the Levi-Civita symbol.
For even permutations of indices it returns 1, for odd permutations -1, and for everything else (a repeated index) it returns 0 .

Thus it represents an alternating pseudotensor.

Examples

```
>>> from diofant.abc import i, j
>>> LeviCivita(1, 2, 3)
1
>>> LeviCivita(1, 3, 2)
-1
>>> LeviCivita(1, 2, 2)
0
>>> LeviCivita(i, j, k)
LeviCivita(i, j, k)
>>> LeviCivita(i, j, i)
0
```


See also:

diofant.functions.special.tensor_functions.Eijk (page 398)
class diofant.functions.special.tensor_functions.KroneckerDelta(i,j)
The discrete, or Kronecker, delta function.
A function that takes in two integers i and j. It returns 0 if i and j are not equal or it returns 1 if i and j are equal.

Parameters

- i (Number, Symbol) - The first index of the delta function.
- \mathbf{j} (Number, Symbol) - The second index of the delta function.

Examples
A simple example with integer indices:

```
>>> KroneckerDelta(1, 2)
0
>>> KroneckerDelta(3, 3)
1
```

Symbolic indices:

```
>>> from diofant.abc import i, j
>>> KroneckerDelta(i, j)
KroneckerDelta(i, j)
>>> KroneckerDelta(i, i)
1
>>> KroneckerDelta(i, i + 1)
0
>>> KroneckerDelta(i, i + 1 + k)
KroneckerDelta(i, i + k + 1)
```


See also:

diofant.functions.special.tensor_functions.KroneckerDelta.eval (page 400), diofant.functions.special.delta_functions.DiracDelta (page 331)

References

- https://en.wikipedia.org/wiki/Kronecker_delta
classmethod eval (i,j)
Evaluates the discrete delta function.

Examples

>>> from diofant.abc import i, j

```
>>> KroneckerDelta(i, j)
KroneckerDelta(i, j)
>>> KroneckerDelta(i, i)
1
>>> KroneckerDelta(i, i + 1)
0
>>> KroneckerDelta(i, i + 1 + k)
KroneckerDelta(i, i + k + 1)
```

property indices_contain_equal_information
Returns True if indices are either both above or below fermi.

Examples

```
>>> a = Symbol('a', above_fermi=True)
>>> i = Symbol('i', below_fermi=True)
>>> p = Symbol('p')
>>> q = Symbol('q')
>>> KroneckerDelta(p, q).indices_contain_equal_information
True
>>> KroneckerDelta(p, q+1).indices_contain_equal_information
True
>>> KroneckerDelta(i, p).indices_contain_equal_information
False
```

property is_above_fermi

True if Delta can be non-zero above fermi

Examples

```
>>> a = Symbol('a', above_fermi=True)
>>> i = Symbol('i', below_fermi=True)
>>> p = Symbol('p')
>>> q = Symbol('q')
>>> KroneckerDelta(p, a).is above_fermi
True
>>> KroneckerDelta(p, i).is above_fermi
False
>>> KroneckerDelta(p, q).is_above_fermi
True
```


See also:

diofant.functions.special.tensor_functions.KroneckerDelta.
is_below_fermi (page 401), diofant.functions.special.tensor_functions. Krōneckē̄Delta.is_only_below_fermi (page 402), diofant.functions. special.

property is_below_fermi
True if Delta can be non-zero below fermi

Examples

```
>>> a = Symbol('a', above fermi=True)
>>> i = Symbol('i', below_fermi=True)
>>> p = Symbol('p')
>>> q = Symbol('q')
>>> KroneckerDelta(p, a).is below_fermi
False
>>> KroneckerDelta(p, i).is_below_fermi
True
>>> KroneckerDelta(p, q).is_below_fermi
True
```


See also:

diofant.functions.special.tensor_functions.KroneckerDelta.
is_above_fermi (page 400), diofant.functions.special.tensor_functions. Krōneckē̄Delta.is_only_above_fermi (page 401), diofant. functions. special.

property is_only_above_fermi
True if Delta is restricted to above fermi

Examples

```
>>> a = Symbol('a', above_fermi=True)
>>> i = Symbol('i', below_fermi=True)
>>> p = Symbol('p')
>>> q = Symbol('q')
>>> KroneckerDelta(p, a).is_only_above_fermi
True
>>> KroneckerDelta(p, q).is_only_above_fermi
False
>>> KroneckerDelta(p, i).is_only_above_fermi
False
```


See also:

diofant.functions.special.tensor_functions.KroneckerDelta. is_above_fermi (page 400), diofañt.functions.special.tensor_functions. Krōneckē̄Delta.is_below_fermi (page 401), diofant.functions.special.

property is_only_below_fermi
True if Delta is restricted to below fermi

Examples

```
>>> a = Symbol('a', above_fermi=True)
>>> i = Symbol('i'', below_fermi=True)
>>> = Symbol('p')
>>> q = Symbol('q')
>>> KroneckerDelta(p, i).is_only_below_fermi
True
>>> KroneckerDelta(p, q).is_only_below_fermi
False
>>> KroneckerDelta(p, a).is_only_below_fermi
False
```


See also:

diofant.functions.special.tensor_functions.KroneckerDelta. is_above_fermi (page 400), diofañt.functions.special.tensor_functions. Krōneckē̄Delta.is below_fermi (page 401), diofant.functions.special. tensor_functions.K̄roneckerDelta.is_only_above_fermi (page 401)

property killable_index

Returns the index which is preferred to substitute in the final expression.
The index to substitute is the index with less information regarding fermi level. If indices contain same information, ' a ' is preferred before ' b '.

Examples

```
>>> a = Symbol('a', above_fermi=True)
>>> i = Symbol('i', below-fermi=True)
>>> j = Symbol('j', below_fermi=True)
>>> p = Symbol('p')
>>> KroneckerDelta(p, i).killable_index
p
>>> KroneckerDelta(p, a).killable_index
p
>>> KroneckerDelta(i, j).killable_index
j
```


See also:

diofant.functions.special.tensor_functions.KroneckerDelta.
preferred_index (page 402)
property preferred_index
Returns the index which is preferred to keep in the final expression.
The preferred index is the index with more information regarding fermi level. If indices contain same information, ' a ' is preferred before ' b '.

Examples

```
>>> a = Symbol('a', above_fermi=True)
>>> i = Symbol('i', below_fermi=True)
>>> j = Symbol('j', below_fermi=True)
>>> p = Symbol('p')
>>> KroneckerDelta(p, i).preferred_index
i
>>> KroneckerDelta(p, a).preferred_index
a
>>> KroneckerDelta(i, j).preferred_index
i
```


See also:

```
diofant.functions.special.tensor_functions.KroneckerDelta.
```

killable_index (page 402)

4.7 Geometry

4.7.1 Introduction

The geometry module for Diofant allows one to create two-dimensional geometrical entities, such as lines and circles, and query for information about these entities. This could include asking the area of an ellipse, checking for collinearity of a set of points, or finding the intersection between two lines. The primary use case of the module involves entities with numerical values, but it is possible to also use symbolic representations.

4.7.2 Available Entities

The following entities are currently available in the geometry module:

- Point
- Line, Ray, Segment
- Ellipse, Circle
- Polygon, RegularPolygon, Triangle

Most of the work one will do will be through the properties and methods of these entities, but several global methods exist:

- intersection(entity1, entity2)
- are_similar(entity1, entity2)
- convex_hull(points)

For a full API listing and an explanation of the methods and their return values please see the list of classes at the end of this document.

4.7.3 Example Usage

The following Python session gives one an idea of how to work with some of the geometry module.

```
>>> x = Point(0, 0)
>>> y = Point(1, 1)
>>> z = Point(2, 2)
>>> zp = Point(1, 0)
>>> Point.is_collinear(x, y, z)
True
>>> Point.is_collinear(x, y, zp)
False
>>> t = Triangle(zp, y, x)
>>> t.area
1/2
>>> t.medians[x]
Segment(Point(0, 0), Point(1, 1/2))
>>> Segment(Point(1, Rational(1, 2)), Point(0, 0))
Segment(Point(0, 0), Point(1, 1/2))
>>> m = t.medians
>>> intersection(m[x], m[y], m[zp])
[Point(2/3, 1/3)]
>>> c = Circle(x, 5)
>>> l = Line(Point(5, -5), Point(5, 5))
>>> c.is_tangent(l) # is l tangent to c?
True
>>> l = Line(x, y)
>>> c.is_tangent(l) # is l tangent to c?
False
>>> intersection(c, l)
[Point(-5*sqrt(2)/2, -5*sqrt(2)/2), Point(5*sqrt(2)/2, 5*sqrt(2)/2)]
```


4.7.4 Intersection of medians

```
>>> a, b = symbols('a b', positive=True)
>>> x = Point(0, 0)
>> y = Point(a, 0)
>>> z = Point(2*a, b)
>>> t = Triangle(x, y, z)
>>> t.area
a*b/2
>>> t.medians[x]
Segment(Point(0, 0), Point(3*a/2, b/2))
>>> intersection(t.medians[x], t.medians[y], t.medians[z])
[Point(a, b/3)]
```


4.7.5 An in-depth example: Pappus' Hexagon Theorem

From Wikipedia):
Given one set of collinear points A, B, C, and another set of collinear points a, b, c, then the intersection points X, Y, Z of line pairs $A b$ and $a B, A c$ and $a C, B c$ and $b C$ are collinear.

```
>>> l1 = Line(Point(0, 0), Point(5, 6))
>>> l2 = Line(Point(0, 0), Point(2, -2))
>>>
>>> def subs_point(l, val):
.." """Take an arbitrary point and make it a fixed point."""
#.t = Symbol('t', extended_real=True)
#. ap = l.arbitrary point()
#. return Point(ap.x.subs({t: val}), ap.y.subs({t: val}))
>>> p11 = subs point(l1, 5)
>>> p12 = subs_point(l1, 6)
>>> p13 = subs_point(l1, 11)
>>>
>>> p21 = subs point(l2, -1)
>>> p22 = subs_point(l2, 2)
>>> p23 = subs_point(l2, 13)
>>>
>>> ll1 = Line(p11, p22)
>>> ll2 = Line(p11, p23)
>>> ll3 = Line(p12, p21)
>>> ll4 = Line(p12, p23)
>>> ll5 = Line(p13, p21)
>>> ll6 = Line(p13, p22)
>>>
>>> pp1 = intersection(ll1, ll3)[0]
>>> pp2 = intersection(ll2, ll5)[0]
>>> pp3 = intersection(ll4, ll6)[0]
>>>
>>> Point.is_collinear(pp1, pp2, pp3)
True
```


4.7.6 Miscellaneous Notes

- The area property of Polygon and Triangle may return a positive or negative value, depending on whether or not the points are oriented counter-clockwise or clockwise, respectively. If you always want a positive value be sure to use the abs function.
- Although Polygon can refer to any type of polygon, the code has been written for simple polygons. Hence, expect potential problems if dealing with complex polygons (overlapping sides).
- Since Diofant is still in its infancy some things may not simplify properly and hence some things that should return True (e.g., Point.is_collinear) may not actually do so. Similarly, attempting to find the intersection of entities that do intersect may result in an empty result.

4.7.7 Future Work

Truth Setting Expressions

When one deals with symbolic entities, it often happens that an assertion cannot be guaranteed. For example, consider the following code:

```
>>> x, y, z = symbols('x y z')
>> p1, p2, p3 = Point(x, y), Point(y, z), Point(2*x*y, y)
>>> Point.is_collinear(p1, p2, p3)
False
```

Even though the result is currently False, this is not always true. If the quantity $z-y-2 *$ $y * z+2 * y * * 2==0$ then the points will be collinear. It would be really nice to inform the user of this because such a quantity may be useful to a user for further calculation and, at the very least, being nice to know. This could be potentially done by returning an object (e.g., GeometryResult) that the user could use. This actually would not involve an extensive amount of work.

Three Dimensions and Beyond

Currently there are no plans for extending the module to three dimensions, but it certainly would be a good addition. This would probably involve a fair amount of work since many of the algorithms used are specific to two dimensions.

Submodules

Entities

class diofant.geometry.entity.GeometryEntity(*args, **kwargs)
The base class for all geometrical entities.
This class doesn't represent any particular geometric entity, it only provides the implementation of some methods common to all subclasses.

property ambient_dimension

What is the dimension of the space that the object is contained in?
encloses (o)
Return True if o is inside (not on or outside) the boundaries of self.
The object will be decomposed into Points and individual Entities need only define an encloses_point method for their class.

See also:

diofant.geometry.ellipse.Ellipse.encloses point (page 439), diofant. geometry.polygon.Polygon.encloses_point (page 452)

Examples

```
>>> t1 = Polygon(*RegularPolygon(Point(0, 0), 1, 3).vertices)
>>> t2 = Polygon(*RegularPolygon(Point(0, 0), 2, 3).vertices)
>>> t2.encloses(t1)
True
>>> t1.encloses(t2)
False
```

intersection(o)
Returns a list of all of the intersections of self with o.

Notes

An entity is not required to implement this method.

See also:

diofant.geometry.util.intersection (page 409)

is_similar(other)

Is this geometrical entity similar to another geometrical entity?
Two entities are similar if a uniform scaling (enlarging or shrinking) of one of the entities will allow one to obtain the other.

Notes

This method is not intended to be used directly but rather through the aresimilar function found in util.py. An entity is not required to implement this method. If two different types of entities can be similar, it is only required that one of them be able to determine this.

See also:

scale (page 407)
rotate(angle, $p t=$ None)
Rotate angle radians counterclockwise about Point pt.
The default pt is the origin, Point $(0,0)$

See also:

scale (page 407), translate (page 408)

Examples

```
>>> t = Polygon(*RegularPolygon(Point(0, 0), 1, 3).vertices)
>>> t # vertex on x axis
Triangle(Point(1, 0), Point(-1/2, sqrt(3)/2), Point(-1/2, -sqrt(3)/2))
>>> t.rotate(pi/2) # vertex on y axis now
Triangle(Point(0, 1), Point(-sqrt(3)/2, -1/2), Point(sqrt(3)/2, -1/2))
```

scale ($x=1, y=1, p t=$ None $)$
Scale the object by multiplying the x, y-coordinates by x and y .

If pt is given, the scaling is done relative to that point; the object is shifted by -pt , scaled, and shifted by pt.

See also:

rotate (page 407), translate (page 408)

Examples

```
>>> t = Polygon(*RegularPolygon(Point(0, 0), 1, 3).vertices)
>>> t
Triangle(Point(1, 0), Point(-1/2, sqrt(3)/2), Point(-1/2, -sqrt(3)/2))
>>> t.scale(2)
Triangle(Point(2, 0), Point(-1, sqrt(3)/2), Point(-1, -sqrt(3)/2))
>>> t.scale(2, 2)
Triangle(Point(2, 0), Point(-1, sqrt(3)), Point(-1, -sqrt(3)))
```

translate ($x=0, y=0$)

Shift the object by adding to the x, y-coordinates the values x and y .

See also:

rotate (page 407), scale (page 407)

Examples

```
>>> t = Polygon(*RegularPolygon(Point(0, 0), 1, 3).vertices)
>>> t
Triangle(Point(1, 0), Point(-1/2, sqrt(3)/2), Point(-1/2, -sqrt(3)/2))
>>> t.translate(2)
Triangle(Point(3, 0), Point(3/2, sqrt(3)/2), Point(3/2, -sqrt(3)/2))
>>> t.translate(2, 2)
Triangle(Point(3, 2), Point(3/2, sqrt(3)/2 + 2),
    Point(3/2, -sqrt(3)/2 + 2))
```


Utils

diofant.geometry.util.idiff(eq, $y, x, n=1$)
Return dy/dx assuming that eq $==0$.

Parameters

- \mathbf{y} (the dependent variable or a list of dependent variables (with y first))
- \mathbf{x} (the variable that the derivative is being taken with respect to)
- \mathbf{n} (the order of the derivative (default is 1))

Examples

```
>>> from diofant.abc import a
```

```
>>> circ = x**2 + y**2 - 4
>>> idiff(circ, y, x)
-x/y
>>> idiff(circ, y, x, 2).simplify()
-(x**2 + y**2)/y**3
```

Here, a is assumed to be independent of x :

```
>>> idiff(x + a + y, y, x)
-1
```

Now the x -dependence of a is made explicit by listing a after y in a list.

```
>>> idiff(x + a + y, [y, a], x)
-Derivative(a, x) - 1
```


See also:

diofant. core.function.Derivative (page 126) represents unevaluated derivatives diofant.core.function.diff (page 128) explicitly differentiates wrt symbols
diofant.geometry.util.intersection(*entities)
The intersection of a collection of GeometryEntity instances.
Parameters entities (sequence of GeometryEntity)
Returns intersection (list of GeometryEntity)
Raises NotImplementedError - When unable to calculate intersection.

Notes

The intersection of any geometrical entity with itself should return a list with one item: the entity in question. An intersection requires two or more entities. If only a single entity is given then the function will return an empty list. It is possible for intersection to miss intersections that one knows exists because the required quantities were not fully simplified internally. Reals should be converted to Rationals, e.g. Rational(str(real_num)) or else failures due to floating point issues may result.

See also:

diofant.geometry.entity. GeometryEntity.intersection (page 407)

Examples

```
>>> p1, p2, p3 = Point(0, 0), Point(1, 1), Point(-1, 5)
>>> 11, l2 =Line(p1, p2), Line(p3, p2)
>>> c = Circle(p2, 1)
>>> intersection(l1, p2)
[Point(1, 1)]
>>> intersection(l1, l2)
[Point(1, 1)]
>>> intersection(c, p2)
[]
>>> intersection(c, Point(1, 0))
[Point(1, 0)]
>>> intersection(c, l2)
[Point(-sqrt(5)/5 + 1, 2*sqrt(5)/5 + 1),
Point(sqrt(5)/5 + 1, -2*sqrt(5)/5 + 1)]
```

diofant.geometry.util.convex_hull(*args)
The convex hull surrounding the Points contained in the list of entities.
Parameters args (a collection of Points, Segments and/or Polygons)
Returns convex_hull (Polygon)

Notes

This can only be performed on a set of non-symbolic points.

References

[1] https://en.wikipedia.org/wiki/Graham_scan
[2] Andrew's Monotone Chain Algorithm (A.M. Andrew, "Another Efficient Algorithm for Convex Hulls in Two Dimensions", 1979) http://geomalgorithms.com/a10-_hull-1.html

See also:

diofant.geometry.point.Point (page 412), diofant.geometry.polygon.Polygon (page 449)

Examples

```
>>> points = [(1, 1), (1, 2), (3, 1), (-5, 2), (15, 4)]
>>> convex_hull(*points)
Polygon(Poīnt(-5, 2), Point(1, 1), Point(3, 1), Point(15, 4))
```

diofant.geometry.util.are_similar(e1, e2)
Are two geometrical entities similar.
Can one geometrical entity be uniformly scaled to the other?

Parameters

- $\mathbf{e 1}$ (GeometryEntity)
- e2 (GeometryEntity)

Returns are_similar (boolean)

Raises diofant.geometry.exceptions.GeometryError (page 412) - When e1 and $e 2$ cannot be compared.

Notes

If the two objects are equal then they are similar.

See also:

diofant.geometry.entity.GeometryEntity.is_similar (page 407)

Examples

```
>>> cl, c2 = Circle(Point(0, 0), 4), Circle(Point(1, 4), 3)
>>> t1 = Triangle(Point(0, 0), Point(1, 0), Point(0, 1))
>>> t2 = Triangle(Point(0, 0), Point(2, 0), Point(0, 2))
>>> t3 = Triangle(Point(0, 0), Point(3, 0), Point(0, 1))
>>> are similar(t1, t2)
True
>>> are_similar(t1, t3)
False
```

diofant.geometry.util. centroid(*args)
Find the centroid (center of mass) of the collection containing only Points, Segments or Polygons. The centroid is the weighted average of the individual centroid where the weights are the lengths (of segments) or areas (of polygons). Overlapping regions will add to the weight of that region.

If there are no objects (or a mixture of objects) then None is returned.

See also:

diofant.geometry.point.Point (page 412), diofant.geometry.line.Segment (page 430), diofant.geometry.polygon.Polygon (page 449)

Examples

```
>>> p = Polygon((0, 0), (10, 0), (10, 10))
>>> q = p.translate(0, 20)
>>> p.centroid, q.centroid
(Point(20/3, 10/3), Point(20/3, 70/3))
>>> centroid(p, q)
Point(20/3, 40/3)
>> p, q = Segment((0, 0), (2, 0)), Segment((0, 0), (2, 2))
>> centroid(p, q)
Point(1, -sqrt(2) + 2)
>>> centroid(Point(0, 0), Point(2, 0))
Point(1, 0)
```

Stacking 3 polygons on top of each other effectively triples the weight of that polygon:

```
>>> p = Polygon((0, 0), (1, 0), (1, 1), (0, 1))
>>> q = Polygon((1, 0), (3, 0), (3, 1), (1, 1))
>>> centroid(p, q)
Point(3/2, 1/2)
>>> centroid(p, p, p, q) # centroid x-coord shifts left
Point(11/10, 1/2)
```

Stacking the squares vertically above and below p has the same effect:

```
>>> centroid(p, p.translate(0, 1), p.translate(0, -1), q)
Point(11/10, 1/2)
```

Geometry Errors.
exception diofant.geometry.exceptions.GeometryError
An exception raised by classes in the geometry module.

Points

class diofant.geometry. point. Point (*args, **kwargs)
A point in a n-dimensional Euclidean space.
Parameters coords (sequence of n-coordinate values.)
Raises TypeError - When trying to add or subtract points with different dimensions. When intersection is called with object other than a Point.

See also:

diofant.geometry. line.Segment (page 430) Connects two Points

Examples

```
>>> Point([1, 2])
Point(1, 2)
>>> Point(0, x)
Point(0, x)
```

Floats are automatically converted to Rational unless the evaluate flag is False:

```
>>> Point(0.5, 0.25)
Point(1/2, 1/4)
>>> print(Point(0.5, 0.25, evaluate=False))
Point(0.5, 0.25)
```

property ambient_dimension
The dimension of the ambient space the point is in. I.e., if the point is in $R^{\wedge} n$, the ambient dimension will be n
property bounds
Return a tuple (xmin, ymin, xmax, ymax) representing the bounding rectangle for the geometric figure.

distance(p)

The Euclidean distance from self to point p.
Parameters p (Point)
Returns distance (number or symbolic expression.)

See also:

diofant.geometry. line. Segment. length (page 431)

Examples

```
>>> p1, p2 = Point(1, 1), Point(4, 5)
>>> p1.distance(p2)
5
```

```
>>> p3 = Point(x, y)
>>> p3.distance(Point(0, 0))
sqrt(x**2 + y**2)
```

$\operatorname{dot}(p 2)$
Return dot product of self with another Point.
evalf(dps=15, **options)
Evaluate the coordinates of the point.
This method will, where possible, create and return a new Point where the coordinates are evaluated as floating point numbers to the decimal precision dps.

Returns point (Point)

Examples

```
>>> p1 = Point(Rational(1, 2), Rational(3, 2))
>>> pl
Point(1/2, 3/2)
>>> print(pl.evalf())
Point(0.5, 1.5)
```

intersection(o)
The intersection between this point and another point.
Parameters other (Point)
Returns intersection (list of Points)

Notes

The return value will either be an empty list if there is no intersection, otherwise it will contain this point.

Examples

```
>>> p1, p2, p3 = Point(0, 0), Point(1, 1), Point(0, 0)
```

>> p1.intersection(p2)
[]
>>> p1.intersection(p3)
[Point(0, 0)]
is_collinear()

Is a sequence of points collinear?
Test whether or not a set of points are collinear. Returns True if the set of points are collinear, or False otherwise.

Parameters points (sequence of Point)

Returns is_collinear (boolean)

Notes

Slope is preserved everywhere on a line, so the slope between any two points on the line should be the same. Take the first two points, p 1 and p 2 , and create a translated point v1 with p1 as the origin. Now for every other point we create a translated point, vi with p1 also as the origin. Note that these translations preserve slope since everything is consistently translated to a new origin of p1. Since slope is preserved then we have the following equality:

- v1_slope = vi_slope
- v1.y/v1.x = vi.y/vi.x (due to translation)
- v1. y^{*} vi. $\mathrm{x}=$ vi.y*v1.x
- v1.y*vi.x - vi. y^{*} v1. $\mathrm{x}=0$ ($\left.^{*}\right)$

Hence, if we have a vi such that the equality in $\left(^{*}\right)$ is False then the points are not collinear. We do this test for every point in the list, and if all pass then they are collinear.

See also:

diofant.geometry. line. Line (page 425)

Examples

```
>> p1, p2 = Point(0, 0), Point(1, 1)
>>> p3, p4, p5 = Point(2, 2), Point(x, x), Point(1, 2)
>>> Point.is_collinear(p1, p2, p3, p4)
True
>>> Point.is_collinear(p1, p2, p3, p5)
False
```

is_concyclic()

Is a sequence of points concyclic?
Test whether or not a sequence of points are concyclic (i.e., they lie on a circle).
Parameters points (sequence of Points)
Returns is_concyclic (boolean) - True if points are concyclic, False otherwise.

See also:

diofant.geometry.ellipse.Circle (page 446)

Notes

No points are not considered to be concyclic. One or two points are definitely concyclic and three points are conyclic iff they are not collinear.
For more than three points, create a circle from the first three points. If the circle cannot be created (i.e., they are collinear) then all of the points cannot be concyclic. If the circle is created successfully then simply check the remaining points for containment in the circle.

Examples

```
>>> p1, p2 = Point(-1, 0), Point(1, 0)
>>> p3, p4 = Point(0, 1), Point(-1, 2)
>>> Point.is_concyclic(p1, p2, p3)
True
>>> Point.is_concyclic(p1, p2, p3, p4)
False
```


is_scalar_multiple(other)

Returns whether self and other are scalar multiples of each other.
property is_zero
True if every coordinate is zero, otherwise False.
property length
Treating a Point as a Line, this returns 0 for the length of a Point.

Examples

```
>>> p = Point(0, 1)
>>> p.length
0
```

midpoint (p)
The midpoint between self and point p.
Parameters \mathbf{p} (Point)
Returns midpoint (Point)

See also:

diofant.geometry.line.Segment.midpoint (page 432)

Examples

```
>>> p1, p2 = Point(1, 1), Point(13, 5)
>>> p1.midpoint(p2)
Point(7, 3)
```

n(dps $=15, * *$ options $)$
Evaluate the coordinates of the point.
This method will, where possible, create and return a new Point where the coordinates are evaluated as floating point numbers to the decimal precision dps.

Returns point (Point)

Examples

```
>>> p1 = Point(Rational(1, 2), Rational(3, 2))
>>> p1
Point(1/2, 3/2)
>>> print(pl.evalf())
Point(0.5, 1.5)
```

property origin
A point of all zeros of the same ambient dimension as the current point
rotate(angle, $p t=$ None)
Rotate angle radians counterclockwise about Point pt.

See also:

rotate (page 416), scale (page 416)

Examples

```
>>> t = Point(1, 0)
>>> t.rotate(pi/2)
Point(0, 1)
>> t.rotate(pi/2, (2, 0))
Point(2, -1)
scale( }x=1,y=1,pt=None
```

Scale the coordinates of the Point by multiplying by x and y after subtracting $p t$ default is $(0,0)$ - and then adding pt back again (i.e. pt is the point of reference for the scaling).

See also:

rotate (page 416), translate (page 416)

Examples

```
>>> t = Point(1, 1)
>>> t.scale(2)
Point(2, 1)
>> t.scale(2, 2)
Point(2, 2)
```

transform(matrix)
Return the point after applying the transformation described by the 3 x 3 Matrix, matrix.

See also:

diofant.geometry.entity.GeometryEntity.rotate (page 407), diofant. geometry.entity. GeometryEntity.scale (page 407), diofant.geometry.entity. GeometryEntity.translate (page 408)
translate $(x=0, y=0)$
Shift the Point by adding x and y to the coordinates of the Point.

See also:

rotate (page 416), scale (page 416)

Examples

```
>>> t = Point(0, 1)
>>> t.translate(2)
Point(2, 1)
>>> t.translate(2, 2)
Point(2, 3)
>> t + Point(2, 2)
Point(2, 3)
```

property x
Returns the X coordinate of the Point.

Examples
>>> $\mathrm{p}=\operatorname{Point}(0,1)$
>> p.x
0
property y
Returns the Y coordinate of the Point.

Examples

```
>>> p = Point(0, 1)
>>> p.y
1
```


Lines

class diofant.geometry.line.LinearEntity(p1, p2, **kwargs)
A base class for all linear entities (line, ray and segment) in a 2-dimensional Euclidean space.

Notes

This is an abstract class and is not meant to be instantiated.

See also:

diofant.geometry.entity. GeometryEntity (page 406)
angle_between (other)
The angle formed between the two linear entities.

Parameters

- self (LinearEntity)
- other (LinearEntity)

Returns angle (angle in radians)

Notes

From the dot product of vectors v1 and v2 it is known that:

$$
\operatorname{dot}(\mathrm{v} 1, \mathrm{v} 2)=|\mathrm{v} 1|^{*}|\mathrm{v} 2|^{*} \cos (\mathrm{~A})
$$

where A is the angle formed between the two vectors. We can get the directional vectors of the two lines and readily find the angle between the two using the above formula.

See also:

is_perpendicular (page 420)

Examples

```
>>> p1, p2, p3 = Point(0, 0), Point(0, 4), Point(2, 0)
>>> 11, l2 = Line(p1, p2), Line(p1, p3)
>>> l1.angle_between(l2)
pi/2
```

arbitrary_point (parameter='t')
A parameterized point on the Line.
Parameters parameter (str, optional) - The name of the parameter which will be used for the parametric point. The default value is ' t '. When this parameter is 0 , the first point used to define the line will be returned, and when it is 1 the second point will be returned.

Returns point (diofant.geometry.point.Point)

Raises ValueError - When parameter already appears in the Line's definition.

See also:

diofant.geometry.point.Point (page 412)

Examples

```
>> p1, p2 = Point(1, 0), Point(5, 3)
>>> 11 = Line(p1, p2)
>>> ll.arbitrary_point()
Point(4*t + 1, 3*
```

static are_concurrent(*lines)
Is a sequence of linear entities concurrent?
Two or more linear entities are concurrent if they all intersect at a single point.
Parameters lines (a sequence of linear entities.)

Returns

- True (if the set of linear entities are concurrent,)
- False (otherwise.)

Notes

Simply take the first two lines and find their intersection. If there is no intersection, then the first two lines were parallel and had no intersection so concurrency is impossible amongst the whole set. Otherwise, check to see if the intersection point of the first two lines is a member on the rest of the lines. If so, the lines are concurrent.

See also:

diofant.geometry.util.intersection (page 409)

Examples

```
>>> p1, p2 = Point(0, 0), Point(3, 5)
>>> p3, p4 = Point(-2, -2), Point(0, 2)
>>> l1, l2, l3 = Line(p1, p2), Line(p1, p3), Line(p1, p4)
>>> Line.are_concurrent(l1, l2, l3)
True
```

```
>>> l4 = Line(p2, p3)
>>> Line.are_concurrent(l2, l3, l4)
False
```

property coefficients
The coefficients (a, b, c) for $a x+b y+c=0$.

See also:

diofant.geometry.line.Line.equation (page 426)

Examples

```
>>> p1, p2 = Point(0, 0), Point(5, 3)
>>> l = Line(p1, p2)
>>> l.coefficients
(-3, 5, 0)
```

```
>>> p3 = Point(x, y)
>>> 12 = Line(p1, p3)
>>> l2.coefficients
(-y, x, 0)
```

contains(other)
Subclasses should implement this method and should return True if other is on the boundaries of self; False if not on the boundaries of self; None if a determination cannot be made.

intersection(o)

The intersection with another geometrical entity.
Parameters o (diofant.geometry.point.Point or LinearEntity)
Returns intersection (list of geometrical entities)

Diofant Documentation, Release 0.13.0

See also:

diofant.geometry.point. Point (page 412)

Examples

```
>>> p1, p2, p3 = Point(0, 0), Point(1, 1), Point(7, 7)
>>> l1 = Line(p1, p2)
>>> ll.intersection(p3)
[Point(7, 7)]
```

```
>>> p4, p5 = Point(5, 0), Point(0, 3)
>>> l2 = Line(p4, p5)
>>> ll.intersection(l2)
[Point(15/8, 15/8)]
```

```
>>> p6, p7 = Point(0, 5), Point(2, 6)
>>> s1 = Segment(p6, p7)
>>> ll.intersection(s1)
[]
```

is_parallel(other)
Are two linear entities parallel?

Parameters

- self (LinearEntity)
- other (LinearEntity)

Returns

- True (if self and other are parallel,)
- False (otherwise.)

See also:

```
coefficients (page 419)
```


Examples

```
>> p1, p2 = Point(0, 0), Point(1, 1)
>>> p3, p4 = Point(3, 4), Point(6, 7)
>>> l1, l2 = Line(p1, p2), Line(p3, p4)
>>> Line.is_parallel(l1, l2)
True
```

```
>>> p5 = Point(6, 6)
>>> 13 = Line(p3, p5)
>>> Line.is_parallel(ll, l3)
False
```

is_perpendicular(other)
Are two linear entities perpendicular?

Parameters

- self (LinearEntity)
- other (LinearEntity)

Returns

- True (if self and other are perpendicular,)
- False (otherwise.)

See also:

coefficients (page 419)

Examples

```
>>> p1, p2, p3 = Point(0, 0), Point(1, 1), Point(-1, 1)
>>> l1, l2 = Line(p1, p2), Line(p1, p3)
>>> ll.is_perpendicular(l2)
True
```

```
>>> p4 = Point(5, 3)
>>> 13 = Line(p1, p4)
>>> l1.is_perpendicular(l3)
False
```

is_similar(other)
Return True if self and other are contained in the same line.

Examples

```
>>> p1, p2, p3 = Point(0, 1), Point(3, 4), Point(2, 3)
>>> l1 = Line(p1, p2)
>>> l2 = Line(p1, p3)
>>> l1.is_similar(l2)
True
```

property length
The length of the line.

Examples

```
>>> p1, p2 = Point(0, 0), Point(3, 5)
>>> 11 = Line(p1, p2)
>>> l1.length
00
```

property pl

The first defining point of a linear entity.

See also:

diofant.geometry.point.Point (page 412)

Diofant Documentation, Release 0.13.0

Examples

```
>>> p1, p2 = Point(0, 0), Point(5, 3)
>>> l = Line(p1, p2)
>>> l.pl
Point(0, 0)
```

property p2
The second defining point of a linear entity.

See also:

diofant.geometry.point.Point (page 412)

Examples

```
>>> p1, p2 = Point(0, 0), Point(5, 3)
>>> l = Line(p1, p2)
>>> l.p2
Point(5, 3)
```

parallel_line(p)

Create a new Line parallel to this linear entity which passes through the point p.
Parameters p(diofant.geometry.point.Point)
Returns line (Line)

See also:

is_parallel (page 420)

Examples

```
>>> p1, p2, p3 = Point(0, 0), Point(2, 3), Point(-2, 2)
>>> 11 = Line(p1, p2)
>>> l2 = ll.parallel_line(p3)
>>> p3 in l2
True
>>> ll.is_parallel(l2)
True
```

perpendicular_line(p)
Create a new Line perpendicular to this linear entity which passes through the point p.

Parameters \mathbf{p} (diofant.geometry.point.Point)
Returns line (Line)

See also:

is_perpendicular (page 420), perpendicular_segment (page 423)

Examples

```
>>> p1, p2, p3 = Point(0, 0), Point(2, 3), Point(-2, 2)
>>> l1 = Line(p1, p2)
>>> l2 = l1.perpendicular_line(p3)
>>> p3 in l2
True
>>> l1.is_perpendicular(l2)
True
```

perpendicular_segment (p)

Create a perpendicular line segment from p to this line.
The enpoints of the segment are p and the closest point in the line containing self. (If self is not a line, the point might not be in self.)

Parameters \mathbf{p} (diofant.geometry.point.Point)
Returns segment (Segment)

Notes

Returns p itself if p is on this linear entity.

See also:

perpendicular_line (page 422)

Examples

```
>>> p1, p2, p3 = Point(0, 0), Point(1, 1), Point(0, 2)
>>> l1 = Line(p1, p2)
>>> s1 = ll.perpendicular_segment(p3)
>>> ll.is_perpendicular(s\overline{1})
True
>>> p3 in s1
True
>>> ll.perpendicular_segment(Point(4, 0))
Segment(Point(2, 2), Point(4, 0))
```

property points
The two points used to define this linear entity.
Returns points (tuple of Points)

See also:

diofant.geometry.point.Point (page 412)

Examples

```
>>> p1, p2 = Point(0, 0), Point(5, 11)
>>> l1 = Line(p1, p2)
>>> ll.points
(Point(0, 0), Point(5, 11))
```

projection (o)
Project a point, line, ray, or segment onto this linear entity.
Parameters other (diofant.geometry.point.Point or LinearEntity)
Returns projection (diofant.geometry.point.Point or LinearEntity) - The return type matches the type of the parameter other.
Raises diofant.geometry.exceptions.GeometryError (page 412) - When method is unable to perform projection.

Notes

A projection involves taking the two points that define the linear entity and projecting those points onto a Line and then reforming the linear entity using these projections. A point P is projected onto a line L by finding the point on L that is closest to P. This point is the intersection of L and the line perpendicular to L that passes through P.

See also:

diofant.geometry.point.Point (page 412), perpendicular_line (page 422)

Examples

```
>>> p1, p2, p3 = Point(0, 0), Point(1, 1), Point(Rational(1, 2), 0)
>>> l1 = Line(p1, p2)
>>> ll.projection(p3)
Point(1/4, 1/4)
```

```
>>> p4, p5 = Point(10, 0), Point(12, 1)
>>> s1 = Segment(p4, p5)
>>> ll.projection(s1)
Segment(Point(5, 5), Point(13/2, 13/2))
```

random_point()
A random point on a LinearEntity.
Returns point (diofant.geometry.point.Point)

See also:

diofant.geometry.point. Point (page 412)

Examples

```
>>> p1, p2 = Point(0, 0), Point(5, 3)
>>> l1 = Line(p1, p2)
>>> p3 = l1.random_point()
>>> # random point - don't know its coords in advance
>>> p3
Point(...)
>>> # point should belong to the line
>>> p3 in l1
True
```

property slope

The slope of this linear entity, or infinity if vertical.

Returns slope (Expr)

See also:

coefficients (page 419)

Examples

```
>>> p1, p2 = Point(0, 0), Point(3, 5)
>> 11 = Line(p1, p2)
>>> ll.slope
5/3
```

\ggg p3 $=\operatorname{Point}(0,4)$
$\rightarrow>12=\operatorname{Line}(\mathrm{p} 1, \mathrm{p} 3)$
>>> 2.slope
00
class diofant.geometry.line.Line($p 1, p t=$ None, slope $=$ None, $* *$ kwargs)
An infinite line in space.
A line is declared with two distinct points or a point and slope as defined using keyword slope.

Notes

At the moment only lines in a 2D space can be declared, because Points can be defined only for 2D spaces.

Parameters

- p1 (diofant.geometry.point.Point)
- pt (diofant.geometry.point.Point)
- slope (Expr)

See also:

diofant.geometry.point. Point (page 412)

Examples

```
>>> L = Line(Point(2, 3), Point(3, 5))
>>> L
Line(Point(2, 3), Point(3, 5))
>>> L.points
(Point(2, 3), Point(3, 5))
>>> L.equation()
-2*x + y + 1
>>> L.coefficients
(-2, 1, 1)
```

Instantiate with keyword slope:

```
>>> Line(Point(0, 0), slope=0)
Line(Point(0, 0), Point(1, 0))
```

Instantiate with another linear object

```
>>> s = Segment((0, 0), (0, 1))
>>> Line(s).equation()
X
```

contains (other)
Return True if o is on this Line, or False otherwise.

Examples

```
>>> p1, p2 = Point(0, 1), Point(3, 4)
>>> l = Line(p1, p2)
>>> l.contains(pl)
True
>>> l.contains((0, 1))
True
>>> l.contains((0, 0))
False
```


distance (o)

Finds the shortest distance between a line and a point.
Raises NotImplementedError - if o is not a Point

Examples

```
>>> p1, p2 = Point(0, 0), Point(1, 1)
>>> s = Line(p1, p2)
>>> s.distance(Point(-1, 1))
sqrt(2)
>>> s.distance((-1, 2))
3*sqrt(2)/2
```

equal (other)

Returns True if self and other are the same mathematical entities.
equation ($x=' x$ ', $y=y^{\prime} y^{\prime}$)
The equation of the line: $a x+b y+c$.

Parameters

- \mathbf{x} (str, optional) - The name to use for the x -axis, default value is ' x '.
- \mathbf{y} (str, optional) - The name to use for the y -axis, default value is ' y '.

Returns equation (diofant expression)
See also:
LinearEntity.coefficients (page 419)

Examples

```
>>> p1, p2 = Point(1, 0), Point(5, 3)
>>> l1 = Line(p1, p2)
>>> ll.equation()
-3*x + 4*y + 3
```

plot_interval(parameter='t')
The plot interval for the default geometric plot of line. Gives values that will produce a line that is +/- 5 units long (where a unit is the distance between the two points that define the line).

Parameters parameter (str, optional) - Default value is ' t '.
Returns plot_interval (list (plot interval)) - [parameter, lower_bound, upper_bound]

Examples

```
>> p1, p2 = Point(0, 0), Point(5, 3)
>>> l1 = Line(p1, p2)
>>> l1.plot_interval()
[t, -5, 5]
```

class diofant.geometry.line.Ray ($p 1, p t=$ None, angle=None, **kwargs)
A Ray is a semi-line in the space with a source point and a direction.

Parameters

- p1 (diofant.geometry.point.Point) - The source of the Ray
- p2 (diofant.geometry.point.Point or Expr) - This point determines the direction in which the Ray propagates. If given as an angle it is interpreted in radians with the positive direction being ccw.

See also:

diofant.geometry.point. Point (page 412), Line (page 425)

Notes

At the moment only rays in a 2D space can be declared, because Points can be defined only for 2D spaces.

Examples

```
>> r = Ray(Point(2, 3), Point(3, 5))
>>> r = Ray(Point(2, 3), Point(3, 5))
>>> r
Ray(Point(2, 3), Point(3, 5))
>>> r.points
(Point(2, 3), Point(3, 5))
>>> r.source
Point(2, 3)
>>> r.xdirection
00
>>> r.ydirection
00
>>> r.slope
2
>>> Ray(Point(0, 0), angle=pi/4).slope
1
```

contains(other)
Is other GeometryEntity contained in this Ray?

Examples

```
>> p1, p2 = Point(0, 0), Point(4, 4)
>>> r = Ray(p1, p2)
>>> r.contains(p1)
True
>>> r.contains((1, 1))
True
>>> r.contains((1, 3))
False
>>> s = Segment((1, 1), (2, 2))
>>> r.contains(s)
True
>>> s = Segment((1, 2), (2, 5))
>> r.contains(s)
False
>>> rl = Ray((2, 2), (3, 3))
>>> r.contains(r1)
True
>>> rl = Ray((2, 2), (3, 5))
>>> r.contains(rl)
False
```

property direction
The direction in which the ray emanates.

See also:

diofant.geometry.point.Point (page 412)

Examples

```
>>> p1, p2 = Point(0, 0), Point(4, 1)
>>> r1 = Ray(p1, p2)
>>> rl.direction
Point(4, 1)
```

distance (o)
Finds the shortest distance between the ray and a point.
Raises NotImplementedError - if o is not a Point

Examples

```
>>> p1, p2 = Point(0, 0), Point(1, 1)
>>> s = Ray(p1, p2)
>>> s.distance(Point(-1, -1))
sqrt(2)
>>> s.distance((-1, 2))
3*sqrt(2)/2
```

plot_interval(parameter='t')
The plot interval for the default geometric plot of the Ray. Gives values that will produce a ray that is 10 units long (where a unit is the distance between the two points that define the ray).

Parameters parameter (str, optional) - Default value is ' t '.
Returns plot_interval (list) - [parameter, lower_bound, upper_bound]

Examples

```
>>> r = Ray((0, 0), angle=pi/4)
```

>>> r.plot_interval()
[t, 0, 10]
property source
The point from which the ray emanates.

See also:

diofant.geometry.point. Point (page 412)

Examples

```
>>> p1, p2 = Point(0, 0), Point(4, 1)
>>> r1 = Ray(p1, p2)
>>> rl.source
Point(0, 0)
```

property xdirection

The x direction of the ray.
Positive infinity if the ray points in the positive x direction, negative infinity if the ray points in the negative x direction, or 0 if the ray is vertical.

See also:

ydirection (page 430)

Examples

```
>>> p1, p2, p3 = Point(0, 0), Point(1, 1), Point(0, -1)
>>> r1, r2 = Ray(p1, p2), Ray(p1, p3)
>>> rl.xdirection
00
>>> r2.xdirection
0
```

property ydirection
The y direction of the ray.
Positive infinity if the ray points in the positive y direction, negative infinity if the ray points in the negative y direction, or 0 if the ray is horizontal.

See also:

xdirection (page 429)

Examples

```
>>> p1, p2, p3 = Point(0, 0), Point(-1, -1), Point(-1, 0)
>>> r1, r2 = Ray(p1, p2), Ray(p1, p3)
>>> rl.ydirection
-00
>>> r2.ydirection
0
```

class diofant.geometry.line. Segment($p 1, p 2, * *$ kwargs)
A undirected line segment in space.

Parameters

- p1 (diofant.geometry.point.Point)
- p2 (diofant.geometry.point.Point)

See also:

diofant.geometry.point.Point (page 412), Line (page 425)

Notes

At the moment only segments in a 2D space can be declared, because Points can be defined only for 2 D spaces.

Examples

```
>>> Segment((1, 0), (1, 1)) # tuples are interpreted as pts
Segment(Point(1, 0), Point(1, 1))
>>> s = Segment(Point(4, 3), Point(1, 1))
>>> S
Segment(Point(1, 1), Point(4, 3))
>>> s.points
(Point(1, 1), Point(4, 3))
>>> s.slope
2/3
>>> s.length
sqrt(13)
>>> S.midpoint
Point(5/2, 2)
```

contains(other)
Is the other GeometryEntity contained within this Segment?

Examples

```
>> p1, p2 = Point(0, 1), Point(3, 4)
>>> s = Segment(p1, p2)
>>> s2 = Segment(p2, p1)
>>> s.contains(s2)
True
```

distance(o)
Finds the shortest distance between a line segment and a point.
Raises NotImplementedError - if o is not a Point

Examples

```
>>> p1, p2 = Point(0, 1), Point(3, 4)
>> s = Segment(p1, p2)
>>> s.distance(Point(10, 15))
sqrt(170)
>>> s.distance((0, 12))
sqrt(73)
```


property length

The length of the line segment.

See also:

diofant.geometry.point. Point. distance (page 412)

Examples

```
>>> p1, p2 = Point(0, 0), Point(4, 3)
>>> s1 = Segment(p1, p2)
>>> s1.length
5
```

property midpoint
The midpoint of the line segment.

See also:

diofant.geometry.point.Point.midpoint (page 415)

Examples

```
>>> p1, p2 = Point(0, 0), Point(4, 3)
>>> s1 = Segment(p1, p2)
>>> sl.midpoint
Point(2, 3/2)
```

perpendicular_bisector ($p=$ None)

The perpendicular bisector of this segment.
If no point is specified or the point specified is not on the bisector then the bisector is returned as a Line. Otherwise a Segment is returned that joins the point specified and the intersection of the bisector and the segment.

Parameters \mathbf{p} (diofant.geometry.point.Point)
Returns bisector (Line or Segment)
See also:
LinearEntity.perpendicular_segment (page 423)

Examples

```
>>> p1, p2, p3 = Point(0, 0), Point(6, 6), Point(5, 1)
>> s1 = Segment(p1, p2)
>>> s1.perpendicular bisector()
Line(Point(3, 3), Poīnt(9, -3))
```

```
>>> s1.perpendicular_bisector(p3)
Segment(Point(3, 3), -Point(5, 1))
```

plot_interval(parameter='t')
The plot interval for the default geometric plot of the Segment gives values that will produce the full segment in a plot.

Parameters parameter (str, optional) - Default value is ' t '.
Returns plot_interval (list) - [parameter, lower_bound, upper_bound]

Examples

```
>>> p1, p2 = Point(0, 0), Point(5, 3)
>>> s1 = Segment(p1, p2)
>>> sl.plot_interval()
[t, 0, 1]
```


Curves

class diofant.geometry.curve.Curve(function, limits)
A curve in space.
A curve is defined by parametric functions for the coordinates, a parameter and the lower and upper bounds for the parameter value.

Parameters

- function (list of functions)
- limits (3-tuple) - Function parameter and lower and upper bounds.

Raises ValueError - When functions are specified incorrectly. When limits are specified incorrectly.

See also:

diofant.core.function.Function (page 130), diofant.polys.polyfuncs. interpolate (page 618)

Examples

```
>>> C = Curve((sin(t), cos(t)), (t, 0, 2))
>>> C.functions
(sin(t), cos(t))
>>> C.limits
(t, 0, 2)
>>> C.parameter
t
>>> C = Curve((t, interpolate([1, 4, 9, 16], t)), (t, 0, 1))
>> C
Curve((t, t**2), (t, 0, 1))
>>> C.subs({t: 4})
Point(4, 16)
>>> C.arbitrary point(a)
Point(a, a**2)
```

arbitrary_point (parameter='t')
A parameterized point on the curve.
Parameters parameter (str or Symbol, optional) - Default value is ' t '; the Curve's parameter is selected with None or self.parameter otherwise the provided symbol is used.

Returns arbitrary_point (Point)

Raises ValueError - When parameter already appears in the functions.

See also:

diofant.geometry.point.Point (page 412)

Examples

```
>>> from diofant.abc import s
>>> C = Curve([2*s, s**2], (s, 0, 2))
>>> C.arbitrary point()
Point(2*t, t**2)
>>> C.arbitrary point(C.parameter)
Point(2*s, s**2)
>>> C.arbitrary_point(None)
Point(2*s, s**2)
>>> C.arbitrary_point(a)
Point(2*a, a**2)
```

property free_symbols

Return a set of symbols other than the bound symbols used to parametrically define the Curve.

Examples

```
>>> Curve((t, t**2), (t, 0, 2)).free_symbols
set()
>>> Curve((t, t**2), (t, a, 2)).free_symbols
{a}
```

property functions
The functions specifying the curve.
Returns functions (list of parameterized coordinate functions.)
See also:
parameter (page 435)

Examples

```
>>> C = Curve((t, t**2), (t, 0, 2))
>>> C.functions
(t, t**2)
```

property limits
The limits for the curve.
Returns limits (tuple) - Contains parameter and lower and upper limits.

See also:

plot_interval (page 435)

Examples

```
>>> C = Curve([t, t**3], (t, -2, 2))
>>> C.limits
(t, -2, 2)
```

property parameter
The curve function variable.
Returns parameter (Diofant symbol)
See also:
functions (page 434)

Examples

```
>>> C = Curve([t, t**2], (t, 0, 2))
>>> C.parameter
t
```

plot_interval(parameter='t')
The plot interval for the default geometric plot of the curve.
Parameters parameter (str or Symbol, optional) - Default value is ' t '; otherwise the provided symbol is used.
Returns plot_interval (list (plot interval)) - [parameter, lower_bound, upper_bound]

See also:

limits (page 434) Returns limits of the parameter interval

Examples

>>> from diofant.abc import s
>> Curve((x, sin(x)), (x, 1, 2)).plot_interval()
[t, 1, 2]
>>> Curve((x, sin(x)), (x, 1, 2)).plot_interval(s)
[s, 1, 2]
rotate (angle=0, pt=None)
Rotate angle radians counterclockwise about Point pt.
The default pt is the origin, $\operatorname{Point}(0,0)$.

Examples

>>> Curve((x, x), (x, 0, 1)). rotate(pi/2)
Curve((-x, x), (x, 0, 1))
scale $(x=1, y=1, p t=$ None $)$
Override GeometryEntity.scale since Curve is not made up of Points.

Examples

```
>> Curve((x, x), (x, 0, 1)).scale(2)
```

Curve($\left.\left(2^{*} x, x\right),(x, 0,1)\right)$
translate $(x=0, y=0)$
Translate the Curve by (x, y).

Examples

```
>> Curve((x, x), (x, 0, 1)).translate(1, 2)
Curve((x + 1, x + 2), (x, 0, 1))
```


Ellipses

class diofant.geometry.ellipse.Ellipse(center=None, hradius=None, vradius=None, eccentricity=None, **kwargs)
An elliptical GeometryEntity.

Parameters

- center (Point, optional) - Default value is Point(0, 0)
- hradius (number or Diofant expression, optional)
- vradius (number or Diofant expression, optional)
- eccentricity (number or Diofant expression, optional) - Two of hradius, vradius and eccentricity must be supplied to create an Ellipse. The third is derived from the two supplied.

Raises

- diofant.geometry.exceptions.GeometryError (page 412) - When hradius, vradius and eccentricity are incorrectly supplied as parameters.
- TypeError - When center is not a Point.

See also:

Circle (page 446)

Notes

Constructed from a center and two radii, the first being the horizontal radius (along the x -axis) and the second being the vertical radius (along the y -axis).
When symbolic value for hradius and vradius are used, any calculation that refers to the foci or the major or minor axis will assume that the ellipse has its major radius on the x -axis. If this is not true then a manual rotation is necessary.

Examples

```
>>> el = Ellipse(Point(0, 0), 5, 1)
>>> el.hradius, el.vradius
(5, 1)
>>> e2 = Ellipse(Point(3, 1), hradius=3, eccentricity=Rational(4, 5))
>>> e2
Ellipse(Point(3, 1), 3, 9/5)
```


property apoapsis

The apoapsis of the ellipse.
The greatest distance between the focus and the contour.
Returns apoapsis (number)
See also:
periapsis (page 443) Returns shortest distance between foci and contour

Examples

```
>>> p1 = Point(0, 0)
>>> el = Ellipse(p1, 3, 1)
>>> el.apoapsis
2*sqrt(2) + 3
```

arbitrary_point (parameter='t')
A parameterized point on the ellipse.
Parameters parameter (str, optional) - Default value is ' t '.
Returns arbitrary_point (Point)
Raises ValueError - When parameter already appears in the functions.

See also:

diofant.geometry.point.Point (page 412)

Examples

```
>>> el = Ellipse(Point(0, 0), 3, 2)
>>> el.arbitrary_point()
Point(3*}\operatorname{cos(t), 2**sin(t))
```

property area
The area of the ellipse.
Returns area (number)

Examples

```
>>> p1 = Point(0, 0)
>>> el = Ellipse(p1, 3, 1)
>>> el.area
3*pi
```

property center

The center of the ellipse.
Returns center (number)

See also:

```
diofant.geometry.point.Point (page 412)
```


Examples

```
>>> pl = Point(0, 0)
>>> el = Ellipse(p1, 3, 1)
>>> el.center
Point(0, 0)
```

property circumference
The circumference of the ellipse.

Examples

```
>>> pl = Point(0, 0)
>>> el = Ellipse(p1, 3, 1)
>>> el.circumference
12*Integral(sqrt((-8*_x**2/9 + 1)/(-_x**2 + 1)), (_x, 0, 1))
```

property eccentricity

The eccentricity of the ellipse.
Returns eccentricity (number)

Examples

```
>>> pl = Point(0, 0)
>>> el = Ellipse(pl, 3, sqrt(2))
>>> el.eccentricity
sqrt(7)/3
```


encloses_point (p)

Return True if p is enclosed by (is inside of) self.

Notes

Being on the border of self is considered False.
Parameters p (Point)
Returns encloses_point (True, False or None)

See also:

diofant.geometry.point.Point (page 412)

Examples

```
>>> e = Ellipse((0, 0), 3, 2)
>>> e.encloses_point((0, 0))
True
>>> e.encloses_point(e.arbitrary_point(t).subs({t: Rational(1, 2)}))
False
>>> e.encloses_point((4, 0))
False
```

equation ($x=$ ' x ', $y=$ ' y ')

The equation of the ellipse.

Parameters

- \mathbf{x} (str, optional) - Label for the x -axis. Default value is ' x '.
- \mathbf{y} (str, optional) - Label for the y -axis. Default value is ' y '.

Returns equation (diofant expression)

See also:

arbitrary_point (page 437) Returns parameterized point on ellipse

Examples

```
>>> e1 = Ellipse(Point(1, 0), 3, 2)
>>> el.equation()
y**2/4 + (x/3 - 1/3)**2 - 1
```

evolute ($x=$ ' x ', $y=$ ' y ')
The equation of evolute of the ellipse.

Parameters

- \mathbf{x} (str, optional) - Label for the x -axis. Default value is ' x '.
- \mathbf{y} (str, optional) - Label for the y-axis. Default value is ' y '.

Returns equation (diofant expression)

Examples

```
>>> el = Ellipse(Point(1, 0), 3, 2)
>>> el.evolute()
2**(2/3)*y**(2/3) + (3*x - 3)**(2/3) - 5**(2/3)
```

property foci
The foci of the ellipse.

Notes

The foci can only be calculated if the major/minor axes are known.
Raises ValueError - When the major and minor axis cannot be determined.

See also:

diofant.geometry.point. Point (page 412)
focus_distance (page 440) Returns the distance between focus and center

Examples

```
>>> p1 = Point(0, 0)
>>> el = Ellipse(pl, 3, 1)
>>> el.foci
(Point(-2*sqrt(2), 0), Point(2*sqrt(2), 0))
```

property focus_distance
The focal distance of the ellipse.
The distance between the center and one focus.
Returns focus_distance (number)

See also:

foci (page 440)

Examples

```
>>> pl = Point(0, 0)
>>> el = Ellipse(pl, 3, 1)
>>> el.focus_distance
2*sqrt(2)
```

property hradius
The horizontal radius of the ellipse.
Returns hradius (number)

See also:

vradius (page 446), major (page 442), minor (page 442)

Examples

```
>>> p1 = Point(0, 0)
>>> e1 = Ellipse(p1, 3, 1)
>>> el.hradius
3
```


intersection(o)

The intersection of this ellipse and another geometrical entity o.

Parameters o (GeometryEntity)

Returns intersection (list of GeometryEntity objects)

Notes

Currently supports intersections with Point, Line, Segment, Ray, Circle and Ellipse types.

See also:

diofant.geometry.entity.GeometryEntity (page 406)

Examples

```
>>> e = Ellipse(Point(0, 0), 5, 7)
>>> e.intersection(Point(0, 0))
[]
>>> e.intersection(Point(5, 0))
[Point(5, 0)]
>>> e.intersection(Line(Point(0, 0), Point(0, 1)))
[Point(0, -7), Point(0, 7)]
>>> e.intersection(Line(Point(5, 0), Point(5, 1)))
[Point(5, 0)]
>>> e.intersection(Line(Point(6, 0), Point(6, 1)))
[]
>>> e = Ellipse(Point(-1, 0), 4, 3)
>>> e.intersection(Ellipse(Point(1, 0), 4, 3))
[Point(0, -3*sqrt(15)/4), Point(0, 3*sqrt(15)/4)]
>>> e.intersection(Ellipse(Point(5, 0), 4, 3))
[Point(2, -3*sqrt(7)/4), Point(2, 3*sqrt(7)/4)]
>>> e.intersection(Ellipse(Point(100500, 0), 4, 3))
[]
>>> e.intersection(Ellipse(Point(0, 0), 3, 4))
[Point(-363/175, -48*sqrt(111)/175), Point(-363/175, 48*sqrt(111)/175),ь
->Point(3, 0)]
```

```
>>> e.intersection(Ellipse(Point(-1, 0), 3, 4))
[Point(-17/5, -12/5), Point(-17/5, 12/5), Point(7/5, -12/5), Point(7/5, 12/5)]
```


is_tangent (o)

Is o tangent to the ellipse?
Parameters o (GeometryEntity) - An Ellipse, LinearEntity or Polygon

Raises NotImplementedError - When the wrong type of argument is supplied.
Returns is_tangent (boolean) - True if o is tangent to the ellipse, False otherwise.

See also:

tangent_lines (page 446)

Examples

```
>>> p0, p1, p2 = Point(0, 0), Point(3, 0), Point(3, 3)
>>> el = Ellipse(p0, 3, 2)
>>> l1 = Line(p1, p2)
>>> el.is_tangent(ll)
True
```

property major
Longer axis of the ellipse (if it can be determined) else hradius.
Returns major (number or expression)
See also:
hradius (page 440), vradius (page 446), minor (page 442)

Examples

```
>>> p1 = Point(0, 0)
>>> el = Ellipse(pl, 3, 1)
>>> el.major
3
```

```
>>> Ellipse(p1, a, b).major
a
>>> Ellipse(p1, b, a).major
b
```

```
>>> M = m + 1
>>> Ellipse(p1, m, M).major
m + 1
```

property minor
Shorter axis of the ellipse (if it can be determined) else vradius.
Returns minor (number or expression)
See also:
hradius (page 440), vradius (page 446), major (page 442)

Examples

```
>>> pl = Point(0, 0)
>>> el = Ellipse(pl, 3, 1)
>>> el.minor
1
```

```
>>> Ellipse(p1, a, b).minor
b
>>> Ellipse(p1, b, a).minor
a
```

```
>>> M = m + l
>>> Ellipse(p1, m, M).minor
m
```

normal_lines $(p, p r e c=N o n e)$
Normal lines between p and the ellipse.
Parameters \mathbf{p} (Point)
Returns normal_lines (list with 1, 2 or 4 Lines)

Examples

```
>>> e = Ellipse((0, 0), 2, 3)
>>> c = e.center
>>> e.normal_lines(c + Point(1, 0))
[Line(Point(0, 0), Point(1, 0))]
>>> e.normal lines(c)
[Line(Point(\overline{0}, 0), Point(0, 1)), Line(Point(0, 0), Point(1, 0))]
```

Off-axis points require the solution of a quartic equation. This often leads to very large expressions that may be of little practical use. An approximate solution of prec digits can be obtained by passing in the desired value:

```
>>> e.normal_lines((3, 3), prec=2)
[Line(Point(-38/47, -85/31), Point(9/47, -21/17)),
Line(Point(19/13, -43/21), Point(32/13, -8/3))]
```

Whereas the above solution has an operation count of 12, the exact solution has an operation count of 2020.
property periapsis
The periapsis of the ellipse.
The shortest distance between the focus and the contour.
Returns periapsis (number)

See also:

apoapsis (page 437) Returns greatest distance between focus and contour

Examples

```
>>> pl = Point(0, 0)
>>> el = Ellipse(pl, 3, 1)
>>> el.periapsis
-2*sqrt(2) + 3
```

plot_interval(parameter='t')
The plot interval for the default geometric plot of the Ellipse.
Parameters parameter (str, optional) - Default value is ' t '.
Returns plot_interval (list) - [parameter, lower_bound, upper_bound]

Examples

```
>>> el = Ellipse(Point(0, 0), 3, 2)
>>> el.plot_interval()
[t, -pi, pi]
```

```
random_point(seed=None)
```

A random point on the ellipse.

Returns point (Point)

See also:

diofant.geometry.point. Point (page 412)
arbitrary_point (page 437) Returns parameterized point on ellipse

Examples

```
>>> el = Ellipse(Point(0, 0), 3, 2)
>>> el.random_point() # gives some random point
Point(...)
>>> p1 = el.random_point(seed=0)
>>> pl.evalf(2)
Point(2.1, 1.4)
```

The random_point method assures that the point will test as being in the ellipse:

```
>>> pl in el
True
```


Notes

A random point may not appear to be on the ellipse, ie, pine may return False. This is because the coordinates of the point will be floating point values, and when these values are substituted into the equation for the ellipse the result may not be zero because of floating point rounding error.
An arbitrary_point with a random value of t substituted into it may not test as being on the ellipse because the expression tested that a point is on the ellipse doesn't simplify to zero and doesn't evaluate exactly to zero:

```
>>> el.arbitrary_point(t)
Point(3*\operatorname{cos(t), 生*sin(t))}
>> p2 = _.subs({t: 0.1})
>> p2 in el
False
```

Note that arbitrary_point routine does not take this approach. A value for $\cos (t)$ and $\sin (\mathrm{t})(\operatorname{not} \mathrm{t}$) is substituted into the arbitrary point. There is a small chance that this will give a point that will not test as being in the ellipse, so the process is repeated (up to 10 times) until a valid point is obtained.
reflect(line)
Override GeometryEntity.reflect since the radius is not a GeometryEntity.

Examples

```
>> Circle((0, 1), 1).reflect(Line((0, 0), (1, 1)))
Circle(Point(1, 0), -1)
>>> Ellipse(Point(3, 4), 1, 3).reflect(Line(Point(0, -4), Point(5, 0)))
Traceback (most recent call last):
NotImplementedError:
General Ellipse is not supported but the equation of the reflected
Ellipse is given by the zeros of: f(x, y) = (9*x/41 + 40*y/41 +
37/41)**2 + (40*x/123 - 3*y/41 - 364/123)**2 - 1
```


Notes

Until the general ellipse (with no axis parallel to the x-axis) is supported a NotImplemented error is raised and the equation whose zeros define the rotated ellipse is given.
rotate (angle $=0, p t=$ None)
Rotate angle radians counterclockwise about Point pt.
Note: since the general ellipse is not supported, only rotations that are integer multiples of $\mathrm{pi} / 2$ are allowed.

Examples

```
>>> Ellipse((1, 0), 2, 1).rotate(pi/2)
Ellipse(Point(0, 1), 1, 2)
>>> Ellipse((1, 0), 2, 1).rotate(pi)
Ellipse(Point(-1, 0), 2, 1)
```

scale ($x=1, y=1, p t=$ None $)$
Override GeometryEntity.scale since it is the major and minor axes which must be scaled and they are not GeometryEntities.

Examples

```
>>> Ellipse((0, 0), 2, 1).scale(2, 4)
Circle(Point(0, 0), 4)
>>> Ellipse((0, 0), 2, 1).scale(2)
Ellipse(Point(0, 0), 4, 1)
```

tangent_lines (p)
Tangent lines between p and the ellipse.
If p is on the ellipse, returns the tangent line through point p. Otherwise, returns the tangent line(s) from p to the ellipse, or None if no tangent line is possible (e.g., p inside ellipse).

Parameters p(Point)
Returns tangent_lines (list with 1 or 2 Lines)
Raises NotImplementedError - Can only find tangent lines for a point, p, on the ellipse.

See also:

diofant.geometry.point.Point (page 412), diofant.geometry.line.Line (page 425)

Examples

```
>>> e1 = Ellipse(Point(0, 0), 3, 2)
```

>>> el.tangent_lines(Point (3, 0))
[Line(Point (3, 0), Point (3, -12))]
property vradius
The vertical radius of the ellipse.
Returns vradius (number)

See also:

hradius (page 440), major (page 442), minor (page 442)

Examples

```
>>> p1 = Point(0, 0)
>>> el = Ellipse(p1, 3, 1)
>>> el.vradius
1
```

class diofant.geometry.ellipse.Circle(*args, **kwargs)
A circle in space.
Constructed simply from a center and a radius, or from three non-collinear points.

Parameters

- center (Point)
- radius (number or diofant expression)
- points (sequence of three Points)

Raises diofant.geometry.exceptions.GeometryError (page 412) - When trying to construct circle from three collinear points. When trying to construct circle from incorrect parameters.

See also:

Ellipse (page 436), diofant.geometry. point. Point (page 412)

Examples

```
>> # a circle constructed from a center and radius
>>> cl = Circle(Point(0, 0), 5)
>>> cl.hradius, cl.vradius, cl.radius
(5, 5, 5)
```

```
>>> # a circle constructed from three points
>>> c2 = Circle(Point(0, 0), Point(1, 1), Point(1, 0))
>>> c2.hradius, c2.vradius, c2.radius, c2.center
(sqrt(2)/2, sqrt(2)/2, sqrt(2)/2, Point(1/2, 1/2))
```


property circumference

The circumference of the circle.
Returns circumference (number or Diofant expression)

Examples

```
>>> c1 = Circle(Point(3, 4), 6)
>>> cl.circumference
    12*pi
```

equation ($x=$ ' x ', $y=$ ' y ')

The equation of the circle.

Parameters

- \mathbf{x} (str or Symbol, optional) - Default value is ' x '.
- \mathbf{y} (str or Symbol, optional) - Default value is ' y '.

Returns equation (Diofant expression)

Examples

```
>>> cl = Circle(Point(0, 0), 5)
>>> cl.equation()
x**2 + y**2 - 25
```

intersection(o)
The intersection of this circle with another geometrical entity.
Parameters o (GeometryEntity)
Returns intersection (list of GeometryEntities)

Examples

```
>>> p1, p2, p3 = Point(0, 0), Point(5, 5), Point(6, 0)
>>> p4 = Point(5, 0)
>>> c1 = Circle(p1, 5)
>>> c1.intersection(p2)
[]
>>> c1.intersection(p4)
[Point(5, 0)]
>>> c1.intersection(Ray(p1, p2))
[Point(5*sqrt(2)/2, 5*sqrt(2)/2)]
>>> c1.intersection(Line(p2, p3))
[]
```


property radius

The radius of the circle.

Returns radius (number or diofant expression)

See also:

Ellipse.major (page 442), Ellipse.minor (page 442), Ellipse.hradius (page 440), Ellipse.vradius (page 446)

Examples

```
>>> c1 = Circle(Point(3, 4), 6)
>>> c1.radius
6
```

reflect (line)
Override GeometryEntity.reflect since the radius is not a GeometryEntity.

Examples

```
>>> Circle((0, 1), 1).reflect(Line((0, 0), (1, 1)))
Circle(Point(1, 0), -1)
```

scale $(x=1, y=1, p t=$ None $)$
Override GeometryEntity.scale since the radius is not a GeometryEntity.

Examples

```
>>> Circle((0, 0), 1).scale(2, 2)
Circle(Point(0, 0), 2)
>>> Circle((0, 0), 1).scale(2, 4)
Ellipse(Point(0, 0), 2, 4)
```


property vradius

This Ellipse property is an alias for the Circle's radius.
Whereas hradius, major and minor can use Ellipse's conventions, the vradius does not exist for a circle. It is always a positive value in order that the Circle, like Polygons, will have an area that can be positive or negative as determined by the sign of the hradius.

Examples

```
>>> cl = Circle(Point(3, 4), 6)
>>> cl.vradius
6
```


Polygons

```
class diofant.geometry.polygon.Polygon(*args,**kwargs)
```

A two-dimensional polygon.
A simple polygon in space. Can be constructed from a sequence of points or from a center, radius, number of sides and rotation angle.

Parameters vertices (sequence of Points)

Raises diofant.geometry.exceptions.GeometryError (page 412) - If all parameters are not Points.

If the Polygon has intersecting sides.

See also:

diofant.geometry.point.Point (page 412), diofant.geometry.line.Segment (page 430), Triangle (page 461)

Notes

Polygons are treated as closed paths rather than 2D areas so some calculations can be be negative or positive (e.g., area) based on the orientation of the points.
Any consecutive identical points are reduced to a single point and any points collinear and between two points will be removed unless they are needed to define an explicit intersection (see examples).
A Triangle, Segment or Point will be returned when there are 3 or fewer points provided.

Examples

```
>>> p1, p2, p3, p4, p5 = [(0, 0), (1, 0), (5, 1), (0, 1), (3, 0)]
>>> Polygon(p1, p2, p3, p4)
Polygon(Point(0, 0), Point(1, 0), Point(5, 1), Point(0, 1))
>>> Polygon(p1, p2)
Segment(Point(0, 0), Point(1, 0))
>> Polygon(p1, p2, p5)
Segment(Point(0, 0), Point(3, 0))
```

While the sides of a polygon are not allowed to cross implicitly, they can do so explicitly. For example, a polygon shaped like a Z with the top left connecting to the bottom right of the Z must have the point in the middle of the Z explicitly given:

```
>>> mid = Point(1, 1)
>>> Polygon((0, 2), (2, 2), mid, (0, 0), (2, 0), mid).area
0
>> Polygon((0, 2), (2, 2), mid, (2, 0), (0, 0), mid).area
-2
```

When the the keyword n is used to define the number of sides of the Polygon then a RegularPolygon is created and the other arguments are interpreted as center, radius and rotation. The unrotated RegularPolygon will always have a vertex at Point(r, 0) where r is the radius of the circle that circumscribes the RegularPolygon. Its method spin can be used to increment that angle.

```
>>> p = Polygon((0, 0), 1, n=3)
>>> p
RegularPolygon(Point(0, 0), 1, 3, 0)
>>> p.vertices[0]
Point(1, 0)
>>> p.args[0]
Point(0, 0)
>>> p.spin(pi/2)
>>> p.vertices[0]
Point(0, 1)
```


property angles

The internal angle at each vertex.
Returns angles (dict) - A dictionary where each key is a vertex and each value is the internal angle at that vertex. The vertices are represented as Points.

See also:

diofant.geometry.point.Point (page 412), diofant.geometry.line. LinearEntity.angle_between (page 417)

Examples

```
>>> p1, p2, p3, p4 = map(Point, [(0, 0), (1, 0), (5, 1), (0, 1)])
>>> poly = Polygon(p1, p2, p3, p4)
>> poly.angles[p1]
pi/2
>>> poly.angles[p2]
acos(-4*sqrt(17)/17)
```

arbitrary_point (parameter='t')
A parameterized point on the polygon.
The parameter, varying from 0 to 1 , assigns points to the position on the perimeter that is that fraction of the total perimeter. So the point evaluated at $t=1 / 2$ would return the point from the first vertex that is $1 / 2$ way around the polygon.

Parameters parameter (str, optional) - Default value is ' t '.
Returns arbitrary_point (Point)
Raises ValueError - When parameter already appears in the Polygon's definition.

See also:

diofant.geometry.point. Point (page 412)

Examples

```
>>> t = Symbol('t', extended_real=True)
>>> tri = Polygon((0, 0), (1, 0), (1, 1))
>>> p = tri.arbitrary point('t')
>>> perimeter = tri.perimeter
>>> s1, s2 = [s.length for s in tri.sides[:2]]
>>> p.subs({t: (s1 + s2/2)/perimeter})
Point(1, 1/2)
```

property area

The area of the polygon.

Notes

The area calculation can be positive or negative based on the orientation of the points.

See also:

diofant.geometry.ellipse.Ellipse. area (page 438)

Examples

```
>>> p1, p2, p3, p4 = map(Point, [(0, 0), (1, 0), (5, 1), (0, 1)])
>>> poly = Polygon(p1, p2, p3, p4)
>>> poly.area
3
```

property centroid
The centroid of the polygon.

Returns centroid (Point)

See also:

diofant.geometry.point.Point (page 412), diofant.geometry.util.centroid (page 411)

Examples

```
>>> p1, p2, p3, p4 = map(Point, [(0, 0), (1, 0), (5, 1), (0, 1)])
>>> poly = Polygon(p1, p2, p3, p4)
>>> poly.centroid
Point(31/18, 11/18)
```

distance (o)
Returns the shortest distance between self and o.
If o is a point, then self does not need to be convex. If o is another polygon self and o must be complex.

Examples

```
>>> p1, p2 = map(Point, [(0, 0), (7, 5)])
>>> poly = Polygon(*RegularPolygon(pl, 1, 3).vertices)
>>> poly.distance(p2)
sqrt(61)
```


encloses_point (p)

Return True if p is enclosed by (is inside of) self.

Notes

Being on the border of self is considered False.
Parameters p (Point)
Returns encloses_point (True, False or None)

See also:

```
diofant.geometry.point.Point (page 412), diofant.geometry.ellipse.
```

Ellipse.encloses_point (page 439)

Examples

```
>>> p = Polygon((0, 0), (4, 0), (4, 4))
>>> p.encloses_point(Point(2, 1))
True
>>> p.encloses_point(Point(2, 2))
False
>>> p.encloses_point(Point(5, 5))
False
```


References

- http://paulbourke.net/geometry/polygonmesh/\#insidepoly

intersection(o)

The intersection of two polygons.
The intersection may be empty and can contain individual Points and complete Line Segments.

Parameters other (Polygon)

Returns intersection (list) - The list of Segments and Points

See also:

diofant.geometry.point.Point (page 412), diofant.geometry.line.Segment (page 430)

Examples

```
>>> p1, p2, p3, p4 = map(Point, [(0, 0), (1, 0), (5, 1), (0, 1)])
>>> poly1 = Polygon(p1, p2, p3, p4)
>>> p5, p6, p7 = map(Point, [(3, 2), (1, -1), (0, 2)])
>>> poly2 = Polygon(p5, p6, p7)
>>> poly1.intersection(poly2)
[Point(2/3, 0), Point(9/5, 1/5), Point(7/3, 1), Point(1/3, 1)]
```

is_convex()
Is the polygon convex?
A polygon is convex if all its interior angles are less than 180 degrees.
Returns is_convex (boolean) - True if this polygon is convex, False otherwise.

See also:
diofant.geometry.util.convex_hull (page 410)

Examples

```
>>> p1, p2, p3, p4 = map(Point, [(0, 0), (1, 0), (5, 1), (0, 1)])
>>> poly = Polygon(p1, p2, p3, p4)
>>> poly.is_convex()
True
```

property perimeter
The perimeter of the polygon.
Returns perimeter (number or Basic instance)

See also:

diofant.geometry. line.Segment. length (page 431)

Examples

```
>>> p1, p2, p3, p4 = map(Point, [(0, 0), (1, 0), (5, 1), (0, 1)])
>>> poly = Polygon(p1, p2, p3, p4)
>>> poly.perimeter
sqrt(17) + 7
```

plot_interval(parameter='t')
The plot interval for the default geometric plot of the polygon.
Parameters parameter (str, optional) - Default value is ' t '.
Returns plot_interval (list (plot interval)) - [parameter, lower_bound, upper_bound]

Examples

```
>>> p = Polygon((0, 0), (1, 0), (1, 1))
>>> p.plot_interval()
[t, 0, 1]
```

property sides
The line segments that form the sides of the polygon.
Returns sides (list of sides) - Each side is a Segment.

Notes

The Segments that represent the sides are an undirected line segment so cannot be used to tell the orientation of the polygon.

See also:

diofant.geometry.point.Point (page 412), diofant.geometry.line.Segment (page 430)

Examples

```
>>> p1, p2, p3, p4 = map(Point, [(0, 0), (1, 0), (5, 1), (0, 1)])
>>> poly = Polygon(p1, p2, p3, p4)
>>> poly.sides
[Segment(Point(0, 0), Point(1, 0)),
Segment(Point(1, 0), Point(5, 1)),
Segment(Point(0, 1), Point(5, 1)), Segment(Point(0, 0), Point(0, 1))]
```


property vertices

The vertices of the polygon.
Returns vertices (tuple of Points)

Notes

When iterating over the vertices, it is more efficient to index self rather than to request the vertices and index them. Only use the vertices when you want to process all of them at once. This is even more important with RegularPolygons that calculate each vertex.

See also:

diofant.geometry.point. Point (page 412)

Examples

```
>>> p1, p2, p3, p4 = map(Point, [(0, 0), (1, 0), (5, 1), (0, 1)])
>>> poly = Polygon(p1, p2, p3, p4)
>>> poly.vertices
(Point(0, 0), Point(1, 0), Point(5, 1), Point(0, 1))
>>> poly.args[0]
Point(0, 0)
```

class diofant.geometry.polygon.RegularPolygon(c, r, n, rot=0, **kwargs)
A regular polygon.
Such a polygon has all internal angles equal and all sides the same length.

Parameters

- center (Point)
- radius (number or Basic instance) - The distance from the center to a vertex
- n (int) - The number of sides

Raises diofant.geometry.exceptions.GeometryError (page 412) - If the center is not a Point, or the radius is not a number or Basic instance, or the number of sides, n, is less than three.

Notes

A RegularPolygon can be instantiated with Polygon with the kwarg n.
Regular polygons are instantiated with a center, radius, number of sides and a rotation angle. Whereas the arguments of a Polygon are vertices, the vertices of the RegularPolygon must be obtained with the vertices method.

See also:

diofant.geometry. point. Point (page 412), Polygon (page 449)

Examples

```
>>> r = RegularPolygon(Point(0, 0), 5, 3)
>>> r
RegularPolygon(Point(0, 0), 5, 3, 0)
>>> r.vertices[0]
Point(5, 0)
```


property angles

Returns a dictionary with keys, the vertices of the Polygon, and values, the interior angle at each vertex.

Examples

```
>>> r = RegularPolygon(Point(0, 0), 5, 3)
>>> r.angles
{Point(-5/2, -5*sqrt(3)/2): pi/3,
    Point(-5/2, 5*sqrt(3)/2): pi/3,
    Point(5, 0): pi/3}
```

property apothem

The inradius of the RegularPolygon.
The apothem/inradius is the radius of the inscribed circle.
Returns apothem (number or instance of Basic)

See also:

diofant.geometry.line.Segment.length (page 431), diofant.geometry. ellipse.Circle.radius (page 448)

Examples

```
>>> radius = Symbol('r')
>>> rp = RegularPolygon(Point(0, 0), radius, 4)
>>> rp.apothem
sqrt(2)*r/2
```


property area

Returns the area.

Examples

```
>>> square = RegularPolygon((0, 0), 1, 4)
>>> square.area
2
>>> _ == square.length**2
True
```

property args

Returns the center point, the radius, the number of sides, and the orientation angle.

Examples

>>> r = RegularPolygon(Point(0, 0), 5, 3)
\ggg r.args
(Point(0, 0), 5, 3, 0)
property center
The center of the RegularPolygon
This is also the center of the circumscribing circle.
Returns center (Point)

See also:

```
diofant.geometry.point.Point (page 412), diofant.geometry.ellipse.
Ellipse.center (page 438)
```


Examples

>>> rp = RegularPolygon(Point(0, 0), 5, 4)
>>> rp.center
Point (0, 0)
property centroid
The center of the RegularPolygon
This is also the center of the circumscribing circle.
Returns center (Point)

See also:

```
diofant.geometry.point.Point (page 412), diofant.geometry.ellipse.
```

Ellipse.center (page 438)

Examples

```
>>> rp = RegularPolygon(Point(0, 0), 5, 4)
>>> rp.center
Point(0, 0)
```

property circumcenter
Alias for center.

Examples

```
>>> rp = RegularPolygon(Point(0, 0), 5, 4)
>>> rp.circumcenter
Point(0, 0)
```


property circumcircle

The circumcircle of the RegularPolygon.

Returns circumcircle (Circle)

See also:

circumcenter (page 457), diofant.geometry.ellipse.Circle (page 446)

Examples

```
>>> rp = RegularPolygon(Point(0, 0), 4, 8)
>>> rp.circumcircle
Circle(Point(0, 0), 4)
```

property circumradius
Alias for radius.

Examples

```
>>> radius = Symbol('r')
>>> rp = RegularPolygon(Point(0, 0), radius, 4)
>>> rp.circumradius
r
```

encloses_point (p)

Return True if p is enclosed by (is inside of) self.

Notes

Being on the border of self is considered False.
The general Polygon.encloses_point method is called only if a point is not within or beyond the incircle or circumcircle, respectively.

Parameters \mathbf{p} (Point)
Returns encloses_point (True, False or None)

See also:

diofant.geometry.ellipse.Ellipse.encloses_point (page 439)

Examples

```
>>> p = RegularPolygon((0, 0), 3, 4)
>>> p.encloses_point(Point(0, 0))
True
>>> r, R = p.inradius, p.circumradius
>>> p.encloses_point(Point((r + R)/2, 0))
True
>>> p.encloses_point(Point(R/2, R/2 + (R - r)/10))
False
>>> t = Symbol('t', extended_real=True)
>>> p.encloses_point(p.arbitrary_point().subs({t: Rational(1, 2)}))
False
>>> p.encloses_point(Point(5, 5))
False
```

property exterior_angle

Measure of the exterior angles.

Returns exterior_angle (number)

See also:

diofant.geometry.line.LinearEntity.angle_between (page 417)

Examples

```
>>> rp = RegularPolygon(Point(0, 0), 4, 8)
>>> rp.exterior_angle
pi/4
```

property incircle
The incircle of the RegularPolygon.

Returns incircle (Circle)

See also:

inradius (page 459), diofant.geometry.ellipse. Circle (page 446)

Examples

```
>>> rp = RegularPolygon(Point(0, 0), 4, 7)
>>> rp.incircle
Circle(Point(0, 0), 4*cos(pi/7))
```

property inradius
Alias for apothem.

Examples

```
>>> radius = Symbol('r')
>>> rp = RegularPolygon(Point(0, 0), radius, 4)
>>> rp.inradius
sqrt(2)*r/2
```

property interior_angle
Measure of the interior angles.
Returns interior_angle (number)

See also:

diofant.geometry.line.LinearEntity.angle_between (page 417)

Examples

```
>>> rp = RegularPolygon(Point(0, 0), 4, 8)
>>> rp.interior_angle
3*pi/4
```


property length

Returns the length of the sides.
The half-length of the side and the apothem form two legs of a right triangle whose hypotenuse is the radius of the regular polygon.

Examples

```
>>> s = square_in_unit_circle = RegularPolygon((0, 0), 1, 4)
>>> s.length
sqrt(2)
>>> sqrt((_/2)**2 + s.apothem**2) == s.radius
True
```

property radius
Radius of the RegularPolygon
This is also the radius of the circumscribing circle.
Returns radius (number or instance of Basic)

See also:

diofant.geometry.line.Segment.length (page 431), diofant.geometry. ellipse.Circle.radius (page 448)

Examples

```
>>> radius = Symbol('r')
>>> rp = RegularPolygon(Point(0, 0), radius, 4)
>>> rp.radius
r
```

reflect(line)
Override GeometryEntity.reflect since this is not made of only points.

```
>>> RegularPolygon((0, 0), 1, 4).reflect(Line((0, 1), slope=-2))
RegularPolygon(Point(4/5, 2/5), -1, 4, acos(3/5))
```

rotate (angle, $p t=$ None)
Override GeometryEntity.rotate to first rotate the RegularPolygon about its center.

```
>>> t = RegularPolygon(Point(1, 0), 1, 3)
>>> t.vertices[0] # vertex on x-axis
Point(2, 0)
>>> t.rotate(pi/2).vertices[0] # vertex on y axis now
Point(0, 2)
```


See also:

rotation (page 460)
spin (page 461) Rotates a RegularPolygon in place property rotation

CCW angle by which the RegularPolygon is rotated
Returns rotation (number or instance of Basic)

Examples

```
>>> RegularPolygon(Point(0, 0), 3, 4, pi).rotation
pi
```

scale $(x=1, y=1, p t=$ None $)$
Override GeometryEntity.scale since it is the radius that must be scaled (if $\mathrm{x}==\mathrm{y}$) or else a new Polygon must be returned.

Symmetric scaling returns a RegularPolygon:

```
>>> RegularPolygon((0, 0), 1, 4).scale(2, 2)
RegularPolygon(Point(0, 0), 2, 4, 0)
```

Asymmetric scaling returns a kite as a Polygon:

```
>>> RegularPolygon((0, 0), 1, 4).scale(2, 1)
Polygon(Point(2, 0), Point(0, 1), Point(-2, 0), Point(0, -1))
```


spin(angle)

Increment in place the virtual Polygon's rotation by ccw angle.
See also: rotate method which moves the center.

```
>>> r = Polygon(Point(0, 0), 1, n=3)
>>> r.vertices[0]
Point(1, 0)
>>> r.spin(pi/6)
>>> r.vertices[0]
Point(sqrt(3)/2, 1/2)
```


See also:

rotation (page 460)
rotate (page 460) Creates a copy of the RegularPolygon rotated about a Point property vertices

The vertices of the RegularPolygon.
Returns vertices (list) - Each vertex is a Point.

See also:

diofant.geometry.point. Point (page 412)

Examples

```
>>> rp = RegularPolygon(Point(0, 0), 5, 4)
>>> rp.vertices
[Point(5, 0), Point(0, 5), Point(-5, 0), Point(0, -5)]
```

class diofant.geometry.polygon.Triangle(*args, **kwargs)
A polygon with three vertices and three sides.

Parameters

- points (sequence of Points)
- keyword (asa, sas, or sss to specify sides/angles of the triangle)

Raises diofant.geometry.exceptions.GeometryError (page 412) - If the number of vertices is not equal to three, or one of the vertices is not a Point, or a valid keyword is not given.

See also:

diofant.geometry.point. Point (page 412), Polygon (page 449)

Examples

```
>>> Triangle(Point(0, 0), Point(4, 0), Point(4, 3))
Triangle(Point(0, 0), Point(4, 0), Point(4, 3))
```

Keywords sss, sas, or asa can be used to give the desired side lengths (in order) and interior angles (in degrees) that define the triangle:

```
>>> Triangle(sss=(3, 4, 5))
Triangle(Point(0, 0), Point(3, 0), Point(3, 4))
>> Triangle(asa=(30, 1, 30))
Triangle(Point(0, 0), Point(1, 0), Point(1/2, sqrt(3)/6))
>>> Triangle(sas=(1, 45, 2))
Triangle(Point(0, 0), Point(2, 0), Point(sqrt(2)/2, sqrt(2)/2))
```


property altitudes

The altitudes of the triangle.
An altitude of a triangle is a segment through a vertex, perpendicular to the opposite side, with length being the height of the vertex measured from the line containing the side.

Returns altitudes (dict) - The dictionary consists of keys which are vertices and values which are Segments.

See also:

diofant.geometry.point.Point (page 412), diofant.geometry.line.Segment. length (page 431)

Examples

```
>>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1)
>>> t = Triangle(p1, p2, p3)
>>> t.altitudes[p1]
Segment(Point(0, 0), Point(1/2, 1/2))
```


bisectors()

The angle bisectors of the triangle.
An angle bisector of a triangle is a straight line through a vertex which cuts the corresponding angle in half.

Returns bisectors (dict) - Each key is a vertex (Point) and each value is the corresponding bisector (Segment).

See also:

diofant.geometry.point.Point (page 412), diofant.geometry.line.Segment (page 430)

Examples

```
>>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1)
>>> t = Triangle(p1, p2, p3)
>> t.bisectors()[p2] == Segment(Point(0, sqrt(2) - 1), Point(1, 0))
True
```

property circumcenter
The circumcenter of the triangle
The circumcenter is the center of the circumcircle.

Returns circumcenter (Point)

See also:

diofant.geometry.point. Point (page 412)

Examples

```
>>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1)
>>> t = Triangle(p1, p2, p3)
>>> t.circumcenter
Point(1/2, 1/2)
```

property circumcircle
The circle which passes through the three vertices of the triangle.

Returns circumcircle (Circle)

See also:

diofant.geometry.ellipse. Circle (page 446)

Examples

```
>>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1)
>>> t = Triangle(p1, p2, p3)
>>> t.circumcircle
Circle(Point(1/2, 1/2), sqrt(2)/2)
```


property circumradius

The radius of the circumcircle of the triangle.
Returns circumradius (number of Basic instance)
See also:
diofant.geometry.ellipse.Circle.radius (page 448)

Examples

```
>>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, a)
>>> t = Triangle(p1, p2, p3)
>>> t.circumradius
sqrt(a**2/4 + 1/4)
```

property incenter
The center of the incircle.
The incircle is the circle which lies inside the triangle and touches all three sides.

Returns incenter (Point)

See also:

incircle (page 464), diofant.geometry.point. Point (page 412)

Examples

```
>>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1)
>>> t = Triangle(p1, p2, p3)
>>> t.incenter
Point(-sqrt(2)/2 + 1, -sqrt(2)/2 + 1)
```

property incircle
The incircle of the triangle.
The incircle is the circle which lies inside the triangle and touches all three sides.
Returns incircle (Circle)

See also:

diofant.geometry.ellipse.Circle (page 446)

Examples

```
>>> p1, p2, p3 = Point(0, 0), Point(2, 0), Point(0, 2)
>>> t = Triangle(p1, p2, p3)
>>> t.incircle
Circle(Point(-sqrt(2) + 2, -sqrt(2) + 2), -sqrt(2) + 2)
```

property inradius
The radius of the incircle.
Returns inradius (number of Basic instance)

See also:

incircle (page 464), diofant.geometry.ellipse. Circle.radius (page 448)

Examples

```
>>> p1, p2, p3 = Point(0, 0), Point(4, 0), Point(0, 3)
>>> t = Triangle(p1, p2, p3)
>>> t.inradius
1
```

is_equilateral()
Are all the sides the same length?
Returns is_equilateral (boolean)

See also:

diofant.geometry.entity.GeometryEntity.is_similar (page 407), RegularPolygon (page 455), is_isosceles (page 465), is_right (page 465), is_scalene (page 466)

Examples

```
>> tl = Triangle(Point(0, 0), Point(4, 0), Point(4, 3))
>>> tl.is_equilateral()
False
```

```
>>> t2 = Triangle(Point(0, 0), Point(10, 0), Point(5, 5*sqrt(3)))
>>> t2.is_equilateral()
True
```

is_isosceles()
Are two or more of the sides the same length?
Returns is_isosceles (boolean)

See also:

```
is_equilateral (page 465), is_right (page 465), is_scalene (page 466)
```


Examples

>>> t1 = Triangle(Point(0, 0), Point(4, 0), Point(2, 4))
>>> tl.is_isosceles()
True
is_right()
Is the triangle right-angled.

Returns is_right (boolean)

See also:

diofant.geometry. line.LinearEntity.is_perpendicular (page 420),
is_equilateral (page 465), is_isosceles (page 465), is_scalene (page 466)

Examples

```
>>> t1 = Triangle(Point(0, 0), Point(4, 0), Point(4, 3))
>>> tl.is_right()
True
```


is_scalene()

Are all the sides of the triangle of different lengths?
Returns is_scalene (boolean)

See also:

is_equilateral (page 465), is_isosceles (page 465), is_right (page 465)

Examples

```
>>> t1 = Triangle(Point(0, 0), Point(4, 0), Point(1, 4))
>>> t1.is_scalene()
True
```

is_similar(other)
Is another triangle similar to this one.
Two triangles are similar if one can be uniformly scaled to the other.

Parameters other (Triangle)

Returns is_similar (boolean)

See also:

diofant.geometry.entity.GeometryEntity.is_similar (page 407)

Examples

```
>>> tl = Triangle(Point(0, 0), Point(4, 0), Point(4, 3))
>>> t2 = Triangle(Point(0, 0), Point(-4, 0), Point(-4, -3))
>>> t1.is similar(t2)
True
```

```
>>> t2 = Triangle(Point(0, 0), Point(-4, 0), Point(-4, -4))
>>> t1.is_similar(t2)
False
```

property medial

The medial triangle of the triangle.
The triangle which is formed from the midpoints of the three sides.

Returns medial (Triangle)

See also:

diofant.geometry.line. Segment.midpoint (page 432)

Examples

```
>>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1)
>>> t = Triangle(p1, p2, p3)
>>> t.medial
Triangle(Point(1/2, 0), Point(1/2, 1/2), Point(0, 1/2))
```

property medians
The medians of the triangle.
A median of a triangle is a straight line through a vertex and the midpoint of the opposite side, and divides the triangle into two equal areas.

Returns medians (dict) - Each key is a vertex (Point) and each value is the median (Segment) at that point.

See also:

diofant.geometry.point.Point.midpoint (page 415), diofant.geometry. line. Segment.midpoint (page 432)

Examples

```
>>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1)
>>> t = Triangle(p1, p2, p3)
>>> t.medians[pl]
Segment(Point(0, 0), Point(1/2, 1/2))
```


property orthocenter

The orthocenter of the triangle.
The orthocenter is the intersection of the altitudes of a triangle. It may lie inside, outside or on the triangle.

Returns orthocenter (Point)

See also:

diofant.geometry.point. Point (page 412)

Examples

```
>>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1)
>>> t = Triangle(p1, p2, p3)
>>> t.orthocenter
Point(0, 0)
```


property vertices

The triangle's vertices
Returns vertices (tuple) - Each element in the tuple is a Point See also:
diofant.geometry.point. Point (page 412)

Examples

```
>>> t = Triangle(Point(0, 0), Point(4, 0), Point(4, 3))
>>> t.vertices
(Point(0, 0), Point(4, 0), Point(4, 3))
```


4.8 Integrals

The integrals module in Diofant implements methods to calculate definite and indefinite integrals of expressions.
Principal method in this module is integrate() (page 475)

- integrate (f, x) returns the indefinite integral $\int f d x$
- integrate($\mathrm{f},(\mathrm{x}, \mathrm{a}, \mathrm{b}))$ returns the definite integral $\int_{a}^{b} f d x$

4.8.1 Examples

Diofant can integrate a vast array of functions. It can integrate polynomial functions:

```
>>> init_printing(pretty_print=True, use_unicode=False,
... wrap líne=False, no glōbal=True)
>>> integrate(x**2 + x- + 1, x)
3 2
x x 
3 2
```

Rational functions:

```
>>> integrate(x/(x**2+2*x+1), x)
log(x + 1) + -----
    x + 1
```

Exponential-polynomial functions. These multiplicative combinations of polynomials and the functions exp, cos and sin can be integrated by hand using repeated integration by parts, which is an extremely tedious process. Happily, Diofant will deal with these integrals.

```
>>> integrate(x**2 * exp(x) * cos(x), x)
```



```
    2 2 2
```

even a few nonelementary integrals (in particular, some integrals involving the error function) can be evaluated:

```
>>> integrate(exp(-x**2)*erf(x), x)
\/ pi}*erf (x
-------------
    4
```


4.8.2 Integral Transforms

Diofant has special support for definite integrals, and integral transforms.
diofant.integrals.transforms.mellin_transform (f, x, s, **hints)
Compute the Mellin transform $F(s)$ of $f(x)$,

$$
F(s)=\int_{0}^{\infty} x^{s-1} f(x) \mathrm{d} x .
$$

For all "sensible" functions, this converges absolutely in a strip $a<\operatorname{Re}(s)<b$.
The Mellin transform is related via change of variables to the Fourier transform, and also to the (bilateral) Laplace transform.

This function returns (F, (a, b), cond) where F is the Mellin transform of $f,(a, b)$ is the fundamental strip (as above), and cond are auxiliary convergence conditions.
If the integral cannot be computed in closed form, this function returns an unevaluated MellinTransform (page 485) object.
For a description of possible hints, refer to the docstring of diofant.integrals. transforms.IntegralTransform.doit() (page 485). If noconds=False, then only F will be returned (i.e. not cond, and also not the strip (a, b)).

```
>>> from diofant.abc import s
>>> mellin_transform(exp(-x), x, s)
(gamma(s),-(0, oо), True)
```


See also:

inverse_mellin_transform (page 469), laplace_transform (page 470), fourier_transform (page 471), hankel_transform (page 473), inverse_hankel_transform (page 474)
diofant.integrals.transforms.inverse_mellin_transform (F, s, x, strip, **hints)
Compute the inverse Mellin transform of $F(s)$ over the fundamental strip given by strip=(a, b).
This can be defined as

$$
f(x)=\int_{c-i \infty}^{c+i \infty} x^{-s} F(s) \mathrm{d} s,
$$

for any c in the fundamental strip. Under certain regularity conditions on F and/or f, this recovers f from its Mellin transform F (and vice versa), for positive real x.

One of a or b may be passed as None; a suitable c will be inferred.
If the integral cannot be computed in closed form, this function returns an unevaluated InverseMellinTransform (page 485) object.
Note that this function will assume x to be positive and real, regardless of the diofant assumptions!

For a description of possible hints, refer to the docstring of diofant.integrals. transforms.IntegralTransform.doit() (page 485).

```
>>> from diofant.abc import s
>>> inverse_mellin_transform(gamma(s), s, x, (0, oo))
E**(-x)
```

The fundamental strip matters:

```
>>> f = 1/(s**2 - 1)
>>> inverse_mellin_transform(f, s, x, (-00, -1))
(x/2 - 1/(2*}x))*Heāviside(x - 1)
>>> inverse_mellin transform(f, s, x, (-1, 1))
-x*Heaviside(-x + \overline{1})/2 - Heaviside(x - 1)/(2*x)
>>> inverse mellin transform(f, s, x, (1, oo))
(-x/2 + 1/(\overline{2}*x))*H\overline{e}aviside(-x + 1)
```


See also:

mellin_transform (page 469), hankel_transform (page 473), inverse_hankel_transform (page 474)
diofant.integrals.transforms.laplace_transform ($f, t, s, * * h i n t s)$
Compute the Laplace Transform $F(s)$ of $f(t)$,

$$
F(s)=\int_{0}^{\infty} e^{-s t} f(t) \mathrm{d} t .
$$

For all "sensible" functions, this converges absolutely in a half plane $a<\operatorname{Re}(s)$.
This function returns (F, a, cond) where F is the Laplace transform of $\mathrm{f}, \operatorname{Re}(s)>a$ is the half-plane of convergence, and cond are auxiliary convergence conditions.
If the integral cannot be computed in closed form, this function returns an unevaluated LaplaceTransform (page 485) object.
For a description of possible hints, refer to the docstring of diofant.integrals. transforms.IntegralTransform.doit() (page 485). If noconds=True, only F will be returned (i.e. not cond, and also not the plane a).

```
>>> from diofant.abc import s
>>> laplace_transform(t**a, t, s)
(s**(-a)*gamma(a + 1)/s, 0, -re(a) < 1)
```


See also:

inverse_laplace_transform (page 470), mellin_transform (page 469), fourier_transform (page 471), hankel_transform (page 473), inverse_hänkel_transform (page 474)
diofant.integrals.transforms.inverse_laplace_transform(F, s, t, plane=None, **hints)
Compute the inverse Laplace transform of $F(s)$, defined as

$$
f(t)=\int_{c-i \infty}^{c+i \infty} e^{s t} F(s) \mathrm{d} s
$$

for c so large that $F(s)$ has no singularites in the half-plane $\operatorname{Re}(s)>c-\epsilon$.
The plane can be specified by argument plane, but will be inferred if passed as None.
Under certain regularity conditions, this recovers $f(t)$ from its Laplace Transform $F(s)$, for non-negative t, and vice versa.
If the integral cannot be computed in closed form, this function returns an unevaluated InverseLaplaceTransform (page 485) object.
Note that this function will always assume t to be real, regardless of the diofant assumption on t.

For a description of possible hints, refer to the docstring of diofant.integrals. transforms. IntegralTransform.doit() (page 485).

```
>>> from diofant.abc import s
>>> a = Symbol('a', positive=True)
>>> inverse_laplace_transform(exp(-a*s)/s, s, t)
Heaviside(-\overline{a}+ t)
```


See also:

laplace_transform (page 470), hankel_transform (page 473), inverse_hankel_transform (page 474)
diofant.integrals.transforms.fourier_transform ($f, x, k, * *$ hints $)$
Compute the unitary, ordinary-frequency Fourier transform of f, defined as

$$
F(k)=\int_{-\infty}^{\infty} f(x) e^{-2 \pi i x k} \mathrm{~d} x
$$

If the transform cannot be computed in closed form, this function returns an unevaluated FourierTransform (page 486) object.

For a description of possible hints, refer to the docstring of diofant.integrals. transforms.IntegralTransform.doit() (page 485). Note that for this transform, by default noconds=True.

```
>>> fourier transform(exp(-x**2), x, k)
E**(-pi**2*\overline{k}**2)*sqrt(pi)
>> fourier transform(exp(-x**2), x, k, noconds=False)
(E**(-pi**2*k**2)*sqrt(pi), True)
```


See also:

inverse_fourier_transform (page 471), sine_transform (page 471), inverse_sine_trans̄form (page 472), cosine_transform (page 472), inverse_cosine_transform (page 473), hanke \bar{l} transform (page 473), inverse_hankel_transform (page 474), mellin_transform (page 469), laplace_transform (page 470)
diofant.integrals.transforms.inverse_fourier_transform($F, k, x, * * h i n t s)$
Compute the unitary, ordinary-frequency inverse Fourier transform of F, defined as

$$
f(x)=\int_{-\infty}^{\infty} F(k) e^{2 \pi i x k} \mathrm{~d} k .
$$

If the transform cannot be computed in closed form, this function returns an unevaluated InverseFourierTransform (page 486) object.
For a description of possible hints, refer to the docstring of diofant.integrals. transforms.IntegralTransform.doit() (page 485). Note that for this transform, by default noconds=True.

```
>>> inverse_fourier transform(sqrt(pi)*exp(-(pi*k)**2), k, x)
E**(-x**2)
>>> inverse_fourier_transform(sqrt(pi)*exp(-(pi*k)**2), k, x, noconds=False)
(E**(-x**2),
```


See also:

fourier_transform (page 471), sine_transform (page 471), inverse_sine_transform (page 472), cosine_transform (page 472), inverse_cosine_transform (page 473), hankel_transform (page 473), inverse_hankel_transform (page 474), mellin_transform (page 469), laplace_transform (page 470)
diofant.integrals.transforms.sine_transform ($f, x, k, * * h i n t s$)
Compute the unitary, ordinary-frequency sine transform of f, defined as

$$
F(k)=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f(x) \sin (2 \pi x k) \mathrm{d} x
$$

If the transform cannot be computed in closed form, this function returns an unevaluated SineTransform (page 486) object.
For a description of possible hints, refer to the docstring of diofant.integrals. transforms.IntegralTransform.doit() (page 485). Note that for this transform, by default noconds=True.

```
>>> sine transform(x*exp(-a*x**2), x, k)
sqrt(2)*\overline{\textrm{E}}**(-k**2/(4*a))*k/(4*a**(3/2))
>>> sine_transform(x**(-a), x, k)
2**(-a + 1/2)*k**(a - 1)*gamma(-a/2 + 1)/gamma(a/2 + 1/2)
```


See also:

fourier_transform (page 471), inverse_fourier_transform (page 471), inverse_sine_transform (page 472), cosīne_trans̄form (page 472), inverse_cosine_transform (page 473), hankel_transform (page 473), inverse_hankel_transform (page 474), mel̆lin_transform (page 469), laplace_transform (page 470)
diofant.integrals.transforms.inverse_sine_transform ($F, k, x, * * h i n t s$)
Compute the unitary, ordinary-frequency inverse sine transform of F, defined as

$$
f(x)=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} F(k) \sin (2 \pi x k) \mathrm{d} k .
$$

If the transform cannot be computed in closed form, this function returns an unevaluated InverseSineTransform (page 486) object.
For a description of possible hints, refer to the docstring of diofant.integrals. transforms.IntegralTransform.doit() (page 485). Note that for this transform, by default noconds=True.

```
>>> inverse_sine_transform(2**((1-2*a)/2)*k**(a - 1) *
# - gamma(-a/2 + 1)/gamma((a+1)/2), k, x)
x**(-a)
>>> inverse_sine_transform(sqrt(2)*k*exp(-k**2/(4*a))/(4*sqrt(a)**3), k, x)
E**(-a*x**2)*x
```


See also:

fourier_transform (page 471), inverse_fourier_transform (page 471), sine_transform (page 471), cosine_transform (page 472), inverse_cosine_transform (page 473), hankel_transform (page 473), inverse_hankel_transform (page 474), meไ̄lin_transform (page 469), laplac̄e_trans form (page 470)
diofant.integrals.transforms.cosine_transform ($f, x, k, * * h i n t s$)
Compute the unitary, ordinary-frequency cosine transform of f, defined as

$$
F(k)=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f(x) \cos (2 \pi x k) \mathrm{d} x .
$$

If the transform cannot be computed in closed form, this function returns an unevaluated CosineTransform (page 486) object.

For a description of possible hints, refer to the docstring of diofant.integrals. transforms.IntegralTransform.doit() (page 485). Note that for this transform, by default noconds=True.

```
>>> cosine transform(exp(-a*x), x, k)
sqrt(2)*a/(\mp@code{sqrt(pi)*(a**2 + k**2))}
>>> cosine_transform(exp(-a*sqrt(x))*cos(a*sqrt(x)), x, k)
E**(-a**2/(2*k))*a/(2*k** (3/2))
```


See also:

fourier_transform (page 471), inverse_fourier_transform (page 471), sine_transform (page 471), inverse_sine_transform (page 472), inverse_cosine_transform (page 473), hankel_transform (page 473), inverse_hankel_transform (page 474), mellin_transform (page 469), laplace trans form (page 470)
diofant.integrals.transforms.inverse_cosine_transform (F, k, x, **hints)
Compute the unitary, ordinary-frequency inverse cosine transform of F, defined as

$$
f(x)=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} F(k) \cos (2 \pi x k) \mathrm{d} k .
$$

If the transform cannot be computed in closed form, this function returns an unevaluated InverseCosineTransform (page 486) object.
For a description of possible hints, refer to the docstring of diofant.integrals. transforms.IntegralTransform.doit() (page 485). Note that for this transform, by default noconds=True.

```
>>> inverse_cosine_transform(sqrt(2)*a/(sqrt(pi)*(a**2 + k**2)), k, x)
E**(-a*x)
>>> inverse cosine transform(1/sqrt(k), k, x)
1/sqrt(x)
```


See also:

fourier_transform (page 471), inverse_fourier_transform (page 471), sine_transform (page 471), inverse_sine_transform (page 472), cosine_transform (page 472), hankel transform (page 473), inverse hankel transform (page 474), mellin transform (page 469), laplace transform (page 470)
diofant.integrals.transforms.hankel_transform (f,r, $k, n u$, **hints)
Compute the Hankel transform of f, defined as

$$
F_{\nu}(k)=\int_{0}^{\infty} f(r) J_{\nu}(k r) r \mathrm{~d} r .
$$

If the transform cannot be computed in closed form, this function returns an unevaluated HankelTransform (page 486) object.
For a description of possible hints, refer to the docstring of diofant.integrals. transforms.IntegralTransform.doit() (page 485). Note that for this transform, by default noconds=True.

```
>>> from diofant.abc import r, nu, k
```

```
>>> ht = hankel_transform(1/r**m, r, k, nu)
>>> ht
2*2**(-m)*k**(m - 2)*gamma(-m/2 + nu/2 + 1)/gamma(m/2 + nu/2)
```

```
>>> inverse_hankel_transform(ht, k, r, nu)
r**(-m)
```

```
>>> ht = hankel_transform(exp(-a*r), r, k, 0)
>>> ht
a/(k**3*(a**2/k**2 + 1)**(3/2))
```

```
>>> inverse_hankel_transform(ht, k, r, 0)
```

E** (-a*r)

See also:

fourier_transform (page 471), inverse_fourier_transform (page 471), sine_transform (page 471), inverse_sine_transform (page 472), cosine_transform (page 472), inverse_cosine_transform (page 473), inverse_hankel_transform (page 474), mellin_transform (page 469), laplace_transform (page 470)
diofant.integrals.transforms.inverse_hankel_transform($F, k, r, n u$, **hints)
Compute the inverse Hankel transform of F defined as

$$
f(r)=\int_{0}^{\infty} F_{\nu}(k) J_{\nu}(k r) k \mathrm{~d} k
$$

If the transform cannot be computed in closed form, this function returns an unevaluated InverseHankelTransform (page 486) object.

For a description of possible hints, refer to the docstring of diofant.integrals. transforms.IntegralTransform.doit() (page 485). Note that for this transform, by default noconds=True.

```
>>> from diofant.abc import r, nu, k
>> ht = hankel_transform(1/r**m, r, k, nu)
>>> ht
2*2**(-m)*k**(m - 2)*gamma(-m/2 + nu/2 + 1)/gamma(m/2 + nu/2)
```

```
>>> inverse_hankel_transform(ht, k, r, nu)
```

$r^{* *}(-m)$

```
>>> ht = hankel_transform(exp(-a*r), r, k, 0)
>>> ht
a/(k**3*(a**2/k**2 + 1)**(3/2))
```

```
>>> inverse_hankel_transform(ht, k, r, 0)
E**(-a*r)
```


See also:

fourier_transform (page 471), inverse_fourier_transform (page 471), sine_trānsform (page 471), inverse_sine_transform (page 472), cosine_transform (page 472), inverse_cosine_transform (page 473), hankel transform (page 473), mellin_transform (page 469), laplace_transform (page 470)

4.8.3 Internals

There is a general method for calculating antiderivatives of elementary functions, called the Risch algorithm. The Risch algorithm is a decision procedure that can determine whether an elementary solution exists, and in that case calculate it. It can be extended to handle many nonelementary functions in addition to the elementary ones.
Diofant currently uses a simplified version of the Risch algorithm, called the Risch-Norman algorithm. This algorithm is much faster, but may fail to find an antiderivative, although it is still very powerful. Diofant also uses pattern matching and heuristics to speed up evaluation of some types of integrals, e.g. polynomials.

For non-elementary definite integrals, Diofant uses so-called Meijer G-functions. Details are described here (page 1007).

4.8.4 API reference

diofant.integrals.integrals.integrate(f, var, ...)
Compute definite or indefinite integral of one or more variables using Risch-Norman algorithm and table lookup. This procedure is able to handle elementary algebraic and transcendental functions and also a huge class of special functions, including Airy, Bessel, Whittaker and Lambert.
var can be:

- a symbol - indefinite integration
- a tuple (symbol, a) - indefinite integration with result given with a replacing symbol
- a tuple (symbol, a, b) - definite integration

Several variables can be specified, in which case the result is multiple integration. (If var is omitted and the integrand is univariate, the indefinite integral in that variable will be performed.)
Indefinite integrals are returned without terms that are independent of the integration variables. (see examples)
Definite improper integrals often entail delicate convergence conditions. Pass conds='piecewise', 'separate' or 'none' to have these returned, respectively, as a Piecewise function, as a separate result (i.e. result will be a tuple), or not at all (default is 'piecewise').

Strategy

Diofant uses various approaches to definite integration. One method is to find an antiderivative for the integrand, and then use the fundamental theorem of calculus. Various functions are implemented to integrate polynomial, rational and trigonometric functions, and integrands containing DiracDelta terms.
Diofant also implements the part of the Risch algorithm, which is a decision procedure for integrating elementary functions, i.e., the algorithm can either find an elementary antiderivative, or prove that one does not exist. There is also a (very successful, albeit somewhat slow) general implementation of the heuristic Risch algorithm. This algorithm will eventually be phased out as more of the full Risch algorithm is implemented. See the docstring of Integral._eval_integral() for more details on computing the antiderivative using algebraic methods.

The option risch=True can be used to use only the (full) Risch algorithm. This is useful if you want to know if an elementary function has an elementary antiderivative. If the indefinite Integral returned by this function is an instance of NonElementaryIntegral, that means that the Risch algorithm has proven that integral to be non-elementary. Note that by default, additional methods (such as the Meijer G method outlined below) are tried on these integrals, as they may be expressible in terms of special functions, so if you only care about elementary answers, use risch=True. Also note that an unevaluated Integral returned by this function is not necessarily a NonElementaryIntegral, even with risch=True, as it may just be an indication that the particular part of the Risch algorithm needed to integrate that function is not yet implemented.
Another family of strategies comes from re-writing the integrand in terms of so-called Meijer G-functions. Indefinite integrals of a single G-function can always be computed, and the definite integral of a product of two G-functions can be computed from zero to infinity. Various strategies are implemented to rewrite integrands as G-functions, and use this information to compute integrals (see the meijerint module).
In general, the algebraic methods work best for computing antiderivatives of (possibly complicated) combinations of elementary functions. The G-function methods work best for computing definite integrals from zero to infinity of moderately complicated combinations of special functions, or indefinite integrals of very simple combinations of special functions.

The strategy employed by the integration code is as follows:

- If computing a definite integral, and both limits are real, and at least one limit is +oo, try the G-function method of definite integration first.
- Try to find an antiderivative, using all available methods, ordered by performance (that is try fastest method first, slowest last; in particular polynomial integration is tried first, Meijer G-functions second to last, and heuristic Risch last).
- If still not successful, try G-functions irrespective of the limits.

The option meijerg=True, False, None can be used to, respectively: always use Gfunction methods and no others, never use G-function methods, or use all available methods (in order as described above). It defaults to None.

Examples

```
>>> integrate(x*y, x)
x**2*y/2
```

```
>>> integrate(log(x), x)
x*log(x) - x
```

>>> integrate(log(x), (x, 1, a))
$a * \log (a)-a+1$

```
>>> integrate(x)
x**2/2
```

Terms that are independent of x are dropped by indefinite integration:

```
>>> integrate(sqrt(1 + x), (x, 0, x))
2*(x + 1)**(3/2)/3 - 2/3
>>> integrate(sqrt(1 + x), x)
2*(x+1)**(3/2)/3
```

```
>>> integrate(x*y)
Traceback (most recent call last):
ValueError: specify integration variables to integrate x*y
```

Note that integrate(x) syntax is meant only for convenience in interactive sessions and should be avoided in library code.

```
>>> integrate(x**a*exp(-x), (x, 0, oo)) # same as conds='piecewise'
Piecewise((gamma(a + 1), -re(a) < 1),
    (Integral(E**(-x)*x**a, (x, 0, oo)), true))
```

```
>>> integrate(x**a*exp(-x), (x, 0, oo), conds='none')
gamma(a + 1)
```

```
>>> integrate(x**a*exp(-x), (x, 0, oo), conds='separate')
(gamma(a + 1), -re(a)< 1)
```


See also:

diofant.integrals.integrals.Integral (page 481), diofant.integrals. integrals.Integral.doit (page 482)
diofant.integrals.integrals.line_integrate(field, Curve, variables)
Compute the line integral.

Examples

```
>>> C = Curve([E**t + 1, E**t - 1], (t, 0, ln(2)))
>>> line_integrate(x + y, C, [x, y])
3*sqrt(2)
```


See also:

diofant.integrals.integrals.integrate (page 475), diofant.integrals. integrals.Integral (page 481)
diofant.integrals.deltafunctions.deltaintegrate (f, x)
The idea for integration is the following:

- If we are dealing with a DiracDelta expression, i.e. DiracDelta(g(x)), we try to simplify it.
If we could simplify it, then we integrate the resulting expression. We already know we can integrate a simplified expression, because only simple DiracDelta expressions are involved.

If we couldn't simplify it, there are two cases:

1) The expression is a simple expression: we return the integral, taking care if we are dealing with a Derivative or with a proper DiracDelta.
2) The expression is not simple (i.e. DiracDelta($\cos (\mathrm{x})$)): we can do nothing at all.

- If the node is a multiplication node having a DiracDelta term:

First we expand it.
If the expansion did work, then we try to integrate the expansion.
If not, we try to extract a simple DiracDelta term, then we have two cases:

1) We have a simple DiracDelta term, so we return the integral.
2) We didn't have a simple term, but we do have an expression with simplified DiracDelta terms, so we integrate this expression.

Examples

```
>>> deltaintegrate(x*sin(x)*\operatorname{cos}(x)*DiracDelta(x - 1), x)
sin(1)*cos(1)*Heaviside(x - 1)
>>> deltaintegrate(y**2*DiracDelta(x - z)*DiracDelta(y - z), y)
z**2*DiracDelta(x - z)*Heaviside(y - z)
```


See also:

diofant.functions.special.delta_functions.DiracDelta (page 331), diofant. integrals.integrals.Integral (page 481)
diofant.integrals.rationaltools.ratint ($f, x, * *$ flags $)$
Performs indefinite integration of rational functions.
Given a field K and a rational function $f=p / q$, where p and q are polynomials in $K[x]$, returns a function g such that $f=g^{\prime}$.

```
>>> ratint(36/(x**5 - 2*x**4 - 2*x**3 + 4*x**2 + x - 2), x)
(12*x + 6)/(x**2 - 1) + 4*log(x - 2) - 4*log(x + 1)
```


References

- [Bro05], pp. 35-70

See also:

diofant.integrals.integrals.Integral.doit (page 482), ratint_logpart (page 478), ratint_ratpart (page 479)
diofant.integrals.rationaltools.ratint_logpart($f, g, x, t=$ None $)$
Lazard-Rioboo-Trager algorithm.
Given a field K and polynomials f and g in $K[x]$, such that f and g are coprime, $\operatorname{deg}(f)<$ $\operatorname{deg}(\mathrm{g})$ and g is square-free, returns a list of tuples (s_i, q_i) of polynomials, for $\mathrm{i}=1 . . \mathrm{n}$, such that s_i in $K[t, x]$ and $q_{-} i$ in $K[t]$, and:

```
d f
dx g dx /__, /__,
    i=1..n a | q_i(a) = 0
```


Examples

```
>>> ratint_logpart(1, x**2 + x + 1, x)
[(Poly(x + - 3* t/2 + 1/2, x, domain='QQ[_t]'),
    Poly(3* t**\overline{2}+1, t, domain='ZZ'))]
>>> ratint_logpart(1\overline{2}, x**2 - x - 2, x)
[(Poly(x - 3* t/8 - 1/2, x, domain='QQ[_t]'),
    Poly(_t**2 - 16, _t, domain='ZZ'))]
```


See also:

ratint (page 478), ratint_ratpart (page 479)
diofant.integrals.rationaltools.ratint_ratpart (f, g, x)
Horowitz-Ostrogradsky algorithm.
Given a field K and polynomials f and g in $K[x]$, such that f and g are coprime and $\operatorname{deg}(f)$ $<\operatorname{deg}(g)$, returns fractions A and B in $K(x)$, such that $f / g=A^{\prime}+B$ and B has square-free denominator.

Examples

```
>>> ratint_ratpart(1, x + 1, x)
(0, 1/(x + 1))
>>> ratint ratpart(1, x**2 + y**2, x)
(0, 1/(x**2 + y**2))
>>> ratint_ratpart(36, x**5 - 2*x**4 - 2*x**3 + 4*x**2 + x - 2, x)
((12*x + 6)/(x**2 - 1), 12/(x**2 - x - 2))
```


See also:

ratint (page 478), ratint_logpart (page 478)
diofant.integrals.heurisch.components (f, x)
Returns a set of all functional components of the given expression which includes symbols, function applications and compositions and non-integer powers. Fractional powers are collected with with minimal, positive exponents.

```
>>> components(sin(x)*\operatorname{cos(x)**2, x)}
{x, sin(x), cos(x)}
```


See also:

heurisch (page 479)
diofant.integrals.heurisch.heurisch (f, x, rewrite $=$ False, hints $=$ None, mappings=None, retries=3, degree_offset=0, unnecessary_permutations=None)
Compute indefinite integral using heuristic Risch algorithm.
This is a heuristic approach to indefinite integration in finite terms using the extended heuristic (parallel) Risch algorithm, based on Manuel Bronstein's "Poor Man's Integrator".
The algorithm supports various classes of functions including transcendental elementary or special functions like Airy, Bessel, Whittaker and Lambert.
Note that this algorithm is not a decision procedure. If it isn't able to compute the antiderivative for a given function, then this is not a proof that such a functions does not
exist. One should use recursive Risch algorithm in such case. It's an open question if this algorithm can be made a full decision procedure.
This is an internal integrator procedure. You should use toplevel 'integrate' function in most cases, as this procedure needs some preprocessing steps and otherwise may fail.

Parameters

- f (Expr) - expression
- \mathbf{x} (Symbol) - variable
- rewrite (Boolean, optional) - force rewrite ' f ' in terms of 'tan' and 'tanh', default False.
- hints (None or list) - a list of functions that may appear in anti-derivate. If None (default) - no suggestions at all, if empty list - try to figure out.

Examples

```
>>> heurisch(y*tan(x), x)
y*log(tan(x)**2 + 1)/2
```


References

- [Bro]

See also:

diofant.integrals.integrals.Integral.doit (page 482), diofant.integrals. integrals.Integral (page 481), components (page 479)
diofant.integrals.heurisch.heurisch_wrapper (f, x, rewrite $=$ False, hints=None, mappings=None, retries $=3$, degree_offset=0, unnecessary_permutations=None)
A wrapper around the heurisch integration algorithm.
This method takes the result from heurisch and checks for poles in the denominator. For each of these poles, the integral is reevaluated, and the final integration result is given in terms of a Piecewise.

Examples

```
>>> heurisch(cos(n*x), x)
sin(n*x)/n
>>> heurisch_wrapper(cos(n*x), x)
Piecewise((x, Eq(n, 0)), (sin(n*x)/n, true))
```


See also:

heurisch (page 479)
diofant.integrals.trigonometry.trigintegrate (f, x, conds='piecewise')
Integrate $\mathrm{f}=\mathrm{Mul}$ (trig) over x

```
>>> trigintegrate(sin(x)*\operatorname{cos(x), x)}
sin(x)**2/2
```

>>> trigintegrate $\left(\sin (x)^{* *} 2, x\right)$
$x / 2-\sin (x)^{*} \cos (x) / 2$

```
>>> trigintegrate(tan(x)*sec(x), x)
```

$1 / \cos (x)$

```
>>> trigintegrate(sin(x)*tan(x), x)
-log(\operatorname{sin}(x) - 1)/2 + log(sin(x) + 1)/2 - sin(x)
```


References

- https://en.wikibooks.org/wiki/Calculus/Integration_techniques

See also:

diofant.integrals.integrals.Integral.doit (page 482), diofant.integrals. integrals.Integral (page 481)
The class Integral represents an unevaluated integral and has some methods that help in the integration of an expression.
class diofant.integrals.integrals.Integral(function, *symbols, **assumptions)
Represents unevaluated integral.

is_commutative

Returns whether all the free symbols in the integral are commutative.
as_sum (n, method='midpoint')
Approximates the definite integral by a sum.
method ... one of: left, right, midpoint, trapezoid
These are all basically the rectangle method [1], the only difference is where the function value is taken in each interval to define the rectangle.

References

- https://en.wikipedia.org/wiki/Rectangle_method

Examples

```
>>> e = Integral(sin(x), (x, 3, 7))
>>> e
Integral(sin(x), (x, 3, 7))
```

For demonstration purposes, this interval will only be split into 2 regions, bounded by $[3,5]$ and $[5,7]$.
The left-hand rule uses function evaluations at the left of each interval:

```
>>> e.as_sum(2, 'left')
2*sin(5)}+2*\operatorname{sin}(3
```

The midpoint rule uses evaluations at the center of each interval:

```
>>> e.as_sum(2, 'midpoint')
2*sin(4)
```

The right-hand rule uses function evaluations at the right of each interval:

```
>>> e.as_sum(2, 'right')
2*sin(5) + 2*sin(7)
```

The trapezoid rule uses function evaluations on both sides of the intervals. This is equivalent to taking the average of the left and right hand rule results:

```
>>> e.as_sum(2, 'trapezoid')
2*sin(5)}
>>> (e.as_sum(2, 'left') + e.as_sum(2, 'right'))/2 ==
True
```

All but the trapexoid method may be used when dealing with a function with a discontinuity. Here, the discontinuity at $\mathrm{x}=0$ can be avoided by using the midpoint or right-hand method:

```
>>> e = Integral(1/sqrt(x), (x, 0, 1))
>>> e.as_sum(5).evalf(4)
1.730
>>> e.as_sum(10).evalf(4)
1.809
>>> e.doit().evalf(4) # the actual value is 2
2.000
```

The left- or trapezoid method will encounter the discontinuity and return oo:

```
>>> e.as_sum(5, 'left')
00
>>> e.as_sum(5, 'trapezoid')
OO
```


See also:

diofant.integrals.integrals.Integral.doit (page 482) Perform the integration using any hints
doit (**hints)
Perform the integration using any hints given.

Examples

```
>>> from diofant.abc import i
>>> Integral(x**i, (i, 1, 3)).doit()
Piecewise((2, Eq(log(x), 0)), (x**3/log(x) - x/log(x), true))
```


See also:

diofant.integrals.trigonometry.trigintegrate (page 480), diofant. integrals.heurisch.heurisch (page 479), diofant.integrals.rationaltools. ratint (page 478)
diofant.integrals.integrals.Integral.as_sum (page 481) Approximate the integral using a sum

property free_symbols

This method returns the symbols that will exist when the integral is evaluated. This is useful if one is trying to determine whether an integral depends on a certain symbol or not.

Examples

>>> Integral($\mathrm{x}, \mathrm{(x,y,1)).free} \mathrm{_} \mathrm{symbols}$
\{y\}

See also:

diofant. concrete.expr_with_limits.ExprWithLimits.function (page 275), diofant. concrete.expr_with_limits.ExprWithLimits.limits (page 276), diofant.concrete.expr_with_limits.ExprWithLimits.variables (page 276)
transform(x, u)
Performs a change of variables from x to u using the relationship given by x and u which will define the transformations f and F (which are inverses of each other) as follows:

1) If x is a Symbol (which is a variable of integration) then u will be interpreted as some function, $f(u)$, with inverse $F(u)$. This, in effect, just makes the substitution of x with $f(x)$.
2) If u is a Symbol then x will be interpreted as some function, $\mathrm{F}(\mathrm{x})$, with inverse $f(u)$. This is commonly referred to as u-substitution.
Once f and F have been identified, the transformation is made as follows:

$$
\int_{a}^{b} x \mathrm{~d} x \rightarrow \int_{F(a)}^{F(b)} f(x) \frac{\mathrm{d}}{\mathrm{~d} x}
$$

where $F(x)$ is the inverse of $f(x)$ and the limits and integrand have been corrected so as to retain the same value after integration.

Notes

The mappings, $\mathrm{F}(\mathrm{x})$ or $\mathrm{f}(\mathrm{u})$, must lead to a unique integral. Linear or rational linear expression, $2 * x, 1 / x$ and $\operatorname{sqrt}(x)$, will always work; quadratic expressions like $x * * 2-1$ are acceptable as long as the resulting integrand does not depend on the sign of the solutions (see examples).
The integral will be returned unchanged if x is not a variable of integration.
x must be (or contain) only one of the integration variables. If u has more than one free symbol then it should be sent as a tuple (u, uvar) where uvar identifies which variable is replacing the integration variable. XXX can it contain another integration variable?

Examples

```
>>> from diofant.abc import u
```

>>> $i=\operatorname{Integral}\left(x^{*} \cos \left(x^{* *} 2-1\right),(x, 0,1)\right)$
transform can change the variable of integration

```
>>> i.transform(x, u)
Integral(u*\operatorname{cos(u**2 - 1), (u, 0, 1))}
```

transform can perform u-substitution as long as a unique integrand is obtained:

```
>>> i.transform(x**2 - 1, u)
Integral(cos(u)/2, (u, -1, 0))
```

This attempt fails because $x=+/$-sqrt $(u+1)$ and the sign does not cancel out of the integrand:

```
>>> Integral(cos(x**2 - 1), (x, 0, 1)).transform(x**2 - 1, u)
Traceback (most recent call last):
ValueError:
The mapping between F(x) and f(u) did not give a unique integrand.
```

transform can do a substitution. Here, the previous result is transformed back into the original expression using " u-substitution":

```
>>> ui =
>>> _.trañsform(sqrt(u + 1), x) == i
True
```

We can accomplish the same with a regular substitution:

```
>>> ui.transform(u, x**2 - 1) == i
True
```

If the x does not contain a symbol of integration then the integral will be returned unchanged. Integral i does not have an integration variable a so no change is made:

```
>>> i.transform(a, x) == i
True
```

When u has more than one free symbol the symbol that is replacing x must be identified by passing u as a tuple:

```
>>> Integral(x, (x, 0, 1)).transform(x, (u + a, u))
Integral(a + u, (u, -a, -a + 1))
>>> Integral(x, (x, 0, 1)).transform(x, (u + a, a))
Integral(a + u, (a, -u, -u + 1))
```


See also:

diofant. concrete.expr_with_limits.ExprWithLimits.variables (page 276) Lists the integration variables
diofant. concrete.expr_with_limits.ExprWithLimits.as_dummy (page 275) Replace integration variables with dummy ones
class diofant.integrals.transforms.IntegralTransform(*args)
Base class for integral transforms.
This class represents unevaluated transforms.
To implement a concrete transform, derive from this class and implement the compute transform(f, $x, s, * *$ hints) and as integral(f, $x, s)$ functions. If the transform cannot be computed, raise IntegralTransformError.

Also set cls._name.
Implement self._collapse_extra if your function returns more than just a number and possibly a convergence condition.
doit (**hints)
Try to evaluate the transform in closed form.
This general function handles linearity, but apart from that leaves pretty much everything to _compute_transform.
Standard hints are the following:

- simplify: whether or not to simplify the result
- noconds: if True, don't return convergence conditions
- needeval: if True, raise IntegralTransformError instead of returning IntegralTransform objects
The default values of these hints depend on the concrete transform, usually the default is (simplify, noconds, needeval) = (True, False, False).
property free_symbols
This method returns the symbols that will exist when the transform is evaluated.
property function
The function to be transformed.
property function_variable
The dependent variable of the function to be transformed.
property transform_variable
The independent transform variable.
class diofant.integrals.transforms.MellinTransform(*args)
Class representing unevaluated Mellin transforms.
See also:
IntegralTransform (page 484), mellin transform (page 469)
class diofant.integrals.transforms.InverseMellinTransform(*args)
Class representing unevaluated inverse Mellin transforms.

See also:

IntegralTransform (page 484), inverse_mellin_transform (page 469)
class diofant.integrals.transforms.LaplaceTransform(*args)
Class representing unevaluated Laplace transforms.

See also:

IntegralTransform (page 484), laplace_transform (page 470)
class diofant.integrals.transforms.InverseLaplaceTransform(*args)
Class representing unevaluated inverse Laplace transforms.

See also:

IntegralTransform (page 484), inverse_laplace_transform (page 470)
class diofant.integrals.transforms.FourierTransform(*args)
Class representing unevaluated Fourier transforms.
See also:
IntegralTransform (page 484), fourier_transform (page 471)
class diofant.integrals.transforms.InverseFourierTransform(*args)
Class representing unevaluated inverse Fourier transforms.

See also:

IntegralTransform (page 484), inverse_fourier_transform (page 471)
class diofant.integrals.transforms.SineTransform(*args)
Class representing unevaluated sine transforms.

See also:

IntegralTransform (page 484), sine_transform (page 471)
class diofant.integrals.transforms.InverseSineTransform(*args)
Class representing unevaluated inverse sine transforms.

See also:

IntegralTransform (page 484), inverse_sine_transform (page 472)
class diofant.integrals.transforms.CosineTransform(*args)
Class representing unevaluated cosine transforms.

See also:

IntegralTransform (page 484), cosine_transform (page 472)
class diofant.integrals.transforms.InverseCosineTransform(*args)
Class representing unevaluated inverse cosine transforms.

See also:

IntegralTransform (page 484), inverse_cosine_transform (page 473)
class diofant.integrals.transforms.HankelTransform(*args)
Class representing unevaluated Hankel transforms.
See also:
IntegralTransform (page 484), hankel_transform (page 473)
class diofant.integrals.transforms.InverseHankelTransform(*args)
Class representing unevaluated inverse Hankel transforms.

See also:

IntegralTransform (page 484), inverse_hankel_transform (page 474)

4.8.5 Numeric Integrals

Diofant has functions to calculate points and weights for Gaussian quadrature of any order and any precision:
diofant.integrals.quadrature.gauss_legendre(n, n_{-}digits)
Computes the Gauss-Legendre quadrature points and weights.
The Gauss-Legendre quadrature approximates the integral:

$$
\int_{-1}^{1} f(x) d x \approx \sum_{i=1}^{n} w_{i} f\left(x_{i}\right)
$$

The nodes x_{i} of an order n quadrature rule are the roots of P_{n} and the weights w_{i} are given by:

$$
w_{i}=\frac{2}{\left(1-x_{i}^{2}\right)\left(P_{n}^{\prime}\left(x_{i}\right)\right)^{2}}
$$

Parameters

- \mathbf{n} (the order of quadrature)
- n_digits (number of significant digits of the points and weights to return)

Returns (\mathbf{x}, \mathbf{w}) (the x and w are lists of points and weights as Floats.) - The points x_{i} and weights w_{i} are returned as (x, w) tuple of lists.

Examples

```
>>> x, w = gauss_legendre(3, 5)
>>> x
[-0.7746, 0, 0.7746]
>>> w
[0.55556, 0.88889, 0.55556]
```

```
>>> x, w = gauss_legendre(4, 5)
>>> x
[-0.86114, -0.33998, 0.33998, 0.86114]
>>> W
[0.34785, 0.65215, 0.65215, 0.34785]
```


See also:

gauss_laguerre (page 487), gauss_gen_laguerre (page 489), gauss_hermite (page 488), gauss_chebyshev_t (page 490), gauss_chebyshev_u (page 491), gauss_jacobi (page 492)

References

- https://en.wikipedia.org/wiki/Gaussian_quadrature
diofant.integrals.quadrature.gauss_laguerre(n, n_{-}digits)
Computes the Gauss-Laguerre quadrature points and weights.

The Gauss-Laguerre quadrature approximates the integral:

$$
\int_{0}^{\infty} e^{-x} f(x) d x \approx \sum_{i=1}^{n} w_{i} f\left(x_{i}\right)
$$

The nodes x_{i} of an order n quadrature rule are the roots of L_{n} and the weights w_{i} are given by:

$$
w_{i}=\frac{x_{i}}{(n+1)^{2}\left(L_{n+1}\left(x_{i}\right)\right)^{2}}
$$

Parameters

- \mathbf{n} (the order of quadrature)
- n_digits (number of significant digits of the points and weights to return)

Returns (\mathbf{x}, \mathbf{w}) (the x and w are lists of points and weights as Floats.) - The points x_{i} and weights w_{i} are returned as (x, w) tuple of lists.

Examples

```
>>> x, w = gauss_laguerre(3, 5)
>>> x
[0.41577, 2.2943, 6.2899]
>>> W
[0.71109, 0.27852, 0.010389]
```

>>> x, w = gauss_laguerre 6,5)
$\gg x$
[0.22285, 1.1889, 2.9927, 5.7751, 9.8375, 15.983]
>> W
[0.45896, 0.417, 0.11337, 0.010399, 0.00026102, 8.9855e-7]

See also:

gauss_legendre (page 487), gauss_gen_laguerre (page 489), gauss_hermite (page 488), gauss_chebyshev_t (page 490), gauss_chebyshev_u (page 491), gauss_jacobi (page 492)

References

- https://en.wikipedia.org/wiki/Gauss\�\�\�Laguerre_quadrature
diofant.integrals.quadrature.gauss_hermite(n, n _digits)
Computes the Gauss-Hermite quadrature points and weights.
The Gauss-Hermite quadrature approximates the integral:

$$
\int_{-\infty}^{\infty} e^{-x^{2}} f(x) d x \approx \sum_{i=1}^{n} w_{i} f\left(x_{i}\right)
$$

The nodes x_{i} of an order n quadrature rule are the roots of H_{n} and the weights w_{i} are given by:

$$
w_{i}=\frac{2^{n-1} n!\sqrt{\pi}}{n^{2}\left(H_{n-1}\left(x_{i}\right)\right)^{2}}
$$

Parameters

- \mathbf{n} (the order of quadrature)
- n_digits (number of significant digits of the points and weights to return)

Returns (\mathbf{x}, \mathbf{w}) (the x and w are lists of points and weights as Floats.) - The points x_{i} and weights w_{i} are returned as (x, w) tuple of lists.

Examples

```
>>> x, w = gauss_hermite(3, 5)
>> X
[-1.2247, 0, 1.2247]
>>> w
[0.29541, 1.1816, 0.29541]
```

```
>>> x, w = gauss hermite(6, 5)
>>> x
[-2.3506, -1.3358, -0.43608, 0.43608, 1.3358, 2.3506]
>>> w
[0.00453, 0.15707, 0.72463, 0.72463, 0.15707, 0.00453]
```


See also:

gauss_legendre (page 487), gauss_laguerre (page 487), gauss_gen_laguerre (page 489), gauss_chebyshev_t (page 490), gauss_chebyshev_u (page 491), gauss_jacobi (page 492)

References

- https://en.wikipedia.org/wiki/Gauss-Hermite_Quadrature
diofant.integrals.quadrature.gauss_gen_laguerre(n, alpha, $n _$digits)
Computes the generalized Gauss-Laguerre quadrature points and weights.
The generalized Gauss-Laguerre quadrature approximates the integral:

$$
\int_{0}^{\infty} x^{\alpha} e^{-x} f(x) d x \approx \sum_{i=1}^{n} w_{i} f\left(x_{i}\right)
$$

The nodes x_{i} of an order n quadrature rule are the roots of L_{n}^{α} and the weights w_{i} are given by:

$$
w_{i}=\frac{\Gamma(\alpha+n)}{n \Gamma(n) L_{n-1}^{\alpha}\left(x_{i}\right) L_{n-1}^{\alpha+1}\left(x_{i}\right)}
$$

Parameters

- \mathbf{n} (the order of quadrature)
- alpha (the exponent of the singularity, $\alpha>-1$)
- n_digits (number of significant digits of the points and weights to return)

Returns (\mathbf{x}, \mathbf{w}) (the x and w are lists of points and weights as Floats.) - The points x_{i} and weights w_{i} are returned as (x, w) tuple of lists.

Examples

```
>>> x, w = gauss_gen_laguerre(3, -0.5, 5)
>>> X
[0.19016, 1.7845, 5.5253]
>>> W
[1.4493, 0.31413, 0.00906]
```

```
>>> x, w = gauss_gen_laguerre(4, 1.5, 5)
>> x
[0.97851, 2.9904, 6.3193, 11.712]
>>> w
[0.53087, 0.67721, 0.11895, 0.0023152]
```


See also:

gauss_legendre (page 487), gauss_laguerre (page 487), gauss_hermite (page 488), gauss_chebyshev_t (page 490), gauss_chebyshev_u (page 491), gauss_jacobi (page 492)

References

- https://en.wikipedia.org/wiki/Gauss\�\�\�Laguerre_quadrature
diofant.integrals.quadrature.gauss_chebyshev_t(n, n digits)
Computes the Gauss-Chebyshev quadrature points and weights of the first kind.
The Gauss-Chebyshev quadrature of the first kind approximates the integral:

$$
\int_{-1}^{1} \frac{1}{\sqrt{1-x^{2}}} f(x) d x \approx \sum_{i=1}^{n} w_{i} f\left(x_{i}\right)
$$

The nodes x_{i} of an order n quadrature rule are the roots of T_{n} and the weights w_{i} are given by:

$$
w_{i}=\frac{\pi}{n}
$$

Parameters

- n (the order of quadrature)
- n_digits (number of significant digits of the points and weights to return)

Returns (\mathbf{x}, \mathbf{w}) (the x and w are lists of points and weights as Floats.) - The points x_{i} and weights w_{i} are returned as (x, w) tuple of lists.

Examples

```
>>> x, w = gauss_chebyshev_t(3, 5)
>> x
[0.86602, 0, -0.86602]
>>> w
[1.0472, 1.0472, 1.0472]
```

```
>>> x, w = gauss_chebyshev_t(6, 5)
>>> x
[0.96593, 0.70711, 0.25882, -0.25882, -0.70711, -0.96593]
>>> w
[0.5236, 0.5236, 0.5236, 0.5236, 0.5236, 0.5236]
```


See also:

gauss_legendre (page 487), gauss_laguerre (page 487), gauss_hermite (page 488), gauss_gen_laguerre (page 489), gauss_chebyshev_u (page 491), gauss_jacobi (page 492)

References

- https://en.wikipedia.org/wiki/Chebyshev\�\�\�Gauss_quadrature
diofant.integrals.quadrature.gauss_chebyshev_u(n, n_digits)
Computes the Gauss-Chebyshev quädrature points and weights of the second kind.
The Gauss-Chebyshev quadrature of the second kind approximates the integral:

$$
\int_{-1}^{1} \sqrt{1-x^{2}} f(x) d x \approx \sum_{i=1}^{n} w_{i} f\left(x_{i}\right)
$$

The nodes x_{i} of an order n quadrature rule are the roots of U_{n} and the weights w_{i} are given by:

$$
w_{i}=\frac{\pi}{n+1} \sin ^{2}\left(\frac{i}{n+1} \pi\right)
$$

Parameters

- n (the order of quadrature)
- n_digits (number of significant digits of the points and weights to return)

Returns (\mathbf{x}, \mathbf{w}) (the x and w are lists of points and weights as Floats.) - The points x_{i} and weights w_{i} are returned as (x, w) tuple of lists.

Examples

```
>>> x, w = gauss_chebyshev_u(3, 5)
>> x
[0.70711, 0, -0.70711]
>>> W
[0.3927, 0.7854, 0.3927]
```

```
>>> x, w = gauss_chebyshev_u(6, 5)
>>> x
[0.90097, 0.62349, 0.22252, -0.22252, -0.62349, -0.90097]
>>> W
[0.084489, 0.27433, 0.42658, 0.42658, 0.27433, 0.084489]
```


See also:

gauss_legendre (page 487), gauss_laguerre (page 487), gauss_hermite (page 488), gauss_gen_laguerre (page 489), gauss_chebyshev_t (page 490), gauss_jacobi (page 492)

References

- https://en.wikipedia.org/wiki/Chebyshev\�\�\�Gauss_quadrature
diofant.integrals.quadrature.gauss_jacobi(n, alpha, beta, n_digits)
Computes the Gauss-Jacobi quadrature points and weights.
The Gauss-Jacobi quadrature of the first kind approximates the integral:

$$
\int_{-1}^{1}(1-x)^{\alpha}(1+x)^{\beta} f(x) d x \approx \sum_{i=1}^{n} w_{i} f\left(x_{i}\right)
$$

The nodes x_{i} of an order n quadrature rule are the roots of $P_{n}^{(\alpha, \beta)}$ and the weights w_{i} are given by:

$$
w_{i}=-\frac{2 n+\alpha+\beta+2}{n+\alpha+\beta+1} \frac{\Gamma(n+\alpha+1) \Gamma(n+\beta+1)}{\Gamma(n+\alpha+\beta+1)(n+1)!} \frac{2^{\alpha+\beta}}{P_{n}^{\prime}\left(x_{i}\right) P_{n+1}^{(\alpha, \beta)}\left(x_{i}\right)}
$$

Parameters

- \mathbf{n} (the order of quadrature)
- alpha (the first parameter of the Jacobi Polynomial, $\alpha>-1$)
- beta (the second parameter of the Jacobi Polynomial, $\beta>-1$)
- n_digits (number of significant digits of the points and weights to return)

Returns (\mathbf{x}, \mathbf{w}) (the x and w are lists of points and weights as Floats.) - The points x_{i} and weights w_{i} are returned as (x, w) tuple of lists.

Examples

```
>>> x, w = gauss_jacobi(3, 0.5, -0.5, 5)
>>> x
[-0.90097, -0.22252, 0.62349]
>>> w
[1.7063, 1.0973, 0.33795]
```

```
>>> x, w = gauss_jacobi(6, 1, 1, 5)
>>> x
[-0.87174, -0.5917, -0.2093, 0.2093, 0.5917, 0.87174]
>>> w
[0.050584, 0.22169, 0.39439, 0.39439, 0.22169, 0.050584]
```


See also:

gauss_legendre (page 487), gauss_laguerre (page 487), gauss_hermite (page 488), gauss_gen_laguerre (page 489), gauss_chebyshev_t (page 490), gauss_chebyshev_u (page 491)

References

- https://en.wikipedia.org/wiki/Gauss\�\�\�Jacobi_quadrature

4.9 Logic

4.9.1 Introduction

The logic module for Diofant allows to form and manipulate logic expressions using symbolic and Boolean values.

4.9.2 Forming logical expressions

You can build Boolean expressions with the standard python operators \& (And (page 496)), | (Or (page 496)), ~ (Not (page 497)):

```
>>> y | (x & y)
y (x&y)
>>> x | y
x | y
>>> ~x
~x
```

You can also form implications with >> and <<:

```
>>> x >> y
Implies(x, y)
>>> x << y
Implies(y, x)
```

Like most types in Diofant, Boolean expressions inherit from Basic (page 46):

```
>>> (y & x).subs({x: True, y: True})
true
>>> (x | y).atoms()
{x, y}
```

The logic module also includes the following functions to derive boolean expressions from their truth tables-
diofant.logic.boolalg.SOPform(variables, minterms, dontcares=None)
The SOPform function uses simplified_pairs and a redundant group- eliminating algorithm to convert the list of all input combos that generate ' 1 ' (the minterms) into the smallest Sum of Products form.
The variables must be given as the first argument.
Return a logical Or function (i.e., the "sum of products" or "SOP" form) that gives the desired outcome. If there are inputs that can be ignored, pass them as a list, too.
The result will be one of the (perhaps many) functions that satisfy the conditions.

Examples

>>> minterms $=[[0,0,0,1],[0,0,1,1]$,
$\ldots \quad[0,1,1,1],[1,0,1,1],[1,1,1,1]]$
\ggg dontcares $=[[0,0,0,0],[0,0,1,0],[0,1,0,1]]$
>>> SOPform([t, x, y, z], minterms, dontcares)
$(y \& z) \mid(z \& \sim t)$

References

- https://en.wikipedia.org/wiki/Quine-McCluskey_algorithm
diofant.logic.boolalg.POSform(variables, minterms, dontcares=None)
The POSform function uses simplified_pairs and a redundant-group eliminating algorithm to convert the list of all input combinations that generate ' 1 ' (the minterms) into the smallest Product of Sums form.

The variables must be given as the first argument.
Return a logical And function (i.e., the "product of sums" or "POS" form) that gives the desired outcome. If there are inputs that can be ignored, pass them as a list, too.

The result will be one of the (perhaps many) functions that satisfy the conditions.

Examples

```
>>> minterms = [[0, 0, 0, 1], [0, 0, 1, 1], [0, 1, 1, 1],
#.. [1, 0, 1, 1], [1, 1, 1, 1]]
>>> dontcares = [[0, 0, 0, 0], [0, 0, 1, 0], [0, 1, 0, 1]]
>>> POSform([t, x, y, z], minterms, dontcares)
z & (y | ~t)
```


References

- https://en.wikipedia.org/wiki/Quine-McCluskey_algorithm

4.9.3 Boolean functions

class diofant.logic.boolalg.BooleanTrue(*args, **kwargs)
Diofant version of True, a singleton that can be accessed via true.
This is the Diofant version of True, for use in the logic module. The primary advantage of using true instead of True is that shorthand boolean operations like ~ and >> will work as expected on this class, whereas with True they act bitwise on 1. Functions in the logic module will return this class when they evaluate to true.

Notes

There is liable to be some confusion as to when True should be used and when true should be used in various contexts throughout Diofant. An important thing to remember is that sympify(True) returns true. This means that for the most part, you can just use True and it will automatically be converted to true when necessary, similar to how you can generally use 1 instead of Integer(1).
The rule of thumb is:
"If the boolean in question can be replaced by an arbitrary symbolic Boolean, like Or (x , y) or $x>1$, use true. Otherwise, use True".

In other words, use true only on those contexts where the boolean is being used as a symbolic representation of truth. For example, if the object ends up in the .args of any expression, then it must necessarily be true instead of True, as elements of .args must be Basic. On the other hand, == is not a symbolic operation in Diofant, since it always returns True or False, and does so in terms of structural equality rather than mathematical, so it should return True. The assumptions system should use True and False. Aside from not satisfying the above rule of thumb, the assumptions system uses a three-valued logic (True, False, None), whereas true and false represent a two-valued logic. When in doubt, use True.

```
"true == True is True."
```

While "true is True" is False, "true == True" is True, so if there is any doubt over whether a function or expression will return true or True, just use == instead of is to do the comparison, and it will work in either case. Finally, for boolean flags, it's better to just use if x instead of if x is True. To quote PEP 8:

Don't compare boolean values to True or False using ==.

- Yes: if greeting:
- No: if greeting == True:
- Worse: if greeting is True:

Examples

```
>>> sympify(True)
true
>>> ~true
false
>>> ~True
-2
>>> Or(True, False)
true
```


See also:

BooleanFalse (page 495)

class diofant.logic.boolalg.BooleanFalse(*args, **kwargs)
Diofant version of False, a singleton that can be accessed via false.
This is the Diofant version of False, for use in the logic module. The primary advantage of using false instead of False is that shorthand boolean operations like ~ and >> will work as expected on this class, whereas with False they act bitwise on 0. Functions in the logic module will return this class when they evaluate to false.

Notes

See note in BooleanTrue (page 494).

Examples

```
>>> sympify(False)
false
>>> false >> false
true
>>> False >> False
0
>>> Or(True, False)
true
```


See also:

BooleanTrue (page 494)
class diofant.logic.boolalg.And(*args)
Logical AND function.
It evaluates its arguments in order, giving False immediately if any of them are False, and True if they are all True.

Examples

```
>>> x & y
x & y
```


Notes

The \& operator is provided as a convenience, but note that its use here is different from its normal use in Python, which is bitwise and. Hence, And (a, b) and a \& b will return different things if a and b are integers.

```
>>> And(x, y).subs({x: 1})
y
```

```
class diofant.logic.boolalg.Or(*args)
```

Logical OR function
It evaluates its arguments in order, giving True immediately if any of them are True, and False if they are all False.

Examples

```
>>> x | y
x | y
```


Notes

The | operator is provided as a convenience, but note that its use here is different from its normal use in Python, which is bitwise or. Hence, $\operatorname{Or}(\mathrm{a}, \mathrm{b})$ and a | b will return different things if a and b are integers.

```
>>> Or(x, y).subs({x: 0})
```

y
class diofant.logic.boolalg.Not(arg)
Logical Not function (negation).
Returns True if the statement is False. Returns False if the statement is True.

Examples

```
>>> Not(True)
false
>>> Not(False)
true
>>> Not(And(True, False))
true
>>> Not(Or(True, False))
false
>>> Not(And(And(True, x), Or(x, False)))
~x
>>> ~x
~X
>> Not(And(Or(x, y), Or(~x, ~y)))
~((x | y) & (~x | ~y))
```


Notes

The \sim operator is provided as a convenience, but note that its use here is different from its normal use in Python, which is bitwise not. In particular, $\sim a$ and Not (a) will be different if a is an integer. Furthermore, since bools in Python subclass from int, ~True is the same as ~ 1 which is -2 , which has a boolean value of True. To avoid this issue, use the Diofant boolean types true and false.

```
>>> ~True
-2
>>> ~true
false
```

class diofant.logic.boolalg.Xor(*args)
Logical XOR (exclusive OR) function.
Returns True if an odd number of the arguments are True and the rest are False.
Returns False if an even number of the arguments are True and the rest are False.

Examples

```
>>> Xor(True, False)
true
>>> Xor(True, True)
false
>>> Xor(True, False, True, True, False)
true
>>> Xor(True, False, True, False)
false
>>> x ^ y
Xor(x, y)
```


Notes

The ${ }^{\wedge}$ operator is provided as a convenience, but note that its use here is different from its normal use in Python, which is bitwise xor. In particular, $a^{\wedge} b$ and $\operatorname{Xor}(a, b)$ will be different if a and b are integers.

```
>>> Xor(x, y).subs({y: 0})
```

X
class diofant.logic.boolalg.Nand(*args)
Logical NAND function.
It evaluates its arguments in order, giving True immediately if any of them are False, and False if they are all True.
Returns True if any of the arguments are False. Returns False if all arguments are True.

Examples

```
>>> Nand(False, True)
true
>>> Nand(True, True)
false
>>> Nand(x, y)
~(x & y)
```

class diofant.logic.boolalg.Nor(*args)
Logical NOR function.
It evaluates its arguments in order, giving False immediately if any of them are True, and True if they are all False.
Returns False if any argument is True. Returns True if all arguments are False.

Examples

```
>>> Nor(True, False)
false
>>> Nor(True, True)
false
>>> Nor(False, True)
false
>>> Nor(False, False)
true
>>> Nor(x, y)
~(x | y)
```

class diofant.logic.boolalg.Implies(*args)
Logical implication.
A implies B is equivalent to ! $\mathrm{A} v \mathrm{~B}$
Accepts two Boolean arguments; A and B. Returns False if A is True and B is False. Returns True otherwise.

Examples

```
>>> Implies(True, False)
false
>>> Implies(False, False)
true
>>> Implies(True, True)
true
>>> Implies(False, True)
true
>>> x >> y
Implies(x, y)
>>> y << x
Implies(x, y)
```


Notes

The >> and << operators are provided as a convenience, but note that their use here is different from their normal use in Python, which is bit shifts. Hence, Implies (a, b) and $a \gg b$ will return different things if a and b are integers. In particular, since Python considers True and False to be integers, True >> True will be the same as 1 >> 1, i.e., 0 , which has a truth value of False. To avoid this issue, use the Diofant objects true and false.

```
>>> True >> False
1
>>> true >> false
false
```

class diofant.logic.boolalg.Equivalent(*args)
Equivalence relation.
Equivalent(A, B) is True iff A and B are both True or both False.
Returns True if all of the arguments are logically equivalent. Returns False otherwise.

Examples

```
>>> Equivalent(False, False, False)
true
>>> Equivalent(True, False, False)
false
>>> Equivalent(x, And(x, True))
true
```

class diofant.logic.boolalg.ITE(*args)
If then else clause.
ITE(A, B, C) evaluates and returns the result of B if A is true else it returns the result of C.

Examples

```
>>> ITE(True, False, True)
false
>>> ITE(Or(True, False), And(True, True), Xor(True, True))
true
>>> ITE(x, y, z)
ITE(x, y, z)
>>> ITE(True, x, y)
x
>>> ITE(False, x, y)
y
>>> ITE(x, y, y)
y
```

The following functions can be used to handle Conjunctive and Disjunctive Normal forms-
diofant.logic.boolalg.to_cnf(expr, simplify=False)
Convert a propositional logical sentence s to conjunctive normal form. That is, of the form ((A $|\sim \mathrm{B}| \ldots) \&(\mathrm{~B}|\mathrm{C}| \ldots) \& \ldots)$. If simplify is True, the expr is evaluated to its simplest CNF form.

Examples

```
>>> to_cnf(~(a | b) | c)
(c | ~\overline{a})& & c | ~b)
>>> to_cnf((a | b) & (a | ~a), True)
a | b
```

diofant.logic.boolalg.to_dnf(expr, simplify=False)
Convert a propositional logical sentence s to disjunctive normal form. That is, of the form ((A \& $\sim \mathrm{B} \& \ldots)|(\mathrm{B} \& \mathrm{C} \& \ldots)| \ldots$.... If simplify is True, the expr is evaluated to its simplest DNF form.

Examples

```
>>> to_dnf(b & (a | c))
(a & b) | (b & c)
>>> to_dnf((a & b) | (a & ~b) | (b & c) | (~b & c), True)
a | c
```

diofant.logic.boolalg.is_cnf(expr)
Test whether or not an expression is in conjunctive normal form.

Examples

```
>>> is_cnf(a | b | c)
True
>>> is_cnf(a & b & c)
True
>>> is_cnf((a & b) | c)
False
```

diofant.logic.boolalg.is_dnf(expr)
Test whether or not an expression is in disjunctive normal form.

Examples

```
>>> is_dnf(a | b | c)
True
>>> is_dnf(a & b & c)
True
>>> is_dnf((a & b) | c)
True
>>> is_dnf(a & (b | c))
False
```


4.9.4 Simplification and equivalence-testing

diofant.logic.boolalg.simplify_logic (expr, form=None, deep=True)
This function simplifies a boolean function to its simplified version in SOP or POS form. The return type is an Or or And object in Diofant.

Parameters

- expr (string or boolean expression)
- form (string ('cnf' or 'dnf') or None (default).) - If 'cnf' or 'dnf', the simplest expression in the corresponding normal form is returned; if None, the answer is returned according to the form with fewest args (in CNF by default).
- deep (boolean (default True)) - indicates whether to recursively simplify any non-boolean functions contained within the input.

Examples

```
>>> b = (~x & ~y & ~z) | (~x & ~y & z)
>>> simplify_logic(b)
~x & ~y
```

```
>>> sympify(b)
(z & ~x & ~y) | (~x & ~y & ~z)
>>> simplify_logic(_)
~x & ~y
```

Diofant's simplify() function can also be used to simplify logic expressions to their simplest forms.
diofant.logic.boolalg.bool_map(bool1, bool2)
Return the simplified version of bool1, and the mapping of variables that makes the two expressions bool1 and bool2 represent the same logical behaviour for some correspondence between the variables of each. If more than one mappings of this sort exist, one of them is returned. For example, And (x, y) is logically equivalent to And (a, b) for the mapping $\{x: a, y: b\}$ or $\{x: b, y: a\}$. If no such mapping exists, return False.

Examples

```
>>> function1 = SOPform([x, z, y], [[1, 0, 1], [0, 0, 1]])
>>> function2 = SOPform([a, b, c], [[1, 0, 1], [1, 0, 0]])
>>> bool_map(function1, function2)
(y & ~z, {y: a, z: b})
```

The results are not necessarily unique, but they are canonical. Here, (t, z) could be (a, d) or (d, a):

```
>> eq1 = Or(And(Not(y), t), And(Not(y), z), And(x, y))
>> eq2 = Or(And(Not(c), a), And(Not(c), d), And(b, c))
>>> bool_map(eq1, eq2)
((x& y)}\mp@subsup{}{}{-}|(t&~y)| (z&~y), {t: a, x: b, y: c, z: d}
>> eq = And(Xor(a, b), c, And(c, d))
>>> bool_map(eq, eq.subs({c: x}))
(c & d & (a | b) & (~a | ~b), {a: a, b: b, c: d, d: x})
```


4.9.5 Inference

This module implements some inference routines in propositional logic.
The function satisfiable will test that a given Boolean expression is satisfiable, that is, you can assign values to the variables to make the sentence True.
For example, the expression $x \& \sim x$ is not satisfiable, since there are no values for x that make this sentence True. On the other hand, $(x \mid y) \&(x \mid \sim y) \&(\sim x \mid y)$ is satisfiable with both x and y being True.

```
>>> satisfiable(x & ~x)
False
>>> satisfiable((x | y) & (x | ~y) & (~x | y))
{x: True, y: True}
```

As you see, when a sentence is satisfiable, it returns a model that makes that sentence True. If it is not satisfiable it will return False.
diofant.logic.inference.satisfiable(expr, algorithm='dpll2', all_models=False)
Check satisfiability of a propositional sentence. Returns a model when it succeeds. Returns \{true: true\} for trivially true expressions.
On setting all_models to True, if given expr is satisfiable then returns a generator of models. However, if expr is unsatisfiable then returns a generator containing the single element False.

Examples

```
>>> satisfiable(a & ~b)
{a: True, b: False}
>>> satisfiable(a & ~a)
False
>>> satisfiable(True)
{true: True}
>>> next(satisfiable(a & ~a, all_models=True))
False
>>> models = satisfiable((a >> b) & b, all_models=True)
>>> next(models)
{a: False, b: True}
>>> next(models)
{a: True, b: True}
>>> def use_models(models):
... for model in models:
.". if model:
... # Do something with the model.
... return model
... else:
... # Given expr is unsatisfiable.
#." print('UNSAT')
>>> use_models(satisfiable(a >> ~a, all_models=True))
{a: Fal䂆}
>>> use_models(satisfiable(a ^ a, all_models=True))
UNSAT
```


4.10 Domains

Here we document the various implemented ground domains. There are three types: abstract domains, concrete domains, and "implementation domains". Abstract domains cannot be (usefully) instantiated at all, and just collect together functionality shared by many other domains. Concrete domains are those meant to be instantiated and used. In some cases, there are various possible ways to implement the data type the domain provides. For example, depending on what libraries are available on the system, the integers are implemented either using the python built-in integers, or using gmpy. Note that various aliases are created automatically depending on the libraries available. As such e.g. ZZ always refers to the most efficient implementation of the integer ring available.

4.10.1 Abstract Domains

class diofant.domains.domain.Domain
Represents an abstract domain.
convert (element, base=None)
Convert element to self.dtype.
convert_from(element, base)
Convert element to self.dtype given the base domain.
frac_field(*symbols, **kwargs)
Returns a fraction field, i.e. $K(X)$.
abstract from_expr(expr)
Convert Diofant's expression expr to dtype.
poly_ring(*symbols, **kwargs)
Returns a polynomial ring, i.e. $K[X]$.
abstract to_expr(element)
Convert domain element to Diofant expression.
unify (K1, symbols=())
Construct a minimal domain that contains elements of self and K1.
Known domains (from smallest to largest):

- GF (p)
- ZZ
- QQ
- RR(prec, tol)
- CC(prec, tol)
- ALG(a, b, c)
- $K[x, y, z]$
- K(x, y, z)
- EX
class diofant.domains.field.Field
Represents a field domain.
$\operatorname{div}(a, b)$
Division of a and b, implies \qquad truediv \qquad .
exquo (a, b)
Exact quotient of a and b, implies \qquad truediv \qquad .
property field
Returns a field associated with self.
$\boldsymbol{\operatorname { g c d }}(a, b)$
Returns GCD of a and b.
This definition of GCD over fields allows to clear denominators in primitive().

```
>>> QQ.gcd(QQ(2, 3), QQ(4, 9))
2/9
>>> gcd(Rational(2, 3), Rational(4, 9))
2/9
>>> primitive(2*x/3 + Rational(4, 9))
(2/9, 3*x + 2)
```

quo (a, b)
Quotient of a and b , implies \qquad truediv \qquad
$\operatorname{rem}(a, b)$
Remainder of a and b, implies nothing.
class diofant.domains.ring. CommutativeRing
Represents a ring domain.
abstract property characteristic
Return the characteristic of this ring.
cofactors (a, b)
Returns GCD and cofactors of a and b .
$\operatorname{div}(a, b)$
Division of a and b , implies __divmod__ .
exquo (a, b)
Exact quotient of a and b, implies \qquad floordiv \qquad .
half_gcdex (a, b)
Half extended GCD of a and b.
invert (a, b)
Returns inversion of $a \bmod b$.
is_normal(a)
Returns True if a is unit normal.
lcm(a, b)
Returns LCM of a and b.
quo (a, b)
Quotient of a and b, implies \qquad floordiv
\qquad .
$\operatorname{rem}(a, b)$
Remainder of a and b, implies \qquad .
property ring
Returns a ring associated with self.
class diofant.domains.simpledomain.SimpleDomain
Base class for simple domains, e.g. ZZ, QQ.
inject(*gens)
Inject generators into this domain.
class diofant.domains.compositedomain. CompositeDomain
Base class for composite domains, e.g. ZZ[x], ZZ(X).
inject (*symbols, front=False)
Inject generators into this domain.
class diofant.domains.characteristiczero.CharacteristicZero
Domain that has infinite number of elements.

4.10.2 Concrete Domains

class diofant.domains.IntegerModRing(order, dom)
General class for quotient rings over integers.
class diofant.domains.FiniteField(order, dom, modulus=None)
General class for finite fields.
class diofant.domains.IntegerRing
General class for integer rings.
property field
Returns a field associated with self.
abstract finite_field (p)
Returns a finite field.
abstract finite_ring(n)
Returns a finite ring.
class diofant.domains.RationalField
General class for rational fields.
algebraic_field(*extension)
Returns an algebraic field, i.e. $\mathbb{Q}(\alpha, \ldots)$.
class diofant.domains.AlgebraicField(dom, *ext)
A class for representing algebraic number fields.
algebraic_field(*extension)
Returns an algebraic field, i.e. $\mathbb{Q}(\alpha, \ldots)$.
class diofant.domains.RealAlgebraicField(dom, *ext)
A class for representing real algebraic number fields.
class diofant. domains. ComplexAlgebraicField(dom, *ext)
A class for representing complex algebraic number fields.

```
class diofant.polys.rings.PolynomialRing(domain, symbols,
                                    order=<diofant.polys.orderings.LexOrder
                                    object>)
```

A class for representing multivariate polynomial rings.
drop (*gens)
Remove specified generators from this ring.
eject(*gens)
Remove specified generators from the ring and inject them into its domain.
property field
Returns a field associated with self.
$\operatorname{gcdex}(a, b)$
Extended GCD of a and b.
half_gcdex (a, b)
Half extended GCD of a and b.
index (gen)
Compute index of gen in self.gens.
class diofant.polys.univar.UnivarPolynomialRing(domain, symbols, order $=<$ diofant.polys.orderings.LexOrder object>)
A class for representing univariate polynomial rings.
dispersionset ($p, q=$ None)
Compute the dispersion set of two polynomials.
For two polynomials $f(x)$ and $g(x)$ with $\operatorname{deg} f>0$ and $\operatorname{deg} g>0$ the dispersion set $\mathrm{J}(f, g)$ is defined as:

$$
\begin{aligned}
\mathrm{J}(f, g) & :=\left\{a \in \mathbb{N}_{0} \mid \operatorname{gcd}(f(x), g(x+a)) \neq 1\right\} \\
& =\left\{a \in \mathbb{N}_{0} \mid \operatorname{deg} \operatorname{gcd}(f(x), g(x+a)) \geq 1\right\}
\end{aligned}
$$

For a single polynomial one defines $\mathrm{J}(f):=\mathrm{J}(f, f)$.

Examples

Note that the definition of the dispersion is not symmetric:

$$
\ggg R, x=\operatorname{ring}\left({ }^{\prime} x^{\prime}, Q Q\right)
$$

```
>>> fp = x**4 - 3*x**2 + 1
```

$\ggg \mathrm{gp}=\mathrm{fp} . \operatorname{shift}(-3)$

```
>>> R.dispersionset(fp, gp)
{2, 3, 4}
>>> R.dispersionset(gp, fp)
set()
```

Computing the dispersion also works over field extensions:

```
>>> R, x = ring('x', QQ.algebraic_field(sqrt(5)))
>>> fp = x**2 + sqrt(5)*x - 1
>>> gp = x**2 + (2 + sqrt(5))*x + sqrt(5)
```

```
>>> R.dispersionset(fp, gp)
{2}
>>> R.dispersionset(gp, fp)
{1, 4}
```

We can even perform the computations for polynomials having symbolic coefficients:

```
>>> D, a = ring('a', QQ)
>> R, x = ring('x', D)
>>> fp = 4*x**4 + (4*a + 8)*x**3 + (a**2 + 6*a + 4)*x**2 + (a**2 + 2*a)*x
>>> R.dispersionset(fp)
{0, 1}
```


References

- [MW94]
- [Koe98]
- [Abr71]
- [Man93]
class diofant.polys.fields.FractionField(domain, symbols,
order $=$ <diofant.polys.orderings.LexOrder object>)
A class for representing multivariate rational function fields.
class diofant.domains.RealField (prec=53, dps=None, tol=None)
Real numbers up to the given precision.
almosteq $(a, b$, tolerance $=$ None)
Check if a and b are almost equal.
to_rational (element, limit=True)
Convert a real number to rational number.
class diofant.domains.ComplexField(prec=53,dps=None, tol=None)
Complex numbers up to the given precision.
almosteq $(a, b$, tolerance $=$ None)
Check if a and b are almost equal.
class diofant.domains.ExpressionDomain
A class for arbitrary expressions.
class Expression (ex)
A class for elements of ExpressionDomain (page 508).
dtype
alias of diofant.domains.expressiondomain.ExpressionDomain.Expression (page 508)

4.10.3 Implementation Domains

class diofant.domains.finitefield.PythonFiniteField(order, modulus=None)
Finite field based on Python's integers.
class diofant.domains.finitefield.GMPYFiniteField(order, modulus=None)
Finite field based on GMPY's integers.
class diofant.domains.integerring. PythonIntegerRing
Integer ring based on Python's integers.
class diofant.domains.integerring. GMPYIntegerRing
Integer ring based on GMPY's integers.
class diofant.domains.rationalfield.PythonRationalField
Rational field based on Python's rationals.
class diofant.domains.rationalfield.GMPYRationalField
Rational field based on GMPY's rationals.

4.10.4 Domain Elements

class diofant.domains.finitefield.ModularInteger(rep)
A class representing a modular integer.
property is_primitive
Test if this is a primitive element.
class diofant.domains.finitefield.GaloisFieldElement(rep)
A class representing a Galois field element.

4.11 Matrices

A module that handles matrices.
Includes functions for fast creating matrices like zero, one/eye, random matrix, etc.

```
class diofant.matrices.Matrix
    alias of MutableMatrix (page 559)
```


4.11.1 Matrices (linear algebra)

Creating Matrices

The linear algebra module is designed to be as simple as possible. First, we import and declare our first Matrix object:

```
>>> init_printing(pretty_print=True, use_unicode=False,
#." wrap_line=False, no_global=True)
>> M = Matrix([[1, 0, 0], [0, 0, 0]])
>>> M
[1 00 0]
[[00]
>>> Matrix([M, (0, 0, -1)])
[1 0 0 ]
[0}0
[0}00 -1] [1
>>> Matrix([[1, 2, 3]])
[1 2 3]
>>> Matrix([1, 2, 3])
[1]
[ ]
[2]
[ ]
[3]
```

In addition to creating a matrix from a list of appropriately-sized lists and/or matrices, Diofant also supports more advanced methods of matrix creation including a single list of values and dimension inputs:

```
>>> Matrix(2, 3, [1, 2, 3, 4, 5, 6])
[1 2 3 3]
[
[4 5 6]
```

More interesting (and useful), is the ability to use a 2 -variable function (or lambda) to create a matrix. Here we create an indicator function which is 1 on the diagonal and then use it to make the identity matrix:

```
>>> def f(i, j):
#. if i == j:
#: return 1
... else:
... return 0
>>> Matrix(4, 4, f)
[[1 [ 0 0 0 0] [}[\begin{array}{lll}{[0}&{1}&{0}\end{array}
```

Finally let's use lambda to create a 1-line matrix with 1's in the even permutation entries:

```
>>> Matrix(3, 4, lambda i, j: 1 - (i + j) % 2)
[1 [10 1 0]
[0
[1 0
```

There are also a couple of special constructors for quick matrix construction: eye is the identity matrix, zeros and ones for matrices of all zeros and ones, respectively, and diag to put matrices or elements along the diagonal:

```
>>> eye(4)
[1 0}0000
[[0
[[ [0
[0}000001
>>> zeros(2)
[0 0]
[0 0]
>>> zeros(2, 5)
[0
[[0 0
>>> ones(3)
[1 1 1]
[
[ ]
[1 1 1 1]
>>> ones(1, 3)
[1 1 1 1]
>> diag(1, Matrix([[1, 2], [3, 4]]))
[[}[0;0]][\mp@code{lll
```


Basic Manipulation

While learning to work with matrices, let's choose one where the entries are readily identifiable. One useful thing to know is that while matrices are 2-dimensional, the storage is not and so it is allowable - though one should be careful - to access the entries as if they were a 1-d list.

```
>>> M = Matrix(2, 3, [1, 2, 3, 4, 5, 6])
>> M[4]
5
```

Now, the more standard entry access is a pair of indices which will always return the value at the corresponding row and column of the matrix:

```
>>> M[1, 2]
6
>>> M[0, 0]
1
>>> M[1, 1]
5
```

Since this is Python we're also able to slice submatrices; slices always give a matrix in return, even if the dimension is 1×1 :

```
>>> M[0:2, 0:2]
[1 2]
[
>>> M[2:2, 2]
[]
>>> M[:, 2]
[3]
[ ]
[6]
>>> M[:1, 2]
[3]
```

In the second example above notice that the slice 2:2 gives an empty range. Note also (in keeping with 0 -based indexing of Python) the first row/column is 0 .
You cannot access rows or columns that are not present unless they are in a slice:

```
>>> M[:, 10] # the 10-th column (not there)
Traceback (most recent call last):
IndexError: Index out of range: a[[0, 10]]
>> M[:, 10:11] # the 10-th column (if there)
[]
>>> M[:, :10] # all columns up to the 10-th
[[1 [ 2 3]}[\begin{array}{ll}{[}&{}\\{[4}&{5}\end{array}
```

Slicing an empty matrix works as long as you use a slice for the coordinate that has no size:

```
>>> Matrix(0, 3, [])[:, 1]
[]
```

Slicing gives a copy of what is sliced, so modifications of one object do not affect the other:

```
>>> M2 = M[:, :]
>>> M2[0, 0] = 100
>>> M[0, 0] == 100
False
```

Notice that changing M2 didn't change M. Since we can slice, we can also assign entries:

```
>>MM=Matrix(([1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]))
>> M
[1 
[[5
[9 1010}111 12]
[[13
>>> M[2, 2] = M[0, 3] = 0
>>> M
[1 
[[5 [10 7 8 8]
[[9
[13
```

as well as assign slices:

```
>> M = Matrix(([1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]))
>>> M[2:, 2:] = Matrix(2, 2, lambda i, j: 0)
>>> M
[\mp@code{[1 }
```

All the standard arithmetic operations are supported:

```
>>> M = Matrix(([1, 2, 3], [4, 5, 6], [7, 8, 9]))
>> M - M
[0
[[0
>>> M + M
[2 
[8
[14 16 18]
>>> M * M
[30 36 42
[[66 [181 96 ]
[102 126 150]
>>> M2 = Matrix(3, 1, [1, 5, 0])
>>> M*M2
[11]
```


As well as some useful vector operations:

```
>>> del M[0, :]
>>> M
[4 5 6 6]
[[
>>> del M[:, 1]
>>> M
[4 6]
[ ]
[7 9]
>>> v1 = Matrix([1, 2, 3])
>>> v2 = Matrix([4, 5, 6])
>>> v3 = v1.cross(v2)
>>> v1.dot(v2)
32
>>> v2.dot(v3)
0
>>> v1.dot(v3)
0
```

We can also "glue" together matrices of the appropriate size:

```
>>> M1 = eye(3)
>>> M2 = zeros(3, 4)
>> M1.row join(M2)
[1 [10 0 0
[0
[0
>>> M3 = zeros(4, 3)
>>> M1.col_join(M3)
[1 0
[[0
[[0
[[0
[[0
[}[\begin{array}{lll}{[0}&{0}&{0}\end{array}
```


Operations on entries

We are not restricted to having multiplication between two matrices:

```
>>> M = eye(3)
>>> 2*M
[2 0
[[0 [ 2 0]
[[00 [0, 2]
>>> 3*M
[3 0 0]
[[0
[0}003
```

but we can also apply functions to our matrix entries using applyfunc(). Here we'll declare a function that double any input number. Then we apply it to the $3 x 3$ identity matrix:

```
>>> def f(x):
#. return 2*x
>>> eye(3).applyfunc(f)
[2 0 0]
[[ [0]}[\begin{array}{lll}{[0}&{2}&{0}\end{array}
[[ [ 2 % ]
```

One more useful matrix-wide entry application function is the substitution function. Let's declare a matrix with symbolic entries then substitute a value. Remember we can substitute anything - even another symbol!:

```
>>> M = eye(3) * x
>>> M
[x
[[lll
[llll}[\begin{array}{lll}{[}&{x}&{0}\end{array}
[0 0 x]
>>> M.subs({x: 4})
[4 0
[[ [ % ]
[0
[0 0 4]
>>> M.subs({x: y})
[y 0 0
[y 0
[0
[0 0 y]
```


Linear algebra

Now that we have the basics out of the way, let's see what we can do with the actual matrices. Of course, one of the first things that comes to mind is the determinant:

```
>> M = Matrix(([1, 2, 3], [3, 6, 2], [2, 0, 1]))
>>> M.det()
-28
>>> M2 = eye(3)
>>> M2.det()
1
>>> M3 = Matrix(([1, 0, 0], [1, 0, 0], [1, 0, 0]))
>>> M3.det()
0
```

Another common operation is the inverse: In Diofant, this is computed by Gaussian elimination by default (for dense matrices) but we can specify it be done by $L U$ decomposition as well:

```
>>> M2.inv()
[1 0 0]
[lll
[llll}[\begin{array}{lll}{[}&{1}&{0}\end{array}
>>> M2.inv(method='LU')
[1 0 0]
[[0
[[0 0
>>> M.inv(method='LU')
[-3/14 1/14 1/2 ]
[ [-1/28 5/28 -1/4]
[[ [-7 -1/7 0 ]
>>> M * M.inv(method='LU')
[1 0
```


We can perform a $Q R$ factorization which is handy for solving systems:

```
>> A = Matrix([[1, 1, 1], [1, 1, 3], [2, 3, 4]])
>>> Q, R = A.QRdecomposition()
>>> Q
```


In addition to the solvers in the solver.py file, we can solve the system $\mathrm{Ax}=\mathrm{b}$ by passing the b vector to the matrix A's LUsolve function. Here we'll cheat a little choose A and x then multiply to get b . Then we can solve for x and check that it's correct:

```
>>> A = Matrix([[2, 3, 5], [3, 6, 2], [8, 3, 6]])
>> x = Matrix(3, 1, [3, 7, 5])
>>> b = A*x
>> soln = A.LUsolve(b)
>>> soln
[3]
[ ]
[7]
[ ]
[5]
```

There's also a nice Gram-Schmidt orthogonalizer which will take a set of vectors and orthogonalize them with respect to another. There is an optional argument which specifies whether or not the output should also be normalized, it defaults to False. Let's take some vectors and orthogonalize them - one normalized and one not:

```
>>> L = [Matrix([2, 3, 5]), Matrix([3, 6, 2]), Matrix([8, 3, 6])]
>>> out1 = GramSchmidt(L)
>>> out2 = GramSchmidt(L, True)
```

Let's take a look at the vectors:

```
>>> for i in out1:
    print(i)
M
Matrix([
[2],
[3],
[5]])
Matrix([
[ 23/19],
[ 63/19],
[-47/19]])
Matrix([
[ 1692/353],
[-1551/706],
```

```
[ -423/706]])
>>> for i in out2:
#. print(i)
...
Matrix([
[ sqrt(38)/19],
[3*sqrt(38)/38],
[5*sqrt(38)/38]])
Matrix([
[ 23*sqrt(6707)/6707],
[ 63*sqrt(6707)/6707],
[-47*sqrt(6707)/6707]])
Matrix([
[ 12*sqrt(706)/353],
[-11*sqrt(706)/706],
[ -3*sqrt(706)/706]])
```

We can spot-check their orthogonality with $\operatorname{dot}()$ and their normality with norm():

```
>>> out1[0].dot(out1[1])
0
>>> out1[0].dot(out1[2])
0
>>> out1[1].dot(out1[2])
0
>>> out2[0].norm()
1
>>> out2[1].norm()
1
>>> out2[2].norm()
1
```

So there is quite a bit that can be done with the module including eigenvalues, eigenvectors, nullspace calculation, cofactor expansion tools, and so on. From here one might want to look over the matrices.py file for all functionality.

MatrixBase Class Reference

class diofant.matrices.matrices.MatrixBase
Base class for matrices.
property C
By-element conjugation.
property D
Return Dirac conjugate (if self.rows $==4$).

Examples

```
>>> m = Matrix((0, 1 + I, 2, 3))
>>> m.D
Matrix([[0, 1 - I, -2, -3]])
>>> m = (eye(4) + I*eye(4))
>> m[0, 3] = 2
>>> m.D
Matrix([
[1 - I, 0, 0, 0],
```


If the matrix does not have 4 rows an AttributeError will be raised because this property is only defined for matrices with 4 rows.

```
>>> Matrix(eye(2)).D
Traceback (most recent call last):
AttributeError: Matrix has no attribute D.
```


See also:

conjugate (page 526) By-element conjugation
H (page 518) Hermite conjugation
property H
Return Hermite conjugate.

Examples

```
>>> m = Matrix((0, 1 + I, 2, 3))
>>> m
Matrix([
[ 0],
[1 + I],
[ 3]])
>> m.H
Matrix([[0, 1 - I, 2, 3]])
```


See also:

conjugate (page 526) By-element conjugation
D (page 517) Dirac conjugation

LDLdecomposition()

Returns the LDL Decomposition (L, D) of matrix A, such that $\mathrm{L} * \mathrm{D} * \mathrm{~L} . \mathrm{T}==\mathrm{A}$ This method eliminates the use of square root. Further this ensures that all the diagonal entries of L are 1. A must be a square, symmetric, positive-definite and non-singular matrix.

Examples

```
>> A = Matrix(((25, 15, -5), (15, 18, 0), (-5, 0, 11)))
>>> L, D = A.LDLdecomposition()
>>> L
Matrix([
[ 1, 0, 0],
[ 3/5, 1, 0],
[-1/5, 1/3, 1]])
>> D
```

```
Matrix([
    [25, 0, 0],
    [ 0, 9, 0],
[ 0, 0, 9]])
>>>L * D * L.T * A.inv() == eye(A.rows)
True
```


See also:

cholesky (page 524), LUdecomposition (page 519), QRdecomposition (page 520)
LDLsolve(rhs)
Solves Ax = B using LDL decomposition, for a general square and non-singular matrix.

For a non-square matrix with rows > cols, the least squares solution is returned.

Examples

```
>>> A = eye(2)*2
>>> B = Matrix([[1, 2], [3, 4]])
>>> A.LDLsolve(B) == B/2
True
```


See also:

LDLdecomposition (page 518), lower_triangular_solve (page 541), upper_triangular_solve (page 549), cholesky_solve (page 524), diagonal_solve (page 527), LUsolve (page 520), QRsolve (page 521), pinv_solve (page 544)
LUdecomposition (iszerofunc $=<$ function iszero $>$)
Returns the decomposition LU and the row swaps p .

Examples

```
>>> a = Matrix([[4, 3], [6, 3]])
>>> L, U, _ = a.LUdecomposition()
>> L
Matrix([
[ 1, 0],
[3/2, 1]])
>>> U
Matrix([
[4, 3],
[0, -3/2]])
```


See also:

cholesky (page 524), LDLdecomposition (page 518), QRdecomposition (page 520), LUdecomposition_Simple (page 520), LUdecompositionFF (page 519), LUsolve (page 520)

LUdecompositionFF()

Compute a fraction-free LU decomposition.
Returns 4 matrices $\mathrm{P}, \mathrm{L}, \mathrm{D}, \mathrm{U}$ such that $\mathrm{PA}=\mathrm{L} \mathrm{D}^{* *}-1 \mathrm{U}$. If the elements of the matrix belong to some integral domain I, then all elements of L, D and U are guaranteed to belong to I.

Reference

- W. Zhou \& D.J. Jeffrey, "Fraction-free matrix factors: new forms for LU and QR factors". Frontiers in Computer Science in China, Vol 2, no. 1, pp. 67-80, 2008.

See also:

LUdecomposition (page 519), LUdecomposition_Simple (page 520), LUsolve (page 520)
LUdecomposition_Simple(iszerofunc $=<$ function _iszero>)
Returns A comprised of L, U (L's diag entries are 1) and p which is the list of the row swaps (in order).

See also:

LUdecomposition (page 519), LUdecompositionFF (page 519), LUsolve (page 520)
LUsolve(rhs, iszerofunc=<function iszero>)
Solve the linear system $\mathrm{Ax}=\mathrm{rhs}$ for x where $\mathrm{A}=$ self.
This is for symbolic matrices, for real or complex ones use mpmath.lu_solve or mpmath.qr_solve.

See also:

lower_triangular_solve (page 541), upper_triangular_solve (page 549), cholesky_solve (page 524), diagonal_solve (page 527), LDLsolve (page 519), QRsolve (page 521), pinv_solve (page 544), LUdecomposition (page 519)
QRdecomposition()
Return Q, R where $\mathrm{A}=\mathrm{Q} * \mathrm{R}, \mathrm{Q}$ is orthogonal and R is upper triangular.

Examples

This is the example from wikipedia:

```
>>> A = Matrix([[12, -51, 4], [6, 167, -68], [-4, 24, -41]])
>>> Q, R = A.QRdecomposition()
>>> Q
Matrix([
[ 6/7, -69/175, -58/175],
[ 3/7, 158/175, 6/175],
[-2/7, 6/35, -33/35]])
>> R
Matrix([
[14, 21, -14],
[ 0, 175, -70],
[ 0, 0, 35]])
>> A == Q*R
True
```

QR factorization of an identity matrix:

```
>>> A = Matrix([[1, 0, 0], [0, 1, 0], [0, 0, 1]])
>>> Q, R = A.QRdecomposition()
>> Q
Matrix([
[1, 0, 0],
[0, 1, 0],
[0, 0, 1]])
```

```
>>> R
Matrix([
[1, 0, 0],
[0, 1, 0],
[0, 0, 1]])
```


See also:

cholesky (page 524), LDLdecomposition (page 518), LUdecomposition (page 519), QRsolve (page 521)

QRsolve(b)

Solve the linear system ' $\mathrm{Ax}=\mathrm{b}$ '.
'self' is the matrix ' A ', the method argument is the vector ' b '. The method returns the solution vector ' x '. If ' b ' is a matrix, the system is solved for each column of ' b ' and the return value is a matrix of the same shape as ' b '.

This method is slower (approximately by a factor of 2) but more stable for floatingpoint arithmetic than the LUsolve method. However, LUsolve usually uses an exact arithmetic, so you don't need to use QRsolve.
This is mainly for educational purposes and symbolic matrices, for real (or complex) matrices use mpmath.qr_solve.

See also:

lower triangular_solve (page 541), upper_triangular_solve (page 549), cholesky_solve (page 524), diagonal_solve (page 527), LDLsolve (page 519), LUsolve (page 520), pinv_solve (page 544), QRdecomposition (page 520)

property T

Matrix transposition.
add (b)
Return self +b .
adjoint()
Conjugate transpose or Hermitian conjugation.
adjugate (method='berkowitz')
Returns the adjugate matrix.
Adjugate matrix is the transpose of the cofactor matrix.
https://en.wikipedia.org/wiki/Adjugate
See also:
cofactorMatrix (page 525), transpose (page 549), berkowitz (page 522)
atoms (*types)
Returns the atoms that form the current object.

Examples

```
>>> Matrix([[x]])
Matrix([[x]])
>>> _.atoms()
{x}
```


berkowitz()

The Berkowitz algorithm.
Given $\mathrm{N} \times \mathrm{N}$ matrix with symbolic content, compute efficiently coefficients of characteristic polynomials of 'self' and all its square sub-matrices composed by removing both i-th row and column, without division in the ground domain.

This method is particularly useful for computing determinant, principal minors and characteristic polynomial, when 'self' has complicated coefficients e.g. polynomials. Semi-direct usage of this algorithm is also important in computing efficiently sub-resultant PRS.
Assuming that M is a square matrix of dimension $\mathrm{N} \times \mathrm{N}$ and I is $\mathrm{N} \times \mathrm{N}$ identity matrix, then the following following definition of characteristic polynomial is begin used:

$$
\operatorname{charpoly}(M)=\operatorname{det}\left(t^{*} I-M\right)
$$

As a consequence, all polynomials generated by Berkowitz algorithm are monic.

```
>>> M = Matrix([[x, y, z], [1, 0, 0], [y, z, x]])
>>> p, q, r = M.berkowitz()
>> p # 1 x 1 M's sub-matrix
(1, -x)
```

>> q \# 2×2 M's sub-matrix
(1, -x, -y)

```
>>> r # 3 x 3 M's sub-matrix
(1, -2*x, x**2 - y*z - y, x*y - z**2)
```

For more information on the implemented algorithm refer to:
[1] S.J. Berkowitz, On computing the determinant in small parallel time using a small number of processors, ACM, Information Processing Letters 18, 1984, pp. 147-150
[2] M. Keber, Division-Free computation of sub-resultants using Bezout matrices, Tech. Report MPI-I-2006-1-006, Saarbrücken, 2006

See also:

berkowitz_det (page 523), berkowitz_minors (page 523), berkowitz_charpoly (page 522), berkowitz_eigenvals (page 523)
berkowitz_charpoly ($x=$ Dummy('lambda'), simplify $=<$ function simplify $>$)
Computes characteristic polynomial minors using Berkowitz method.
A PurePoly is returned so using different variables for x does not affect the comparison or the polynomials:

Examples

```
>>> A = Matrix([[1, 3], [2, 0]])
>>> A.berkowitz_charpoly(x) == A.berkowitz_charpoly(y)
True
```

Specifying x is optional; a Dummy with name lambda is used by default (which looks good when pretty-printed in unicode):

```
>>> A.berkowitz_charpoly().as_expr()
lambda**2 - _lāmbda - 6
```

Be sure your provided x doesn't clash with existing symbols:

```
>>> A = Matrix([[1, 2], [x, 0]])
>> A.charpoly().as_expr()
-2*x + lambda**2 -- lambda
>>> A.charpoly(x).as_expr()
Traceback (most recent call last):
GeneratorsError: polynomial ring and it's ground domain share generators
>>> A.charpoly(y).as expr()
-2*x + y**2 - y
```


See also:

berkowitz (page 522)
berkowitz_det()
Computes determinant using Berkowitz method.

See also:

det (page 526), berkowitz (page 522)
berkowitz_eigenvals(**flags)
Computes eigenvalues of a Matrix using Berkowitz method.

See also:

berkowitz (page 522)
berkowitz_minors()
Computes principal minors using Berkowitz method.

See also:

berkowitz (page 522)
charpoly ($x=$ Dummy('lambda'), simplify $=<$ function simplify $>$)
Computes characteristic polynomial minors using Berkowitz method.
A PurePoly is returned so using different variables for x does not affect the comparison or the polynomials:

Examples

```
>>> A = Matrix([[1, 3], [2, 0]])
>>> A.berkowitz_charpoly(x) == A.berkowitz_charpoly(y)
True
```

Specifying x is optional; a Dummy with name lambda is used by default (which looks good when pretty-printed in unicode):

```
>>> A.berkowitz_charpoly().as_expr()
_lambda**2 - _lāmbda - 6
```

Be sure your provided x doesn't clash with existing symbols:

```
>>> A = Matrix([[1, 2], [x, 0]])
>>> A.charpoly().as_expr()
-2*x + lambda**2 -- lambda
>>> A.charpoly(x).as_expr()
Traceback (most recen̄t call last):
GeneratorsError: polynomial ring and it's ground domain share generators
>>> A.charpoly(y).as expr()
-2*x + y**2 - y
```


See also:

```
berkowitz (page 522)
```

cholesky()
Returns the Cholesky decomposition L of a matrix A such that L * L.T = A
A must be a square, symmetric, positive-definite and non-singular matrix.

Examples

```
>>> A = Matrix(((25, 15, -5), (15, 18, 0), (-5, 0, 11)))
>>> A.cholesky()
Matrix([
[ 5, 0, 0],
[ 3, 3, 0],
[-1, 1, 3]])
>>> A.cholesky() * A.cholesky().T
Matrix([
[25, 15, -5],
[15, 18, 0],
[-5, 0, 11]])
```


See also:

LDLdecomposition (page 518), LUdecomposition (page 519), QRdecomposition (page 520)
cholesky_solve(rhs)
Solves Ax = B using Cholesky decomposition, for a general square non-singular matrix. For a non-square matrix with rows > cols, the least squares solution is returned.

See also:

lower_triangular_solve (page 541), upper_triangular_solve (page 549), diagona \bar{l} solve (page 527), LDLsolve (page $\overline{5} 19$), LUsolve (page 520), QRsolve (page 521), pinv_solve (page 544)
cofactor(i, j, method='berkowitz')
Calculate the cofactor of an element.
See also:
cofactorMatrix (page 525), minorEntry (page 541), minorMatrix (page 541)
cofactorMatrix(method='berkowitz')
Return a matrix containing the cofactor of each element.

See also:

cofactor (page 524), minorEntry (page 541), minorMatrix (page 541), adjugate (page 521)
col_insert (pos, mti)
Insert one or more columns at the given column position.

Examples

```
>>> M = zeros(3)
>>> V = ones(3, 1)
>>> M.col_insert(1, V)
Matrix([
[0, 1, 0, 0],
[0, 1, 0, 0],
[0, 1, 0, 0]])
```


See also:

row_insert (page 546)
col_join(bott)
Concatenates two matrices along self's last and bott's first row

Examples

```
>>> M = zeros(3)
>>> V = ones(1, 3)
>>> M.col_join(V)
Matrix([
[0, 0, 0],
[0, 0, 0],
[0, 0, 0],
[1, 1, 1]])
```


See also:

row_join (page 546)
condition_number ()
Returns the condition number of a matrix.
This is the maximum singular value divided by the minimum singular value

Examples

```
>>> A = Matrix([[1, 0, 0], [0, 10, 0], [0, 0, Rational(1, 10)]])
>>> A.condition_number()
100
```


See also:

singular_values (page 547)
conjugate()
By-element conjugation.
copy ()
Returns the copy of a matrix.
cross (b)
Return the cross product of self and b relaxing the condition of compatible dimensions: if each has 3 elements, a matrix of the same type and shape as self will be returned. If b has the same shape as self then common identities for the cross product (like $a x b=-b x a$) will hold.

See also:

dot (page 528), multiply (page 541), multiply_elementwise (page 541)
$\operatorname{det}($ method='bareiss')
Computes the matrix determinant using the method "method".
Possible values for "method": bareiss ... det_bareis berkowitz ... berkowitz_det det_LU ... det_LU_decomposition

See also:

det_bareiss (page 526), berkowitz_det (page 523), det_LU_decomposition (page 526)
det_LU_decomposition()
Compute matrix determinant using LU decomposition
Note that this method fails if the LU decomposition itself fails. In particular, if the matrix has no inverse this method will fail.

TODO: Implement algorithm for sparse matrices (SFF), Hong R. Lee, B.David Saunders, Fraction Free Gaussian Elimination for Sparse Matrices, In Journal of Symbolic Computation, Volume 19, Issue 5, 1995, Pages 393-402, ISSN 0747-7171, https://www.sciencedirect.com/science/article/pii/S074771718571022X.

See also:

det (page 526), det_bareiss (page 526), berkowitz_det (page 523)

det_bareiss()

Compute matrix determinant using Bareiss' fraction-free algorithm which is an extension of the well known Gaussian elimination method. This approach is best suited for dense symbolic matrices and will result in a determinant with minimal number of fractions. It means that less term rewriting is needed on resulting formulae.

TODO: Implement algorithm for sparse matrices (SFF), Hong R. Lee, B.David Saunders, Fraction Free Gaussian Elimination for Sparse Matrices, In Journal of Symbolic Computation, Volume 19, Issue 5, 1995, Pages 393-402, ISSN 0747-7171, https://www.sciencedirect.com/science/article/pii/S074771718571022X.

See also:

det (page 526), berkowitz_det (page 523)
diagonal_solve(rhs)
Solves Ax = B efficiently, where A is a diagonal Matrix, with non-zero diagonal entries.

Examples

```
>> A = eye(2)*2
>>> B = Matrix([[1, 2], [3, 4]])
>>> A.diagonal_solve(B) == B/2
True
```


See also:

lower_triangular_solve (page 541), upper_triangular_solve (page 549), choles̄ky_solve (page 524), LDLsolve (page 519), LUsolve (page 520), QRsolve (page 521), pinv_solve (page 544)
diagonalize (reals_only=False, sort=False, normalize=False)
Return (P, D), where D is diagonal and

$$
\mathrm{D}=\mathrm{P}^{\wedge}-1 * \mathrm{M} * \mathrm{P}
$$

where M is current matrix.

Examples

```
>>> m = Matrix(3, 3, [1, 2, 0, 0, 3, 0, 2, -4, 2])
>>> m
Matrix([
[1, 2, 0],
[0, 3, 0],
[2, -4, 2]])
>>> (P, D) = m.diagonalize()
>> D
Matrix([
[1, 0, 0],
[0, 2, 0],
[0, 0, 3]])
>> P
Matrix([
[-1, 0, -1],
[ 0, 0, -1],
[ 2, 1, 2]])
>>P.inv() * m * P
Matrix([
[1, 0, 0],
[0, 2, 0],
[0, 0, 3]])
```


See also:

is_diagonal (page 533), is_diagonalizable (page 534)
diff(*args)
Calculate the derivative of each element in the matrix.

Examples

```
>>> M = Matrix([[x, y], [1, 0]])
>>> M.diff(x)
Matrix([
[1, 0],
[0, 0]])
```


See also:

integrate (page 531), limit (page 541)
$\operatorname{dot}(b)$
Return the dot product of Matrix self and b relaxing the condition of compatible dimensions: if either the number of rows or columns are the same as the length of b then the dot product is returned. If self is a row or column vector, a scalar is returned. Otherwise, a list of results is returned (and in that case the number of columns in self must match the length of b).

Examples

```
>>> M = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
>>> v = [1, 1, 1]
>>> M[0, :].dot(v)
6
>>> M[:, 0].dot(v)
1 2
>>> M.dot(v)
[6, 15, 24]
```


See also:

cross (page 526), multiply (page 541), multiply_elementwise (page 541)
dual()
Returns the dual of a matrix, which is:
$(1 / 2) *$ levicivita $(i, j, k, l) * M(k, l)$ summed over indices k and l
Since the levicivita method is anti_symmetric for any pairwise exchange of indices, the dual of a symmetric matrix is the zero matrix. Strictly speaking the dual defined here assumes that the 'matrix' M is a contravariant anti_symmetric second rank tensor, so that the dual is a covariant second rank tensor.

eigenvals(**flags)

Return eigen values using the berkowitz_eigenvals routine.
Since the roots routine doesn't always work well with Floats, they will be replaced with Rationals before calling that routine. If this is not desired, set flag rational to False.
eigenvects (**flags)
Return list of triples (eigenval, multiplicity, basis).
The flag simplify has two effects: 1) if bool(simplify) is True, as_content_primitive() will be used to tidy up normalization artifacts; 2) if nullspace needs simplification to compute the basis, the simplify flag will be passed on to the nullspace routine which will interpret it there.

If the matrix contains any Floats, they will be changed to Rationals for computation purposes, but the answers will be returned after being evaluated with evalf. If it is desired to removed small imaginary portions during the evalf step, pass a value for the chop flag.
evalf(dps=15, **options)
Apply evalf() to each element of self.
$\exp ()$
Return the exponentiation of a square matrix.
expand (deep=True, modulus=None, power_base=True, power_exp=True, mul=True, log=True, multinomial=True, basic=True, **hints)
Apply core.function.expand to each entry of the matrix.

Examples

```
>>> Matrix(1, 1, [x*(x+1)])
Matrix([[x*(x + 1)]])
>>> _.expand()
Matrix([[x**2 + x]])
```

extract(rowsList, colsList)
Return a submatrix by specifying a list of rows and columns. Negative indices can be given. All indices must be in the range $-\mathrm{n}<=\mathrm{i}<\mathrm{n}$ where n is the number of rows or columns.

Examples

```
>>> m = Matrix(4, 3, range(12))
>>> m
Matrix([
[0, 1, 2],
[3, 4, 5],
[6, 7, 8],
[9, 10, 11]])
>>> m.extract([0, 1, 3], [0, 1])
Matrix([
[0, 1],
[3, 4],
[9, 10]])
```

Rows or columns can be repeated:

```
>>> m.extract([0, 0, 1], [-1])
Matrix([
[2],
[2],
[5]])
```

Every other row can be taken by using range to provide the indices:

```
>>> m.extract(range(0, m.rows, 2), [-1])
Matrix([
[2],
[8]])
```


Diofant Documentation, Release 0.13.0

property free_symbols
Returns the free symbols within the matrix.

Examples

```
>>> Matrix([[x], [1]]).free_symbols
```

\{x\}
get_diag_blocks()
Obtains the square sub-matrices on the main diagonal of a square matrix.
Useful for inverting symbolic matrices or solving systems of linear equations which may be decoupled by having a block diagonal structure.

Examples

```
>>> A = Matrix([[1, 3, 0, 0], [y, z*z, 0, 0], [0, 0, x, 0], [0, 0, 0, 0]])
>>> a1, a2, a3 = A.get_diag_blocks()
>>> al
Matrix([
[1, 3],
[y, z**2]])
>>> a2
Matrix([[x]])
>>> a3
Matrix([[0]])
has(*patterns)
Test whether any subexpression matches any of the patterns.
```


Examples

```
>>> A = Matrix(((1, x), (0.2, 3)))
>>> A.has(x)
True
>>> A.has(y)
False
>>> A.has(Float)
True
```


classmethod hstack(*args)

Return a matrix formed by joining args horizontally (i.e. by repeated application of row_join).

Examples

```
>>> Matrix.hstack(eye(2), 2*eye(2))
Matrix([
[1, 0, 2, 0],
[0, 1, 0, 2]])
```

integrate(*args)
Integrate each element of the matrix.

Examples

```
>>> M = Matrix([[x, y], [1, 0]])
>> M.integrate(x)
Matrix([
[x**2/2, x*y],
[ m, 0]])
>>> M.integrate((x, 0, 2))
Matrix([
[2, 2*y],
[2, 0]])
```


See also:

limit (page 541), diff (page 527)
inv (method=None, **kwargs)
Returns the inverse of the matrix.
Parameters method ($\left\{\begin{array}{c} \\ \\ \hline\end{array} E^{\prime}, ~ ' L U ', ~ ' A D J\right.$ ', ' $C H^{\prime}$, ' $\left.L D L^{\prime}\right\}$ or None) - Selects algorithm for inversion. For dense matrices available \{'GE', ‘LU', 'ADJ’\}, default is 'GE'. For sparse: \{'CH', 'LDL'\}, default is 'LDL'.

Raises ValueError - If the determinant of the matrix is zero.

See also:

inverse_LU (page 532), inverse_GE (page 532), inverse_ADJ (page 532)
inv_mod (m)
Returns the inverse of the matrix $K(\bmod m)$, if it exists.
Method to find the matrix inverse of $K(\bmod m)$ implemented in this function:

- Compute $\operatorname{adj}(K)=\operatorname{cof}(K)^{t}$, the adjoint matrix of K.
- Compute $r=1 / \operatorname{det}(K)(\bmod m)$.
- $K^{-1}=r \cdot \operatorname{adj}(K)(\bmod m)$.

Examples

```
>> A = Matrix(2, 2, [1, 2, 3, 4])
>>> A.inv_mod(5)
Matrix([
[3, 1],
[4, 2]])
>>> A.inv_mod(3)
Matrix([
[1, 1],
[0, 1]])
```

inverse_ADJ (iszerofunc $=<$ function_iszero>)
Calculates the inverse using the adjugate matrix and a determinant.

See also:

diofant.matrices.matrices.MatrixBase.inv (page 531), inverse_LU (page 532), inverse_GE (page 532)
inverse_GE(iszerofunc=<function_iszero>)
Calculates the inverse using Gaussian elimination.

See also:

diofant.matrices.matrices.MatrixBase.inv (page 531), inverse_LU (page 532), inverse_ADJ (page 532)
inverse_LU(iszerofunc $=$ <function iszero>)
Calculates the inverse using LŪ decomposition.

See also:

diofant.matrices.matrices.MatrixBase.inv (page 531), inverse_GE (page 532), inverse_ADJ (page 532)
is_anti_symmetric (simplify=True)
Check if matrix M is an antisymmetric matrix, that is, M is a square matrix with all $\mathrm{M}[\mathrm{i}, \mathrm{j}]==-\mathrm{M}[\mathrm{j}, \mathrm{i}]$.
When simplify=True (default), the sum $M[i, j]+M[j, i]$ is simplified before testing to see if it is zero. By default, the Diofant simplify function is used. To use a custom function set simplify to a function that accepts a single argument which returns a simplified expression. To skip simplification, set simplify to False but note that although this will be faster, it may induce false negatives.

Examples

```
>>> m = Matrix(2, 2, [0, 1, -1, 0])
>>> m
Matrix([
[ 0, 1],
[-1, 0]])
>>> m.is_anti_symmetric()
True
>>> m = Matrix(2, 3, [0, 0, x, -y, 0, 0])
>>> m
Matrix([
[ 0, 0, x],
[-y, 0, 0]])
```

```
>>> m.is_anti_symmetric()
False
```

```
>>> m = Matrix(3, 3, [0, x**2 + 2*x + 1, y,
\cdots. -(x + 1)**2, 0, x*y,
#. -y, -x*y, 0])
```

Simplification of matrix elements is done by default so even though two elements which should be equal and opposite wouldn't pass an equality test, the matrix is still reported as anti-symmetric:

```
>>> m[0, 1] == -m[1, 0]
False
>>> m.is_anti_symmetric()
True
```

If 'simplify=False' is used for the case when a Matrix is already simplified, this will speed things up. Here, we see that without simplification the matrix does not appear anti-symmetric:

```
>>> m.is_anti_symmetric(simplify=False)
False
```

But if the matrix were already expanded, then it would appear anti-symmetric and simplification in the is_anti_symmetric routine is not needed:

```
>>> m = m.expand()
>>> m.is_anti_symmetric(simplify=False)
True
```


is_diagonal()

Check if matrix is diagonal, that is matrix in which the entries outside the main diagonal are all zero.

Examples

```
>>> m = Matrix(2, 2, [1, 0, 0, 2])
>>> m
Matrix([
[1, 0],
[0, 2]])
>>> m.is diagonal()
True
```

```
>>> m = Matrix(2, 2, [1, 1, 0, 2])
```

>>> m = Matrix(2, 2, [1, 1, 0, 2])
>>> m
>>> m
Matrix([
Matrix([
[1, 1],
[1, 1],
[0, 2]])
[0, 2]])
>>> m.is_diagonal()
>>> m.is_diagonal()
False

```
False
```

```
>>> m = diag(1, 2, 3)
>>> m
Matrix([
[1, 0, 0],
[0, 2, 0],
```

```
[0, 0, 3]])
>>> m.is_diagonal()
True
```


See also:

is_lower (page 535), is_upper (page 537), is_diagonalizable (page 534), diagonālize (page 527)
is_diagonalizable(reals_only=False, clear_subproducts=True)
Check if matrix is diagonalizable.
If reals_only==True then check that diagonalized matrix consists of the only not complex values.
Some subproducts could be used further in other methods to avoid double calculations, By default (if clear_subproducts==True) they will be deleted.

Examples

```
>>> m = Matrix(3, 3, [1, 2, 0, 0, 3, 0, 2, -4, 2])
>>> m
Matrix([
[1, 2, 0],
[0, 3, 0],
[2, -4, 2]])
>>> m.is_diagonalizable()
True
>> m = Matrix(2, 2, [0, 1, 0, 0])
>> m
Matrix([
[0, 1],
[0, 0]])
>>> m.is_diagonalizable()
False
>> m = Matrix(2, 2, [0, 1, -1, 0])
>>> m
Matrix([
[ 0, 1],
[-1, 0]])
>>> m.is_diagonalizable()
True
>>> m.is_diagonalizable(True)
False
```


See also:

is_diagonal (page 533), diagonalize (page 527)
property is_hermitian
Checks if the matrix is Hermitian.
In a Hermitian matrix element i, j is the complex conjugate of element j, i.

Examples

```
>>> a = Matrix([[1, I], [-I, 1]])
>>> a
Matrix([
[ 1, I],
[-I, 1]])
>>> a.is_hermitian
True
>>> a[0, 0] = 2*I
>>> a.is_hermitian
False
>> a[0, 0] = x
>>> a.is_hermitian
>> a[0, 1] = a[1, 0]*I
>>> a.is_hermitian
False
```

property is_lower
Check if matrix is a lower triangular matrix. True can be returned even if the matrix is not square.

Examples

```
>>> m = Matrix(2, 2, [1, 0, 0, 1])
>>> m
Matrix([
[1, 0],
[0, 1]])
>>> m.is lower
True
```

```
>>> m = Matrix(4, 3, [0, 0, 0, 2, 0, 0, 1, 4, 0, 6, 6, 5])
>>> m
Matrix([
[0, 0, 0],
[2, 0, 0],
[1, 4, 0],
[6, 6, 5]])
>>> m.is_lower
True
```

```
>>> m = Matrix(2, 2, [x**2 + y, y**2 + x, 0, x + y])
>>> m
Matrix([
[x**2 + y, x + y**2],
[ [ 0, x x y]])
>>> m.is_lower
False
```


See also:

is_upper (page 537), is_diagonal (page 533), is_lower_hessenberg (page 535)
property is_lower_hessenberg
Checks if the matrix is in the lower-Hessenberg form.
The lower hessenberg matrix has zero entries above the first superdiagonal.

Examples

```
>>> a = Matrix([[1, 2, 0, 0], [5, 2, 3, 0], [3, 4, 3, 7], [5, 6, 1, 1]])
>>> a
Matrix([
[1, 2, 0, 0],
[5, 2, 3, 0],
[3, 4, 3, 7],
[5, 6, 1, 1]])
>>> a.is_lower_hessenberg
True
```


See also:

is_upper_hessenberg (page 538), is_lower (page 535)
is_nilpotent()
Checks if a matrix is nilpotent.
A matrix B is nilpotent if for some integer $k, B^{* *} k$ is a zero matrix.

Examples

```
>>> a = Matrix([[0, 0, 0], [1, 0, 0], [1, 1, 0]])
>>> a.is_nilpotent()
True
```

\ggg a $=\operatorname{Matrix}([[1,0,1],[1,0,0],[1,1,0]])$
>>> a.is_nilpotent()
False
property is_square
Checks if a matrix is square.
A matrix is square if the number of rows equals the number of columns. The empty matrix is square by definition, since the number of rows and the number of columns are both zero.

Examples

```
>>> a = Matrix([[1, 2, 3], [4, 5, 6]])
>>> b = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
>>> c = Matrix([])
>>> a.is square
False
>>> b.is_square
True
>>> c.is_square
True
```


is_symbolic()

Checks if any elements contain Symbols.

Examples

```
>>> M = Matrix([[x, y], [1, 0]])
>>> M.is_symbolic()
True
```

is_symmetric (simplify=True)
Check if matrix is symmetric matrix, that is square matrix and is equal to its transpose.
By default, simplifications occur before testing symmetry. They can be skipped using 'simplify=False'; while speeding things a bit, this may however induce false negatives.

Examples

```
>>> m = Matrix(2, 2, [0, 1, 1, 2])
>>> m
Matrix([
[0, 1],
[1, 2]])
>>> m.is_symmetric()
True
```

```
>>> m = Matrix(2, 2, [0, 1, 2, 0])
>>> m
Matrix([
[0, 1],
[2, 0]])
>>> m.is_symmetric()
False
```

```
>>> m = Matrix(2, 3, [0, 0, 0, 0, 0, 0])
>>> m
Matrix([
[0, 0, 0],
[0, 0, 0]])
>>> m.is_symmetric()
False
```

```
>>> m = Matrix(3, 3, [1, x**2 + 2*x + 1, y, (x + 1)**2, 2, 0, y, 0, 3])
>>> m
Matrix([
```



```
>>> m.is_symmetric()
True
```

If the matrix is already simplified, you may speed-up is_symmetric() test by using 'simplify=False'.

```
>>> m.is_symmetric(simplify=False)
False
>>> m1 = m.expand()
>>> ml.is_symmetric(simplify=False)
True
```

property is_upper
Check if matrix is an upper triangular matrix. True can be returned even if the

Diofant Documentation, Release 0.13.0

matrix is not square.

Examples

```
>>> m = Matrix(2, 2, [1, 0, 0, 1])
>> m
Matrix([
[1, 0],
[0, 1]])
>>> m.is_upper
True
```

```
>>> m = Matrix(4, 3, [5, 1, 9, 0, 4, 6, 0, 0, 5, 0, 0, 0])
>>> m
Matrix([
[5, 1, 9],
[0, 4, 6],
[0, 0, 5],
[0, 0, 0]])
>>> m.is_upper
True
```

```
>>> m = Matrix(2, 3, [4, 2, 5, 6, 1, 1])
>> m
Matrix([
[4, 2, 5],
[6, 1, 1]])
>>> m.is upper
False
```


See also:

is_lower (page 535), is_diagonal (page 533), is_upper_hessenberg (page 538)
property is_upper_hessenberg
Checks if the matrix is the upper-Hessenberg form.
The upper hessenberg matrix has zero entries below the first subdiagonal.

Examples

```
>>> a = Matrix([[1, 4, 2, 3], [3, 4, 1, 7], [0, 2, 3, 4], [0, 0, 1, 3]])
>>> a
Matrix([
[1, 4, 2, 3],
[3, 4, 1, 7],
[0, 2, 3, 4],
[0, 0, 1, 3]])
>>> a.is_upper_hessenberg
True
```


See also:

is_lower_hessenberg (page 535), is_upper (page 537)
property is_zero
Checks if a matrix is a zero matrix.

A matrix is zero if every element is zero. A matrix need not be square to be considered zero. The empty matrix is zero by the principle of vacuous truth. For a matrix that may or may not be zero (e.g. contains a symbol), this will be None

Examples

```
>>> a = Matrix([[0, 0], [0, 0]])
>>> b = zeros(3, 4)
>>> c = Matrix([[0, 1], [0, 0]])
>>> d = Matrix([])
>> e = Matrix([[x, 0], [0, 0]])
>>> a.is zero
True
>>> b.is zero
True
>>> c.is_zero
False
>>> d.is_zero
True
>>> e.is zero
```

jacobian (X)
Calculates the Jacobian matrix (derivative of a vectorial function).

Parameters

- self (vector of expressions representing functions $\left.f_{-} i\left(x _1, \ldots, x_{-} n\right).\right)$
- \mathbf{X} (set of X_i's in order, it can be a list or a Matrix) $^{\text {a }}$
- Both self and X can be a row or a column matrix in any order
- (i.e., jacobian() should always work).

Examples

```
>>> from diofant.abc import rho, phi
>>> X = Matrix([rho*cos(phi), rho*sin(phi), rho**2])
>>> Y = Matrix([rho, phi])
>> X.jacobian(Y)
Matrix([
[cos(phi), -rho*sin(phi)],
[sin(phi), rho*cos(phi)],
[ 2*rho, 0]])
>>> X = Matrix([rho*cos(phi), rho*sin(phi)])
>>> X.jacobian(Y)
Matrix([
[cos(phi), -rho*sin(phi)],
[sin(phi), rho*cos(phi)]])
```


See also:

diofant.matrices.dense.hessian (page 554), diofant.matrices.dense. wronskian (page 554)
jordan_cells(calc_transformation=True)
Return a list of Jordan cells of current matrix. This list shape Jordan matrix J.

If calc_transformation $=$ False, then transformation P such that

$$
J=P^{-1} \cdot M \cdot P
$$

will not be calculated.

Examples

```
>>> m = Matrix([[+6, 5, -2, -3],
# [-3, -1, 3, 3],
#. [+2, 1, -2, -3],
#.. [-1, 1, 5, 5]])
```

```
>>> Jcells, P = m.jordan_cells()
>>> Jcells[0]
Matrix([
[2, 1],
[0, 2]])
>>> Jcells[1]
Matrix([
[2, 1],
[0, 2]])
```


See also:

jordan_form (page 540)
jordan_form (calc_transformation=True)
Return Jordan form J of current matrix.
Also (if calc_transformation=True) the transformation P such that

$$
J=P^{-1} \cdot M \cdot P
$$

and the jordan blocks forming J will be calculated.

Examples

```
>>> m = Matrix([[[+6, 5, -2, -3],
# [-3,-1, 3, 3],
#. [+2, 1, -2, -3],
## [-1, 1, 5, 5]])
>>> J, P = m.jordan_form()
>>> J
Matrix([
[2, 1, 0, 0],
[0, 2, 0, 0],
[0, 0, 2, 1],
[0, 0, 0, 2]])
```


See also:

jordan_cells (page 539)
key2bounds (keys)
Converts a key with potentially mixed types of keys (integer and slice) into a tuple of ranges and raises an error if any index is out of self's range.

See also:

key2ij (page 541)
key2ij (key)
Converts key into canonical form, converting integers or indexable items into valid integers for self's range or returning slices unchanged.

See also:

key2bounds (page 540)
limit(*args)
Calculate the limit of each element in the matrix.

Examples

```
>>> M = Matrix([[x, y], [1, 0]])
>>> M.limit(x, 2)
Matrix([
[2, y],
[1, 0]])
```


See also:

integrate (page 531), diff (page 527)
lower_triangular_solve(rhs)
Solves Ax = B, where A is a lower triangular matrix.

See also:

upper_triangular_solve (page 549), cholesky_solve (page 524), diagonal_sṑve (page 527), LDLsolve (page 519), LŪsolve (page 520), QRsolve (page 521), pinv_solve (page 544)
minorEntry(i,j, method='berkowitz')
Calculate the minor of an element.

See also:

minorMatrix (page 541), cofactor (page 524), cofactorMatrix (page 525)
minorMatrix (i,j)
Creates the minor matrix of a given element.
See also:
minorEntry (page 541), cofactor (page 524), cofactorMatrix (page 525)
multiply (b)
Returns self*b

See also:

dot (page 528), cross (page 526), multiply_elementwise (page 541)
multiply_elementwise (b)
Return the Hadamard product (elementwise product) of A and B

Examples

```
>>> A = Matrix([[0, 1, 2], [3, 4, 5]])
>> B = Matrix([[1, 10, 100], [100, 10, 1]])
>>> A.multiply_elementwise(B)
Matrix([
[ 0, 10, 200],
[300, 40, 5]])
```


See also:

cross (page 526), dot (page 528), multiply (page 541)
$\mathbf{n}(d p s=15, * *$ options $)$
Apply evalf() to each element of self.
norm (ord=None)
Return the Norm of a Matrix or Vector. In the simplest case this is the geometric size of the vector Other norms can be specified by the ord parameter

ord	norm for matrices	norm for vectors
None	Frobenius norm	2-norm
'fro'	Frobenius norm	• does not exist
inf	-	$\max (\mathrm{abs}(\mathrm{x})$)
-inf	-	$\min (\mathrm{abs}(\mathrm{x}))$
1	-	as below
-1	-	2-norm (largest sing. value)
2	smallest singular value below	
-2	- does not exist	as below
other		

Examples

```
>>> x = Symbol('x', real=True)
>>> v = Matrix([cos(x), sin(x)])
>>> trigsimp(v.norm())
1
>>> v.norm(10)
(sin(x)**10 + cos(x)**10)**(1/10)
>>> A = Matrix([[1, 1], [1, 1]])
>> A.norm(2) # Spectral norm (max of }|Ax|/|x| under 2-vector-norm
2
>>> A.norm(-2) # Inverse spectral norm (smallest singular value)
0
>>> A.norm() # Frobenius Norm
2
>>> Matrix([1, -2]).norm(oo)
2
>>> Matrix([-1, 2]).norm(-00)
1
```


See also:

normalized (page 543)
normalized()
Return the normalized version of self.

See also:

norm (page 542)
nullspace(simplify=False, iszerofunc=<function_iszero>)
Returns list of vectors (Matrix objects) that span nullspace of self.
permuteBkwd (perm)
Permute the rows of the matrix with the given permutation in reverse.

Examples

```
>>> M = eye(3)
>>> M.permuteBkwd([[0, 1], [0, 2]])
Matrix([
[0, 1, 0],
[0, 0, 1],
[1, 0, 0]])
```


See also:

permuteFwd (page 543)
permuteFwd (perm)
Permute the rows of the matrix with the given permutation.

Examples

```
>>> M = eye(3)
>>> M.permuteFwd([[0, 1], [0, 2]])
Matrix([
[0, 0, 1],
[1, 0, 0],
[0, 1, 0]])
```


See also:

permuteBkwd (page 543)
pinv()
Calculate the Moore-Penrose pseudoinverse of the matrix.
The Moore-Penrose pseudoinverse exists and is unique for any matrix. If the matrix is invertible, the pseudoinverse is the same as the inverse.

Examples

```
>>> Matrix([[1, 2, 3], [4, 5, 6]]).pinv()
Matrix([
[-17/18, 4/9],
[ -1/9, 1/9],
[ 13/18, -2/9]])
```


See also:

diofant.matrices.matrices.MatrixBase.inv (page 531), pinv_solve (page 544)

References

- https://en.wikipedia.org/wiki/Moore-Penrose_pseudoinverse
pinv_solve (B, arbitrary_matrix=None)
Solve Ax = B using the Moore-Penrose pseudoinverse.
There may be zero, one, or infinite solutions. If one solution exists, it will be returned. If infinite solutions exist, one will be returned based on the value of arbitrary_matrix. If no solutions exist, the least-squares solution is returned.

Parameters

- B (Matrix) - The right hand side of the equation to be solved for. Must have the same number of rows as matrix A.
- arbitrary_matrix (Matrix) - If the system is underdetermined (e.g. A has more columns than rows), infinite solutions are possible, in terms of an arbitrary matrix. This parameter may be set to a specific matrix to use for that purpose; if so, it must be the same shape as x , with as many rows as matrix A has columns, and as many columns as matrix B. If left as None, an appropriate matrix containing dummy symbols in the form of wn_m will be used, with n and m being row and column position of each symbol.

Returns \mathbf{x} (Matrix) - The matrix that will satisfy $\mathrm{Ax}=\mathrm{B}$. Will have as many rows as matrix A has columns, and as many columns as matrix B.

Examples

```
>> A = Matrix([[1, 2, 3], [4, 5, 6]])
>>> B = Matrix([7, 8])
>> A.pinv_solve(B)
Matrix([
[ _w0_0/6 - _w1_0/3 + _w2_0/6 - 55/18],
[--w0]0/3 + \overline{2}*\overline{w}1_0/3 - -\overline{w}2_0/3 + 1/9],
[ _w0-0/6 - _w\overline{1}0\overline{/3}+ _w\overline{2}_0/6 + 59/18]])
>>> A.pinv_sōlve(B, ar\overline{b}it\overline{r}ary_matrix=Matrix([0, 0, 0]))
Matrix([
[-55/18],
[ 1/9],
[ 59/18]])
```


See also:

lower triangular_solve (page 541), upper_triangular_solve (page 549), cholesky_solve (page 524), diagonal_solve (page 527), LDLsolve (page 519), LUsolve (page 520), QRsolve (page 521), pinv (page 543)

Notes

This may return either exact solutions or least squares solutions. To determine which, check A * A.pinv() * B == B. It will be True if exact solutions exist, and False if only a least-squares solution exists. Be aware that the left hand side of that equation may need to be simplified to correctly compare to the right hand side.

References

- https://en.wikipedia.org/wiki/Moore-Penrose_pseudoinverse\#Obtaining_all solutions_of_a_linear_system
print_nonzero(symb=' X^{\prime})
Shows location of non-zero entries for fast shape lookup.

Examples

```
>>> m = Matrix(2, 3, lambda i, j: i*3+j)
>>> m
Matrix([
[0, 1, 2],
[3, 4, 5]])
>>> m.print_nonzero()
[ XX]
[XXX]
>>> m = eye(4)
>>> m.print_nonzero('x')
[x ]
[ x ]
[ x ]
project(v)
```

Return the projection of self onto the line containing v.

Examples

```
>>> V = Matrix([sqrt(3)/2, Rational(1, 2)])
>>> x = Matrix([[1, 0]])
>>> V.project(x)
Matrix([[sqrt(3)/2, 0]])
>>> V.project(-x)
Matrix([[sqrt(3)/2, 0]])
```

rank (iszerofunc $=<$ function_iszero>, simplify=False)
Returns the rank of a matrix

```
>>> m = Matrix([[1, 2], [x, 1 - 1/x]])
>>> m.rank()
2
>>> n = Matrix(3, 3, range(1, 10))
>>> n.rank()
2
```

replace $(F, G$, exact=False)

Replaces Function F in Matrix entries with Function G.

Examples

```
>>> F, G = symbols('F, G', cls=Function)
>>> M = Matrix(2, 2, lambda i, j: F(i+j))
>>> M
Matrix([
[F(0), F(1)],
[F(1), F(2)]])
>>> N = M.replace(F,G)
>>> N
Matrix([
[G(0), G(1)],
[G(1), G(2)]])
```

row_insert (pos, mti)
Insert one or more rows at the given row position.

Examples

```
>>> M = zeros(3)
>>> V = ones(1, 3)
>>> M.row_insert(1, v)
Matrix([
[0, 0, 0],
[1, 1, 1],
[0, 0, 0],
[0, 0, 0]])
```


See also:

col_insert (page 525)
row_join(rhs)
Concatenates two matrices along self's last and rhs's first column

Examples

```
>>> M = zeros(3)
>>> V = ones(3, 1)
>>> M. row_join(V)
Matrix([
[0, 0, 0, 1],
[0, 0, 0, 1],
[0, 0, 0, 1]])
```


See also:

col_join (page 525)
rref (iszerofunc $=<$ function_iszero>, simplify=False)
Return reduced row-echelon form of matrix and indices of pivot vars.
To simplify elements before finding nonzero pivots set simplify=True (to use the default Diofant simplify function) or pass a custom simplify function.

Examples

```
>>> m = Matrix([[1, 2], [x, 1 - 1/x]])
>>> m.rref()
(Matrix([
[1, 0],
[0, 1]]), [0, 1])
```


property shape

The shape (dimensions) of the matrix as the 2-tuple (rows, cols).

Examples

```
>>> M = zeros(2, 3)
>>> M. shape
(2, 3)
>>> M. rows
2
>>> M.cols
3
```

simplify (ratio=1.7, measure=<function count_ops>)
Apply simplify to each element of the matrix.

Examples

```
>>> SparseMatrix(1, 1, [x*sin(y)**2 + x*cos(y)**2])
Matrix([[x*}\operatorname{sin}(y)**2 + x*\operatorname{cos}(y)**2]]
>>> _.simplify()
Matrīx([[x]])
```

singular_values()
Compute the singular values of a Matrix

Examples

```
>>> x = Symbol('x', real=True)
>> A = Matrix([[0, 1, 0], [0, x, 0], [-1, 0, 0]])
>>> A.singular values()
[sqrt(x**2 + 1), 1, 0]
```


See also:

condition_number (page 525)
solve_least_squares (rhs, method=' $C H^{\prime}$)
Return the least-square fit to the data.
By default the cholesky_solve routine is used (method=' CH^{\prime}); other methods of matrix inversion can be used.

Examples

```
>>> A = Matrix([1, 2, 3])
>>> B = Matrix([2, 3, 4])
>>> S = Matrix(A.row_join(B))
>>> S
Matrix([
[1, 2],
[2, 3],
[3, 4]])
```

If each line of S represent coefficients of $A x+B y$ and x and y are $[2,3]$ then $S * x y$ is:

```
>>> r = S*Matrix([2, 3])
>>> r
Matrix([
[ 8],
[13],
[18]])
```

But let's add 1 to the middle value and then solve for the least-squares value of $x y$:

```
>>> xy = S.solve_least_squares(Matrix([8, 14, 18]))
>>> xy
Matrix([
[ 5/3],
[10/3]])
```

The error is given by $\mathrm{S}^{*} \mathrm{xy}$ - r :

```
>>> S*xy - r
Matrix([
[1/3],
[1/3],
[1/3]])
>>> _.norm().evalf(2)
0.58
```

If a different $x y$ is used, the norm will be higher:

```
>>> xy += ones(2, 1)/10
>>> (S*xy - r).norm().evalf(2)
1.5
```


See also:

inv (page 531)
subs (*args, **kwargs)
Return a new matrix with subs applied to each entry.

Examples

```
>>> SparseMatrix(1, 1, [x])
Matrix([[x]])
>>> .subs({x: y})
Matrīx([[y]])
>>> Matrix(_).subs({y: x})
Matrix([[x]])
```

table (printer, rowstart='[', rowend=']', rowsep=' $\mid n '$, colsep=', ', align='right') String form of Matrix as a table.
printer is the printer to use for on the elements (generally something like StrPrinter())
rowstart is the string used to start each row (by default ‘[').
rowend is the string used to end each row (by default ' $]$ ').
rowsep is the string used to separate rows (by default a newline).
colsep is the string used to separate columns (by default ', ').
align defines how the elements are aligned. Must be one of 'left', 'right', or 'center'.
You can also use ' $<$ ', ' $>$ ', and ' \wedge ' to mean the same thing, respectively.
This is used by the string printer for Matrix.

Examples

```
>>> from diofant.printing.str import StrPrinter
>>> M = Matrix([[1, 2], [-33, 4]])
>>> printer = StrPrinter()
>>> M.table(printer)
'[ 1, 2]\n[-33, 4]'
>>> print(M.table(printer))
[ 1, 2]
[-33, 4]
>>> print(M.table(printer, rowsep=',\n'))
[ 1, 2],
[-33, 4]
>>> print('[%s]' % M.table(printer, rowsep=',\n'))
[[ 1, 2],
[-33, 4]]
>>> print(M.table(printer, colsep=' '))
[ [ll
[-33 4]
>>> print(M.table(printer, align='center'))
[ 1 , 2]
[-33, 4]
>>> print(M.table(printer, rowstart='{', rowend='}'))
{ 1, 2}
{-33, 4}
```

trace()

Returns the trace of a matrix.

transpose()

Matrix transposition.
upper_triangular_solve(rhs)
Solves Ax = B, where A is an upper triangular matrix.

See also:

lower_triangular_solve (page 541), cholesky_solve (page 524), diagonal_sōlve (page 527), LDLsolve (page 519), LŪsolve (page 520), QRsolve (page 521), pinv_solve (page 544)
values()
Return non-zero values of self.
vec()
Return the Matrix converted into a one column matrix by stacking columns

Examples

```
>>> m = Matrix([[1, 3], [2, 4]])
>> m
Matrix([
[1, 3],
[2, 4]])
>>> m.vec()
Matrix([
    [1],
[2],
[3],
[4]])
```


See also:

vech (page 550)
vech (diagonal=True, check_symmetry=True)
Return the unique elements of a symmetric Matrix as a one column matrix by stacking the elements in the lower triangle.
Arguments: diagonal - include the diagonal cells of self or not check_symmetry checks symmetry of self but not completely reliably

Examples

```
>>> m = Matrix([[1, 2], [2, 3]])
>>> m
Matrix([
[1, 2],
[2, 3]])
>>> m.vech()
Matrix([
[1],
[2],
[3]])
>>> m.vech(diagonal=False)
Matrix([[2]])
```


See also:

vec (page 550)
classmethod vstack(*args)
Return a matrix formed by joining args vertically (i.e. by repeated application of col_join).

Examples

```
>>> Matrix.vstack(eye(2), 2*eye(2))
Matrix([
[1, 0],
[0, 1],
[2, 0],
[0, 2]])
```

xreplace(rule)
Return a new matrix with xreplace applied to each entry.

Examples

```
>>> SparseMatrix(1, 1, [x])
Matrix([[x]])
>>> _.xreplace({x: y})
Matrīx([[y]])
>>> Matrix(_).xreplace({y: x})
Matrix([[x]])
```


Matrix Exceptions Reference

class diofant.matrices.matrices.MatrixError
Generic matrix error.
class diofant.matrices.matrices.ShapeError
Wrong matrix shape.
class diofant.matrices.matrices.NonSquareMatrixError
Raised when a square matrix is expected.

Matrix Functions Reference

diofant.matrices.matrices.classof (A, B)
Get the type of the result when combining matrices of different types.
Currently the strategy is that immutability is contagious.

Examples

```
>>> M = Matrix([[1, 2], [3, 4]]) # a Mutable Matrix
>> IM = ImmutableMatrix([[1, 2], [3, 4]])
>>> classof(M, IM)
<class 'diofant.matrices.immutable.ImmutableMatrix'>
```

diofant.matrices.dense.matrix_multiply_elementwise(A, B)
Return the Hadamard product (elementwise product) of A and B

```
>>> A = Matrix([[0, 1, 2], [3, 4, 5]])
>> B = Matrix([[1, 10, 100], [100, 10, 1]])
>>> matrix_multiply_elementwise(A, B)
Matrix([
```

```
[ 0, 10, 200],
[300, 40, 5]])
```


See also:

diofant.matrices.dense.DenseMatrix. _mul__ (page 559)
diofant.matrices.dense.zeros($r, c=$ None, $c l s=$ None)
Returns a matrix of zeros with r rows and c columns; if c is omitted a square matrix will be returned.

See also:

diofant.matrices.dense.ones (page 552), diofant.matrices.dense.eye (page 552), diofant.matrices.dense.diag (page 552)
diofant.matrices.dense.ones($r, c=$ None)
Returns a matrix of ones with r rows and c columns; if c is omitted a square matrix will be returned.

See also:
diofant.matrices.dense.zeros (page 552), diofant.matrices.dense.eye (page 552), diofant.matrices.dense.diag (page 552)
diofant.matrices.dense.eye($n, c l s=N o n e$)
Create square identity matrix $\mathrm{n} \times \mathrm{n}$

See also:

diofant.matrices.dense.diag (page 552), diofant.matrices.dense.zeros (page 552), diofant.matrices.dense.ones (page 552)
diofant.matrices.dense.diag(*values, **kwargs)
Create a sparse, diagonal matrix from a list of diagonal values.

Notes

When arguments are matrices they are fitted in resultant matrix.
The returned matrix is a mutable, dense matrix. To make it a different type, send the desired class for keyword cls.

Examples

```
>>> diag(1, 2, 3)
Matrix([
[1, 0, 0],
[0, 2, 0],
[0, 0, 3]])
>>> diag(*[1, 2, 3])
Matrix([
[1, 0, 0],
[0, 2, 0],
[0, 0, 3]])
```

The diagonal elements can be matrices; diagonal filling will continue on the diagonal from the last element of the matrix:

```
>>> a = Matrix([x, y, z])
>>> b = Matrix([[1, 2], [3, 4]])
>>> c = Matrix([[5, 6]])
>>> diag(a, 7, b, c)
Matrix([
[x, 0, 0, 0, 0, 0],
[y, 0, 0, 0, 0, 0],
[z, 0, 0, 0, 0, 0],
[0, 7, 0, 0, 0, 0],
[0, 0, 1, 2, 0, 0],
[0, 0, 3, 4, 0, 0],
[0, 0, 0, 0, 5, 6]])
```

When diagonal elements are lists, they will be treated as arguments to Matrix:

```
>>> diag([1, 2, 3], 4)
Matrix([
[1, 0],
[2, 0],
[3, 0],
[0, 4]])
>> diag([[1, 2, 3]], 4)
Matrix([
[1, 2, 3, 0],
[0, 0, 0, 4]])
```

A given band off the diagonal can be made by padding with a vertical or horizontal "kerning" vector:

```
>>> hpad = ones(0, 2)
>>> vpad = ones(2, 0)
>>> diag(vpad, 1, 2, 3, hpad) + diag(hpad, 4, 5, 6, vpad)
Matrix([
[0, 0, 4, 0, 0],
[0, 0, 0, 5, 0],
[1, 0, 0, 0, 6],
[0, 2, 0, 0, 0],
[0, 0, 3, 0, 0]])
```

The type is mutable by default but can be made immutable by setting the mutable flag to False:

```
>>> type(diag(1))
<class 'diofant.matrices.dense.MutableDenseMatrix'>
>>> type(diag(1, cls=ImmutableMatrix))
<class 'diofant.matrices.immutable.ImmutableMatrix'>
```


See also:

diofant.matrices.dense.eye (page 552)
diofant.matrices.dense.jordan_cell(eigenval, n)
Create matrix of Jordan cell kind:

Examples

```
>>> jordan_cell(x, 4)
Matrix([
[x, 1, 0, 0],
[0, x, 1, 0],
[0, 0, x, 1],
[0, 0, 0, x]])
```

diofant.matrices.dense. hessian (f, varlist, constraints=[])
Compute Hessian matrix for a function f wrt parameters in varlist which may be given as a sequence or a row/column vector. A list of constraints may optionally be given.

Examples

```
>>> f = Function('f')(x, y)
>>> gl = Function('g')(x, y)
>>> g2 = x**2 + 3*y
>>> pprint(hessian(f, (x, y), [g1, g2]), use_unicode=False)
\begin{tabular}{|c|c|c|c|}
\hline 0 & 0 & 2*x & 3 \\
\hline [ & & 2 & 2 \\
\hline [d & & d & d \\
\hline [--(g(x, y) ) & \(2 * x\) & ---(f(x, y) ) & -----(f(x, y) )] \\
\hline [dx & & 2 & dy dx \\
\hline [ & & dx & \\
\hline [ & & & \\
\hline [ & & 2 & 2 \\
\hline [d & & d & d \\
\hline [--(g(x, y) ) & 3 & -----(f(x, y) ) & ---(f(x, y) ) \\
\hline [dy & & dy dx & 2 \\
\hline  & & & dy \\
\hline
\end{tabular}
```


References

https://en.wikipedia.org/wiki/Hessian_matrix

See also:

diofant.matrices.matrices.MatrixBase.jacobian (page 539), diofant.matrices. dense.wronskian (page 554)
diofant.matrices.dense.GramSchmidt(vlist, orthonormal=False)
Apply the Gram-Schmidt process to a set of vectors.
see: https://en.wikipedia.org/wiki/Gram\�\�\�Schmidt_process
diofant.matrices.dense.wronskian(functions, var, method='bareiss')
Compute Wronskian for [] of functions
$W(f 1, \ldots, f n)=\left|\begin{array}{cccc}f 1 & f 2 & \cdots & f n \\ \text { f1 } & f 2 & \cdots & f n^{\prime} \\ \vdots & \vdots & \ddots & \vdots\end{array}\right|$
$\left|\begin{array}{llllll|}\hline & & & & & \\ D^{(n)} & (f 1) & D^{(n)} & (f 2) & \ldots & D^{(n)} \\ (f n)\end{array}\right|$
see: https://en.wikipedia.org/wiki/Wronskian

See also:

diofant.matrices.matrices.MatrixBase.jacobian (page 539), diofant.matrices. dense.hessian (page 554)
diofant.matrices.dense.casoratian(seqs, n, zero=True)
Given linear difference operator L of order ' k ' and homogeneous equation $L y=0$ we want to compute kernel of L, which is a set of ' k ' sequences: $a(n), b(n), \ldots z(n)$.

Solutions of L are linearly independent iff their Casoratian, denoted as C(a, b, ..., z), do not vanish for $\mathrm{n}=0$.

Casoratian is defined by kxk determinant:

It proves very useful in rsolve_hyper() where it is applied to a generating set of a recurrence to factor out linearly dependent solutions and return a basis:

```
>>> n = Symbol('n', integer=True)
```

Exponential and factorial are linearly independent:

```
>>> casoratian([2**n, factorial(n)], n) != 0
True
```

diofant.matrices.dense. randMatrix ($r, c=$ None, $\min =0, \max =99$, seed $=$ None, symmetric $=$ False, percent=100)
Create random matrix with dimensions $r \times c$. If c is omitted the matrix will be square. If symmetric is True the matrix must be square. If percent is less than 100 then only approximately the given percentage of elements will be non-zero.

Examples

```
>>> randMatrix(3)
[25, 45, 27]
[44, 54, 9]
[23, 96, 46]
>>> randMatrix(3, 2)
[87, 29]
[23, 37]
[90, 26]
>>> randMatrix(3, 3, 0, 2)
[0, 2, 0]
[2, 0, 1]
[0, 0, 1]
>>> randMatrix(3, symmetric=True)
```

```
[85, 26, 29]
[26, 71, 43]
[29, 43, 57]
>>> A = randMatrix(3, seed=1)
>>> B = randMatrix(3, seed=2)
>>> A == B
False
>>> A == randMatrix(3, seed=1)
True
>>> randMatrix(3, symmetric=True, percent=50)
[0, 68, 43]
[0, 68, 0]
[0, 91, 34]
```


Numpy Utility Functions Reference

diofant.matrices.dense.list2numpy (l, dtype $=<$ class 'object' $>$)
Converts python list of Diofant expressions to a NumPy array.

See also:

diofant.matrices.dense.matrix2numpy (page 556)
diofant.matrices.dense.matrix2numpy ($m, d t y p e=<$ class 'object' $>$)
Converts Diofant's matrix to a NumPy array.

See also:

diofant.matrices.dense. list2numpy (page 556)
diofant.matrices.dense.symarray (prefix, shape, **kwargs)
Create a numpy ndarray of symbols (as an object array).
The created symbols are named prefix_i1_i2_... You should thus provide a non-empty prefix if you want your symbols to be unique for different output arrays, as Diofant symbols with identical names are the same object.

Parameters

- prefix (string) - A prefix prepended to the name of every symbol.
- shape (int or tuple) - Shape of the created array. If an int, the array is one-dimensional; for more than one dimension the shape must be a tuple.
- **kwargs (dict) - keyword arguments passed on to Symbol

Examples

These doctests require numpy.

```
>>> symarray('', 3)
```

[_0 _1 _2]

If you want multiple symarrays to contain distinct symbols, you must provide unique prefixes:

```
>>> a = symarray('', 3)
>>> b = symarray('', 3)
>>> a[0] == b[0]
True
>>> a = symarray('a', 3)
>>> b = symarray('b', 3)
>>> a[0] == b[0]
False
```

Creating symarrays with a prefix:

```
>>> symarray('a', 3)
[a_0 a_1 a_2]
```

For more than one dimension, the shape must be given as a tuple:

```
>>> symarray('a', (2, 3))
[[a_0_0 a_0 1 a_0 2]
[a_1_0 a_1_1 a_1_2]]
>> 
[[[a_0_0_0 a_0_0_1]
    [a_0_1_0 a_0-1_1]
    [a_0_2_0 a_0_2_1]]
    [[a_1_0_0 a_1_0_1]
    [a_1-1-0 a_1 1-1-1]
    [a_1_2_0 a_1_2_1]]]
```

For setting assumptions of the underlying Symbols:

```
>>> [s.is_real for s in symarray('a', 2, real=True)]
[True, Trūe]
```

diofant.matrices.dense. rot_axis1(theta)
Returns a rotation matrix for a rotation of theta (in radians) about the 1-axis.

Examples

A rotation of $\mathrm{pi} / 3$ (60 degrees):

```
>>> theta = pi/3
>> rot axisl(theta)
Matrix(\overline{[}
[rr,
```

If we rotate by pi/2 (90 degrees):

```
>>> rot_axis1(pi/2)
Matrix([
[1, 0, 0],
[0, 0, 1],
[0, -1, 0]])
```


See also:

diofant.matrices.dense.rot_axis2 (page 558) Returns a rotation matrix for a rotation of theta (in radians) about the 2 -axis
diofant.matrices.dense.rot_axis3 (page 558) Returns a rotation matrix for a rotation of theta (in radians) about the 3 -axis
diofant.matrices.dense.rot_axis2(theta)
Returns a rotation matrix for a rotation of theta (in radians) about the 2 -axis.

Examples

A rotation of pi/3 (60 degrees):

```
>>> theta = pi/3
>>> rot_axis2(theta)
Matrix(\overline{[}
[ 1/2, 0, -sqrt(3)/2],
[\mp@code{0, 1,}
```

If we rotate by pi/2 (90 degrees):

```
>>> rot axis2(pi/2)
Matrix([
[0, 0, -1],
[0, 1, 0],
[1, 0, 0]])
```


See also:

diofant.matrices.dense.rot_axis1 (page 557) Returns a rotation matrix for a rotation of theta (in radians) about the 1 -axis
diofant.matrices.dense.rot_axis3 (page 558) Returns a rotation matrix for a rotation of theta (in radians) about the 3 -axis
diofant.matrices.dense.rot_axis3(theta)
Returns a rotation matrix for a rotation of theta (in radians) about the 3-axis.

Examples

A rotation of pi/3 (60 degrees):

```
>>> theta = pi/3
>>> rot axis3(theta)
Matrix([
[ 1/2, sqrt(3)/2, 0],
[-sqrt(3)/2, 1/2, 0],
[ 0, 0, 1]])
```

If we rotate by pi/2 (90 degrees):

```
>>> rot_axis3(pi/2)
Matrix([
[ 0, 1, 0],
[-1, 0, 0],
[ 0, 0, 1]])
```


See also:

diofant.matrices.dense.rot_axis1 (page 557) Returns a rotation matrix for a rotation of theta (in radians) about the 1 -axis
diofant.matrices.dense.rot_axis2 (page 558) Returns a rotation matrix for a rotation of theta (in radians) about the 2 -axis
diofant.matrices.matrices.a2idx ($j, n=$ None)
Return integer after making positive and validating against n.

4.11.2 Dense Matrices

diofant.matrices.dense.MutableMatrix
alias of diofant.matrices.dense.MutableDenseMatrix (page 561)

Matrix Class Reference

class diofant.matrices.dense.DenseMatrix
A dense matrix base class.
__getitem__(key)
Return portion of self defined by key. If the key involves a slice then a list will be returned (if key is a single slice) or a matrix (if key was a tuple involving a slice).

Examples

```
>>> m = Matrix([[1, 2 + I], [3, 4]])
```

If the key is a tuple that doesn't involve a slice then that element is returned:

```
>>> m[1, 0]
3
```

When a tuple key involves a slice, a matrix is returned. Here, the first column is selected (all rows, column 0):

```
>>> m[:, 0]
Matrix([
[1],
[3]])
```

If the slice is not a tuple then it selects from the underlying list of elements that are arranged in row order and a list is returned if a slice is involved:

```
>>> m[0]
1
>>> m[::2]
[1, 3]
```

mul__(other)

Return self*other.
applyfunc (f)
Apply a function to each element of the matrix.

Examples

```
>>> m = Matrix(2, 2, lambda i, j: i*2+j)
>>> m
Matrix([
[0, 1],
[2, 3]])
>>> m.applyfunc(lambda i: 2*i)
Matrix([
[0, 2],
[4, 6]])
```

as_immutable()
Returns an Immutable version of this Matrix.
as_mutable()
Returns a mutable version of this matrix

Examples

```
>>> X = ImmutableMatrix([[1, 2], [3, 4]])
>>> Y = X.as_mutable()
>>> Y[1, 1] =5 # Can set values in Y
>>> Y
Matrix([
[1, 2],
[3, 5]])
```

equals (other, failing_expression=False)
Applies equals to corresponding elements of the matrices, trying to prove that the elements are equivalent, returning True if they are, False if any pair is not, and None (or the first failing expression if failing_expression is True) if it cannot be decided if the expressions are equivalent or not. This is, in general, an expensive operation.

Examples

```
>>> A = Matrix([x*(x - 1), 0])
>>> B = Matrix([x**2 - x, 0])
>>> A == B
False
>>> A.simplify() == B.simplify()
True
>>> A.equals(B)
True
>>> A.equals(2)
False
```


See also:

diofant. core.expr.Expr.equals (page 68)
classmethod eye(n)
Return an nx n identity matrix.
reshape(rows, cols)
Reshape the matrix. Total number of elements must remain the same.

Examples

```
>>> m = Matrix(2, 3, lambda i, j: 1)
>>> m
Matrix([
[1, 1, 1],
[1, 1, 1]])
>>> m.reshape(1, 6)
Matrix([[1, 1, 1, 1, 1, 1]])
>>> m.reshape(3, 2)
Matrix([
[1, 1],
[1, 1],
[1, 1]])
```

tolist()
Return the Matrix as a nested Python list.

Examples

```
>>> m = Matrix(3, 3, range(9))
>>> m
Matrix([
[0, 1, 2],
[3, 4, 5],
[6, 7, 8]])
>>> m.tolist()
[[0, 1, 2], [3, 4, 5], [6, 7, 8]]
>>> ones(3, 0).tolist()
[[], [], []]
```

When there are no rows then it will not be possible to tell how many columns were in the original matrix:

```
>>> ones(0, 3).tolist()
[]
```

classmethod zeros ($r, c=$ None)
Return an rxc matrix of zeros, square if c is omitted.
class diofant.matrices.dense.MutableDenseMatrix(*args, **kwargs)
A mutable version of the dense matrix.
col_op(j, f)
In-place operation on col j using two-arg functor whose args are interpreted as (self[i, j], i).

Examples

```
>>> M = eye(3)
>>> M.col_op(1, lambda v, i: v + 2*M[i, 0])
>>> M
Matrix([
[1, 2, 0],
[0, 1, 0],
[0, 0, 1]])
```


Diofant Documentation, Release 0.13.0

See also:

diofant.matrices.dense.MutableDenseMatrix.row_op (page 563)
col_swap (i, j)
Swap the two given columns of the matrix in-place.

Examples

```
>>> M = Matrix([[1, 0], [1, 0]])
>>> M
Matrix([
[1, 0],
[1, 0]])
>>> M.col_swap(0, 1)
>>> M
Matrix([
[0, 1],
[0, 1]])
```


See also:

diofant.matrices.dense.MutableDenseMatrix.row_swap (page 563)
copyin_list(key, value)
Copy in elements from a list.

Parameters

- key (slice) - The section of this matrix to replace.
- value (iterable) - The iterable to copy values from.

Examples

```
>>> I = eye(3)
>>> I[:2, 0] = [1, 2] # col
>>> I
Matrix([
[1, 0, 0],
[2, 1, 0],
[0, 0, 1]])
>>> I[1, :2] = [[3, 4]]
>>> I
Matrix([
[1, 0, 0],
[3, 4, 0],
[0, 0, 1]])
```


See also:

diofant.matrices.dense.MutableDenseMatrix.copyin_matrix (page 562) copyin_matrix(key, value)

Copy in values from a matrix into the given bounds.

Parameters

- key (slice) - The section of this matrix to replace.
- value (Matrix) - The matrix to copy values from.

Examples

```
>>> M = Matrix([[0, 1], [2, 3], [4, 5]])
>>> I = eye(3)
>>> I[:3, :2] = M
>>> I
Matrix([
[0, 1, 0],
[2, 3, 0],
[4, 5, 1]])
>>> I[0, 1] = M
>>> I
Matrix([
[0, 0, 1],
[2, 2, 3],
[4, 4, 5]])
```


See also:

diofant.matrices.dense.MutableDenseMatrix.copyin_list (page 562)
fill(value)
Fill the matrix with the scalar value.

See also:

diofant.matrices.dense.zeros (page 552), diofant.matrices.dense.ones (page 552)
row_op(i,f)
In-place operation on row i using two-arg functor whose args are interpreted as (self[i, j], j).

Examples

```
>>> M = eye(3)
>>> M. row_op(1, lambda v, j: v + 2*M[0, j])
>>> M
Matrix([
[1, 0, 0],
[2, 1, 0],
[0, 0, 1]])
```


See also:

diofant.matrices.dense.MutableDenseMatrix.zip row op (page 564), diofant. matrices.dense.MutableDenseMatrix.col_op (page 561)

```
row_swap(i,j)
```

Swap the two given rows of the matrix in-place.

Examples

```
>>> M = Matrix([[0, 1], [1, 0]])
>>> M
Matrix([
[0, 1],
[1, 0]])
>>> M.row_swap(0, 1)
>>> M
Matrix([
[1, 0],
[0, 1]])
```


See also:

diofant.matrices.dense.MutableDenseMatrix.col_swap (page 562)
simplify (ratio=1.7, measure $=<$ function count_ops $>$)
Applies simplify to the elements of a matrix in place.
This is a shortcut for M.applyfunc(lambda x: simplify(x, ratio, measure))
See also:
diofant.simplify.simplify.simplify (page 678)
zip_row_op(i,k,f)
In-place operation on row i using two-arg functor whose args are interpreted as (self[i, j], self[k, j]).

Examples

```
>>> M = eye(3)
>>> M.zip_row_op(1, 0, lambda v, u: v + 2*u)
>>> M
Matrix([
[1, 0, 0],
[2, 1, 0],
[0, 0, 1]])
```


See also:

diofant.matrices.dense.MutableDenseMatrix.row_op (page 563), diofant. matrices.dense.MutableDenseMatrix.col_op (page 561)

ImmutableMatrix Class Reference

class diofant.matrices.immutable.ImmutableMatrix(*args, **kwargs)
Create an immutable version of a matrix.

Examples

```
>>> ImmutableMatrix(eye(3))
Matrix([
[1, 0, 0],
[0, 1, 0],
[0, 0, 1]])
>>> _[0, 0] = 42
Tracēback (most recent call last):
TypeError: Cannot set values of ImmutableDenseMatrix
```

property C
By-element conjugation.
adjoint()
Conjugate transpose or Hermitian conjugation.
as_mutable()
Returns a mutable version of this matrix
Examples

```
>>> X = ImmutableMatrix([[1, 2], [3, 4]])
>>> Y = X.as mutable()
>>> Y[1, 1] = 5 # Can set values in Y
>>> Y
Matrix([
[1, 2],
[3, 5]])
```

conjugate()

By-element conjugation.
diff(*args)
Calculate the derivative of each element in the matrix.

Examples

```
>> M = Matrix([[x, y], [1, 0]])
>>> M.diff(x)
Matrix([
[1, 0],
[0, 0]])
```


See also:

integrate (page 580), limit (page 580)
equals (other, failing_expression=False)
Applies equals to corresponding elements of the matrices, trying to prove that the elements are equivalent, returning True if they are, False if any pair is not, and None (or the first failing expression if failing_expression is True) if it cannot be decided if the expressions are equivalent or not. This is, in general, an expensive operation.

Examples

```
>>> A = Matrix([x*(x - 1), 0])
>>> B = Matrix([x**2 - x, 0])
>> A == B
False
>>> A.simplify() == B.simplify()
True
>>> A.equals(B)
True
>>> A.equals(2)
False
```


See also:

diofant.core.expr.Expr.equals (page 68)
integrate(*args)
Integrate each element of the matrix.

Examples

```
>>> M = Matrix([[x, y], [1, 0]])
>>> M.integrate(x)
Matrix([
[x**2/2, x*y],
[ x, 0]])
>>> M.integrate((x, 0, 2))
Matrix([
[2, 2*y],
[2, 0]])
```


See also:

limit (page 580), diff (page 579)
limit(*args)
Calculate the limit of each element in the matrix.

Examples

```
>>> M = Matrix([[x, y], [1, 0]])
>>> M.limit(x, 2)
Matrix([
[2, y],
[1, 0]])
```


See also:

integrate (page 580), diff (page 579)

4.11.3 Sparse Matrices

class diofant.matrices.sparse.MutableSparseMatrix(*args)
A sparse matrix (a matrix with a large number of zero elements).

Examples

```
>>> SparseMatrix(2, 2, range(4))
Matrix([
[0, 1],
[2, 3]])
>>> SparseMatrix(2, 2, {(1, 1): 2})
Matrix([
[0, 0],
[0, 2]])
```


See also:

diofant.matrices.dense.DenseMatrix (page 559)
col_join(bott)
Returns B augmented beneath A (row-wise joining):
[A]
[B]

Examples

```
>>> A = SparseMatrix(ones(3))
>>> A
Matrix([
[1, 1, 1],
[1, 1, 1],
[1, 1, 1]])
>>> B = SparseMatrix.eye(3)
>>> B
Matrix([
[1, 0, 0],
[0, 1, 0],
[0, 0, 1]])
>>> C = A.col_join(B)
>> C
Matrix([
[1, 1, 1],
[1, 1, 1],
[1, 1, 1],
[1, 0, 0],
[0, 1, 0],
[0, 0, 1]])
>>> C == A.col_join(Matrix(B))
True
```

Joining along columns is the same as appending rows at the end of the matrix:

```
>>> C == A.row_insert(A.rows, Matrix(B))
True
```

col_op(j, f)
In-place operation on col j using two-arg functor whose args are interpreted as (self[i, j], i) for i in range(self.rows).

Examples

```
>>> M = SparseMatrix.eye(3)*2
>>> M[1, 0] = -1
>>> M.col_op(1, lambda v, i: v + 2*M[i, 0])
>>> M
Matrix([
[ 2, 4, 0],
[-1, 0, 0],
[ 0, 0, 2]])
```

col_swap (i, j)
Swap, in place, columns i and j.

Examples

```
>>> S = SparseMatrix.eye(3)
>>> S[2, 1] = 2
>>> S.col_swap(1, 0)
>>> S
Matrix([
[0, 1, 0],
[1, 0, 0],
[2, 0, 1]])
```

fill(value)
Fill self with the given value.

Notes

Unless many values are going to be deleted (i.e. set to zero) this will create a matrix that is slower than a dense matrix in operations.

Examples

```
>>> M = SparseMatrix.zeros(3)
>>> M
Matrix([
[0, 0, 0],
[0, 0, 0],
[0, 0, 0]])
>>> M.fill(1)
>>> M
Matrix([
[1, 1, 1],
[1, 1, 1],
[1, 1, 1]])
```

row_join(rhs)
Returns B appended after A (column-wise augmenting):

$$
\left[\begin{array}{ll}
\mathrm{A} & \mathrm{~B}
\end{array}\right.
$$

Examples

```
>>> A = SparseMatrix(((1, 0, 1), (0, 1, 0), (1, 1, 0)))
>> A
Matrix([
[1, 0, 1],
[0, 1, 0],
[1, 1, 0]])
>>> B = SparseMatrix(((1, 0, 0), (0, 1, 0), (0, 0, 1)))
>>> B
Matrix([
[1, 0, 0],
[0, 1, 0],
[0, 0, 1]])
>>> C = A.row_join(B)
>> C
Matrix([
[1, 0, 1, 1, 0, 0],
[0, 1, 0, 0, 1, 0],
[1, 1, 0, 0, 0, 1]])
>>> C == A.row_join(Matrix(B))
True
```

Joining at row ends is the same as appending columns at the end of the matrix:

```
>>> C == A.col_insert(A.cols, B)
True
```

row_op(i,f)
In-place operation on row i using two-arg functor whose args are interpreted as (self[i, j], j).

Examples

```
>>> M = SparseMatrix.eye(3)*2
>>> M[0, 1] = -1
>>> M.row_op(1, lambda v, j: v + 2*M[0, j])
>>> M
Matrix([
[2, -1, 0],
[4, 0, 0],
[0, 0, 2]])
```


See also:

zip_row_op (page 570), col_op (page 567)
row_swap(i, j)
Swap, in place, columns i and j.

Examples

```
>>> S = SparseMatrix.eye(3)
>> S[2, 1] = 2
>>> S.row_swap(1, 0)
>>> S
Matrix([
[0, 1, 0],
[1, 0, 0],
[0, 2, 1]])
```

zip_row_op(i, k, f)
In-place operation on row i using two-arg functor whose args are interpreted as (self[i, j], self[k, j]).

Examples

```
>>> M = SparseMatrix.eye(3)*2
>>> M[0, 1] = -1
>>> M.zip_row_op(1, 0, lambda v, u: v + 2*u)
>>> M
Matrix([
[2, -1, 0],
[4, 0, 0],
[0, 0, 2]])
```


See also:

row_op (page 569), col_op (page 567)
diofant.matrices.sparse.SparseMatrix
alias of diofant.matrices.sparse.MutableSparseMatrix (page 567)
class diofant.matrices.sparse.SparseMatrixBase(*args)
A sparse matrix base class.
property CL
Alternate faster representation

LDLdecomposition()

Returns the LDL Decomposition (matrices L and D) of matrix A, such that L * D * L.T == A. A must be a square, symmetric, positive-definite and non-singular.

This method eliminates the use of square root and ensures that all the diagonal entries of L are 1.

Examples

```
>>> A = SparseMatrix(((25, 15, -5), (15, 18, 0), (-5, 0, 11)))
>> L, D = A.LDLdecomposition()
>>> L
Matrix([
[ 1, 0, 0],
[ 3/5, 1, 0],
[-1/5, 1/3, 1]])
>>> D
Matrix([
[25, 0, 0],
```

(continued from previous page)
[0, 9, 0],
[0, 0, 9]])
>> L * D * L.T ==A
True
property RL
Alternate faster representation
add (b)
Add two sparse matrices with dictionary representation.

Examples

```
>>> SparseMatrix(eye(3)).add(SparseMatrix(ones(3)))
Matrix([
[2, 1, 1],
[1, 2, 1],
[1, 1, 2]])
>>> SparseMatrix(eye(3)).add(-SparseMatrix(eye(3)))
Matrix([
[0, 0, 0],
[0, 0, 0],
[0, 0, 0]])
```

Only the non-zero elements are stored, so the resulting dictionary that is used to represent the sparse matrix is empty:

```
>>> _._smat
{}
```


See also:

multiply (page 574)
applyfunc (f)
Apply a function to each element of the matrix.

Examples

```
>>> m = SparseMatrix(2, 2, lambda i, j: i*2+j)
>> m
Matrix([
[0, 1],
[2, 3]])
>>> m.applyfunc(lambda i: 2*i)
Matrix([
[0, 2],
[4, 6]])
```

as_immutable()
Returns an Immutable version of this Matrix.
as_mutable()
Returns a mutable version of this matrix.

Examples

```
>>> X = ImmutableMatrix([[1, 2], [3, 4]])
>>> Y = X.as_mutable()
>>> Y[1, 1] = 5 # Can set values in Y
>>> Y
Matrix([
[1, 2],
[3, 5]])
```

cholesky()
Returns the Cholesky decomposition L of a matrix A such that $\mathrm{L} * \mathrm{~L} . \mathrm{T}=\mathrm{A}$
A must be a square, symmetric, positive-definite and non-singular matrix

Examples

```
>> A = SparseMatrix(((25, 15, -5), (15, 18, 0), (-5, 0, 11)))
>>> A.cholesky()
Matrix([
[ 5, 0, 0],
[ 3, 3, 0],
[-1, 1, 3]])
>>> A.cholesky() * A.cholesky().T == A
True
```

col_list()

Returns a column-sorted list of non-zero elements of the matrix.

Examples

```
>>> SparseMatrix(((1, 2), (3, 4)))
Matrix([
[1, 2],
[3, 4]])
>>> _.CL
[(0, 0, 1), (1, 0, 3), (0, 1, 2), (1, 1, 4)]
```


See also:

diofant.matrices.sparse.MutableSparseMatrix.col_op (page 567), row_list (page 575)
extract(rowsList, colsList)
Return a submatrix by specifying a list of rows and columns. Negative indices can be given. All indices must be in the range $-\mathrm{n}<=\mathrm{i}<\mathrm{n}$ where n is the number of rows or columns.

Examples

```
>>> m = Matrix(4, 3, range(12))
>> m
Matrix([
[0, 1, 2],
[3, 4, 5],
[6, 7, 8],
[9, 10, 11]])
>> m.extract([0, 1, 3], [0, 1])
Matrix([
[0, 1],
[3, 4],
[9, 10]])
```

Rows or columns can be repeated:

```
>>> m.extract([0, 0, 1], [-1])
Matrix([
[2],
[2],
[5]])
```

Every other row can be taken by using range to provide the indices:

```
>>> m.extract(range(0, m.rows, 2), [-1])
Matrix([
[2],
[8]])
```


classmethod eye(n)

Return an nx n identity matrix.
has (*patterns)
Test whether any subexpression matches any of the patterns.

Examples

```
>>> A = SparseMatrix(((1, x), (0.2, 3)))
>>> A.has(x)
True
>>> A.has(y)
False
>>> A.has(Float)
True
```


property is_hermitian

Checks if the matrix is Hermitian.
In a Hermitian matrix element i, j is the complex conjugate of element j,i.

Diofant Documentation, Release 0.13.0

Examples

```
>>> a = SparseMatrix([[1, I], [-I, 1]])
>> a
Matrix([
[ 1, I],
[-I, 1]])
>>> a.is_hermitian
True
>>> a[0, 0] = 2*I
>>> a.is_hermitian
False
>>> a[0, 0] = x
>>> a.is_hermitian
>> a[0, 1] = a[1, 0]*I
>>> a.is_hermitian
False
```

is_symmetric (simplify=True)

Return True if self is symmetric.

Examples

```
>>> M = SparseMatrix(eye(3))
>>> M.is_symmetric()
True
>>> M[0, 2] = 1
>>> M.is_symmetric()
False
```

liupc()
Liu's algorithm, for pre-determination of the Elimination Tree of the given matrix, used in row-based symbolic Cholesky factorization.

Examples

```
>>> S = SparseMatrix([[1, 0, 3, 2],
#.. [0, 0, 1, 0],
...
>>> S.liupc()
([[0], [], [0], [1, 2]], [4, 3, 4, 4])
```


References

Symbolic Sparse Cholesky Factorization using Elimination Trees, Jeroen Van Grondelle (1999)
multiply(b)
Fast multiplication exploiting the sparsity of the matrix.

Examples

```
>>> A, B = SparseMatrix(ones(4, 3)), SparseMatrix(ones(3, 4))
>>> A.multiply(B) == 3*ones(4)
True
```


See also:

add (page 571)
nnz ()
Returns the number of non-zero elements in Matrix.
reshape (rows, cols)
Reshape matrix while retaining original size.

Examples

```
>>> S = SparseMatrix(4, 2, range(8))
>>> S.reshape(2, 4)
Matrix([
[0, 1, 2, 3],
[4, 5, 6, 7]])
```

row_list()
Returns a row-sorted list of non-zero elements of the matrix.

Examples

```
>>> a = SparseMatrix(((1, 2), (3, 4)))
>>> a
Matrix([
[1, 2],
[3, 4]])
>>> a.RL
[(0, 0, 1), (0, 1, 2), (1, 0, 3), (1, 1, 4)]
```


See also:

diofant.matrices.sparse.MutableSparseMatrix.row_op (page 569), col_list (page 572)
row_structure_symbolic_cholesky()
Symbolic cholesky factorization, for pre-determination of the non-zero structure of the Cholesky factororization.

Examples

```
>>> S = SparseMatrix([[1, 0, 3, 2],
#[0, 0, 1, 0],
\because[4, 0, 0, 5],
#." [0, 6, 7, 0]])
>>> S.row_structure_symbolic_cholesky()
[[0], [], [0], [1, 2]]
```


References

Symbolic Sparse Cholesky Factorization using Elimination Trees, Jeroen Van Grondelle (1999)
scalar_multiply(scalar)
Scalar element-wise multiplication.
solve (rhs, method='LDL')
Return solution to self*soln = rhs using given inversion method.
See also:
diofant.matrices.matrices.MatrixBase.inv (page 531)
solve_least_squares(rhs, method='LDL')
Return the least-square fit to the data.
By default the cholesky_solve routine is used (method=' CH^{\prime}); other methods of matrix inversion can be used.

Examples

```
>>> A = Matrix([1, 2, 3])
>>> B = Matrix([2, 3, 4])
>>> S = SparseMatrix(A.row_join(B))
>>> S
Matrix([
[1, 2],
[2, 3],
[3, 4]])
```

If each line of S represent coefficients of $A x+B y$ and x and y are $[2,3]$ then $S * x y$ is:

```
>>> r = S*Matrix([2, 3])
>>> r
Matrix([
[ 8],
[13],
[18]])
```

But let's add 1 to the middle value and then solve for the least-squares value of xy :

```
>>> xy = S.solve_least_squares(Matrix([8, 14, 18]))
>>> xy
Matrix([
[ 5/3],
[10/3]])
```

The error is given by $\mathrm{S}^{*} \mathrm{xy}-\mathrm{r}$:

```
>>> S*xy - r
Matrix([
[1/3],
[1/3],
[1/3]])
>>> _.norm().evalf(2)
0.58
```

If a different xy is used, the norm will be higher:

```
>>> xy += ones(2, 1)/10
>>> (S*xy - r).norm().evalf(2)
1.5
```


See also:

diofant.matrices.matrices.MatrixBase.inv (page 531)
tolist()
Convert this sparse matrix into a list of nested Python lists.

Examples

```
>>> a = SparseMatrix(((1, 2), (3, 4)))
>>> a.tolist()
[[1, 2], [3, 4]]
```

When there are no rows then it will not be possible to tell how many columns were in the original matrix:

```
>>> SparseMatrix(ones(0, 3)).tolist()
[]
```

classmethod zeros($r, c=$ None)
Return an rxc matrix of zeros, square if c is omitted.

ImmutableSparseMatrix Class Reference

class diofant.matrices.immutable.ImmutableSparseMatrix(*args, **kwargs)
Create an immutable version of a sparse matrix.

Examples

```
>>> ImmutableSparseMatrix(1, 1, {})
Matrix([[0]])
>>> ImmutableSparseMatrix(eye(3))
Matrix([
[1, 0, 0],
[0, 1, 0],
[0, 0, 1]])
>>> _[0, 0] = 42
Traceback (most recent call last):
TypeError: Cannot set values of ImmutableSparseMatrix
>> .shape
(3, \overline{3})
```

subs (*args, **kwargs)
Return a new matrix with subs applied to each entry.

Examples

```
>>> SparseMatrix(1, 1, [x])
Matrix([[x]])
>>> .subs({x: y})
Matrīx([[y]])
>>> Matrix(_).subs({y: x})
```


xreplace(rule)

Return a new matrix with xreplace applied to each entry.

Examples

```
>>> SparseMatrix(1, 1, [x])
Matrix([[x]])
>>> _.xreplace({x: y})
Matrix([[y]])
>>> Matrix(().xreplace({y: x})
Matrix([[x]])
```


4.11.4 Immutable Matrices

The standard Matrix class in Diofant is mutable. This is important for performance reasons but means that standard matrices cannot interact well with the rest of Diofant. This is because the Basic (page 46) object, from which most Diofant classes inherit, is immutable.
The mission of the ImmutableMatrix (page 579) class is to bridge the tension between performance/mutability and safety/immutability. Immutable matrices can do almost everything that normal matrices can do but they inherit from Basic (page 46) and can thus interact more naturally with the rest of Diofant. ImmutableMatrix (page 579) also inherits from MatrixExpr (page 581), allowing it to interact freely with Diofant's Matrix Expression module.
You can turn any Matrix-like object into an ImmutableMatrix (page 579) by calling the constructor

```
>> M = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
>> M[1, 1] = 0
>>> IM = ImmutableMatrix(M)
>> IM
Matrix([
[1, 2, 3],
[4, 0, 6],
[7, 8, 9]])
>>> IM[1, 1] = 5
Traceback (most recent call last):
TypeError: Can not set values in Immutable Matrix. Use Matrix instead.
```


ImmutableMatrix Class Reference

class diofant.matrices.immutable.ImmutableMatrix (*args, **kwargs)
Create an immutable version of a matrix.

Examples

```
>>> ImmutableMatrix(eye(3))
Matrix([
[1, 0, 0],
[0, 1, 0],
[0, 0, 1]])
>> _[0, 0] = 42
Tracēback (most recent call last):
TypeError: Cannot set values of ImmutableDenseMatrix
```


property C

By-element conjugation.
adjoint()
Conjugate transpose or Hermitian conjugation.
as_mutable()
Returns a mutable version of this matrix

Examples

```
>>> X = ImmutableMatrix([[1, 2], [3, 4]])
>>> Y = X.as_mutable()
>>> Y[1, 1] = 5 # Can set values in Y
>>> Y
Matrix([
[1, 2],
[3, 5]])
```

conjugate()
By-element conjugation.
diff(*args)
Calculate the derivative of each element in the matrix.

Examples

```
>>> M = Matrix([[x, y], [1, 0]])
>>> M.diff(x)
Matrix([
[1, 0],
[0, 0]])
```


See also:

integrate (page 580), limit (page 580)
equals(other, failing_expression=False)
Applies equals to corresponding elements of the matrices, trying to prove that the elements are equivalent, returning True if they are, False if any pair is not, and None (or the first failing expression if failing_expression is True) if it cannot be decided if the expressions are equivalent or not. This is, in general, an expensive operation.

Examples

```
>>> A = Matrix([x*(x - 1), 0])
>>> B = Matrix([x**2 - x, 0])
>> A == B
False
>>> A.simplify() == B.simplify()
True
>>> A.equals(B)
True
>>> A.equals(2)
False
```


See also:

```
diofant.core.expr.Expr.equals (page 68)
```

integrate(*args)
Integrate each element of the matrix.

Examples

```
>>> M = Matrix([[x, y], [1, 0]])
>>> M.integrate(x)
Matrix([
[x**2/2, x*y],
[ x, 0]])
>>> M.integrate((x, 0, 2))
Matrix([
[2, 2*y],
[2, 0]])
```


See also:

limit (page 580), diff (page 579)
limit (*args)
Calculate the limit of each element in the matrix.

Examples

```
>>> M = Matrix([[x, y], [1, 0]])
>>> M.limit(x, 2)
Matrix([
[2, y],
[1, 0]])
```


See also:

integrate (page 580), diff (page 579)

4.11.5 Matrix Expressions

The Matrix expression module allows users to write down statements like

```
>> X = MatrixSymbol('X', 3, 3)
>> = MatrixSymbol('Y', 3, 3)
>> (X.T*X).inverse()*Y
X^-1*X.T^-1*Y
```

```
>>> Matrix(X)
Matrix([
[X[0, 0], X[0, 1], X[0, 2]],
[X[1, 0], X[1, 1], X[1, 2]],
[X[2, 0], X[2, 1], X[2, 2]]])
```

```
>>> (X*Y)[1, 2]
X[1, 0]*Y[0, 2] + X[1, 1]*Y[1, 2] + X[1, 2]*Y[2, 2]
```

where X and Y are MatrixSymbol (page 582)'s rather than scalar symbols.

Matrix Expressions Core Reference

```
class diofant.matrices.expressions.MatrixExpr(*args, **kwargs)
```

 Superclass for Matrix Expressions
 MatrixExprs represent abstract matrices, linear transformations represented within a particular basis.

Examples

```
>>> A = MatrixSymbol('A', 3, 3)
>>> y = MatrixSymbol('y', 3, 1)
>>> x = (A.T*A).inverse() * A * y
```


See also:

MatrixSymbol (page 582), MatAdd (page 582), MatMul (page 583), Transpose (page 583), Inverse (page 583)
property T
Matrix transposition.
as_explicit()
Returns a dense Matrix with elements represented explicitly
Returns an object of type ImmutableMatrix.

Examples

```
>>> I = Identity(3)
>> I
I
>>> I.as_explicit()
Matrix([
    [1, 0, 0],
[0, 1, 0],
[0, 0, 1]])
```


See also:

as_mutable (page 582) returns mutable Matrix type

as_mutable()

Returns a dense, mutable matrix with elements represented explicitly

Examples

```
>>> I = Identity(3)
>> I
I
>>> I.shape
(3, 3)
>>> I.as_mutable()
Matrix([
[1, 0, 0],
[0, 1, 0],
[0, 0, 1]])
```


See also:

as_explicit (page 581) returns ImmutableMatrix

equals(other)

Test elementwise equality between matrices, potentially of different types

```
>>> Identity(3).equals(eye(3))
```

True
class diofant.matrices.expressions.MatrixSymbol(name, $n, m, * * a s s u m p t i o n s) ~$
Symbolic representation of a Matrix object
Creates a Diofant Symbol to represent a Matrix. This matrix has a shape and can be included in Matrix Expressions

```
>>> A = MatrixSymbol('A', 3, 4) # A 3 by 4 Matrix
>>> B = MatrixSymbol('B', 4, 3) # A 4 by 3 Matrix
>>> A.shape
(3, 4)
>>> 2*A*B + Identity(3)
I + 2*A*B
```

class diofant.matrices.expressions.MatAdd(*args, **kwargs)
A Sum of Matrix Expressions
MatAdd inherits from and operates like Diofant Add

```
>>> A = MatrixSymbol('A', 5, 5)
>>> B = MatrixSymbol('B', 5, 5)
>>> C = MatrixSymbol('C', 5, 5)
>>> MatAdd(A, B, C)
A + B + C
```

class diofant.matrices.expressions.MatMul(*args, **kwargs)
A product of matrix expressions

Examples

```
>>> A = MatrixSymbol('A', 5, 4)
>>> B = MatrixSymbol('B', 4, 3)
>>> C = MatrixSymbol('C', 3, 6)
>>> MatMul(A, B, C)
A*B*C
```

class diofant.matrices.expressions.MatPow(base, exp)
Power of matrix expression.
class diofant.matrices.expressions.Inverse(mat)
The multiplicative inverse of a matrix expression
This is a symbolic object that simply stores its argument without evaluating it. To actually compute the inverse, use the .inverse() method of matrices.

Examples

```
>>> A = MatrixSymbol('A', 3, 3)
>>> B = MatrixSymbol('B', 3, 3)
>>> Inverse(A)
A^-1
>>> A.inverse() == Inverse(A)
True
>>> (A*B).inverse()
B^-1*A^-1
>>> Inverse(A*B)
(A*B)^-1
```

class diofant.matrices.expressions.Transpose(*args, **kwargs)
The transpose of a matrix expression.
This is a symbolic object that simply stores its argument without evaluating it. To actually compute the transpose, use the transpose() function, or the . T attribute of matrices.

Examples

```
>>> A = MatrixSymbol('A', 3, 5)
>>> B = MatrixSymbol('B', 5, 3)
>>> Transpose(A)
A.T
>>> A.T == transpose(A) == Transpose(A)
True
>>> Transpose(A*B)
(A*B).T
>>> transpose(A*B)
B.T*A.T
```

class diofant.matrices.expressions. Trace(mat)
Matrix Trace
Represents the trace of a matrix expression.

```
>>> A = MatrixSymbol('A', 3, 3)
>>> Trace(A)
Trace(A)
```

class diofant.matrices.expressions.FunctionMatrix(rows, cols, lamda)
Represents a Matrix using a function (Lambda)
This class is an alternative to SparseMatrix

```
>>> i, j = symbols('i j')
>> X = FunctionMatrix(3, 3, Lambda((i, j), i + j))
>>> Matrix(X)
Matrix([
[0, 1, 2],
[1, 2, 3],
[2, 3, 4]])
```

>>> Y = FunctionMatrix(1000, 1000, Lambda((i, j), i + j))
>>> isinstance(\mathbf{Y}^{*} Y, MatMul) \# this is an expression object
True

```
>>> (Y**2)[10, 10] # So this is evaluated lazily
```

342923500
class diofant.matrices.expressions.Identity (n)
The Matrix Identity I - multiplicative identity

```
>>> A = MatrixSymbol('A', 3, 5)
>>> I = Identity(3)
>>> I*A
A
```

class diofant.matrices.expressions.ZeroMatrix (m, n)
The Matrix Zero 0 - additive identity

```
>>> A = MatrixSymbol('A', 3, 5)
>>> Z = ZeroMatrix(3, 5)
>>> A+Z
A
>> Z*A.T
0
```


Block Matrices

Block matrices allow you to construct larger matrices out of smaller sub-blocks. They can work with MatrixExpr (page 581) or ImmutableMatrix (page 579) objects.
class diofant.matrices.expressions.blockmatrix.BlockMatrix(*args)
A BlockMatrix is a Matrix composed of other smaller, submatrices
The submatrices are stored in a Diofant Matrix object but accessed as part of a Matrix Expression

```
>>> X = MatrixSymbol('X', n, n)
>>> Y = MatrixSymbol('Y', m, m)
>>> Z = MatrixSymbol('Z', n, m)
>>> B = BlockMatrix([[X, Z], [ZeroMatrix(m, n), Y]])
>>> B
Matrix([
[X, Z],
[0, Y]])
```

```
>>> C = BlockMatrix([[Identity(n), Z]])
>>> C
Matrix([[I, Z]])
```

```
>>> block_collapse(C*B)
Matrix([[\overline{X}, Z + Z*Y]])
```

transpose()
Return transpose of matrix.

Examples

```
>>> X = MatrixSymbol('X', n, n)
>>> Y = MatrixSymbol('Y', m, m)
>>> Z = MatrixSymbol('Z', n, m)
>>> B = BlockMatrix([[X, Z], [ZeroMatrix(m, n), Y]])
>> B.transpose()
Matrix([
[X.T, 0],
[Z.T, Y.T]])
>>> _.transpose()
Matrix([
[X, Z],
[0, Y]])
```

class diofant.matrices.expressions.blockmatrix.BlockDiagMatrix(*mats)
A BlockDiagMatrix is a BlockMatrix with matrices only along the diagonal

```
>>> X = MatrixSymbol('X', n, n)
>>> Y = MatrixSymbol('Y', m, m)
>>> BlockDiagMatrix(X, Y)
Matrix([
[X, 0],
[0, Y]])
```

diofant.matrices.expressions.blockmatrix.block_collapse(expr)
Evaluates a block matrix expression

```
>>> X = MatrixSymbol('X', n, n)
>>> Y = MatrixSymbol('Y', m, m)
>>> Z = MatrixSymbol('Z', n, m)
>>> B = BlockMatrix([[X, Z], [ZeroMatrix(m, n), Y]])
>> B
Matrix([
[X, Z],
[0, Y]])
```

>>> C = BlockMatrix([[Identity(n), Z]])
>> C
Matrix([[I, Z]])

```
>>> block_collapse(C*B)
Matrix([[\overline{X, Z + Z*Y]])}
```


4.12 Polynomials

Polynomial manipulation algorithms and algebraic objects.
Computations with polynomials are at the core of computer algebra and having a fast and robust polynomials manipulation module is a key for building a powerful symbolic manipulation system. Here we document a dedicated module for computing in polynomial algebras over various coefficient domains.

There is a vast number of methods implemented, ranging from simple tools like polynomial division, to advanced concepts including Gröbner bases and multivariate factorization over algebraic number domains.

4.12.1 Basic polynomial manipulation functions

User-friendly public interface to polynomial functions.
class diofant.polys.polytools.GroebnerBasis(F, *gens, **args)
Represents a reduced Gröbner basis.
contains (poly)
Check if poly belongs the ideal generated by self.

Examples

>>> $\mathrm{f}=2 * \mathrm{x}^{* * 3+\mathrm{y}^{* *} 3+3 * \mathrm{y}, ~}$
>> G = groebner $\left(\left[x^{* *} 2+y^{* * 2}-1, x^{*} y\right.\right.$ - 2])

```
>>> G.contains(f)
True
>>> G.contains(f + 1)
False
```

property dimension
Dimension of the ideal, generated by a Gröbner basis.
property independent_sets
Compute independent sets for ideal, generated by a Gröbner basis.

References

- [KW88]
reduce (expr, auto=True)
Reduces a polynomial modulo a Gröbner basis.
Given a polynomial f and a set of polynomials $G=\left(g _1, \ldots, \quad g_{_} n\right)$, computes a set of quotients $q=\left(q _1, \ldots, q_{_} n\right)$ and the remainder r such that $f=q _1 * f _1$ $+\ldots+q_{-} n^{*} f_{-} n+r$, where r vanishes or r is a completely reduced polynomial with respect to \bar{G}.

Examples

```
>>> f = 2*x**4 - x**2 + y**3 + y**2
>>> G = groebner([x**3 - x, y**3 - y])
```

```
>>> G.reduce(f)
([2*x, 1], x**2 + y**2 + y)
>>> Q, r=
```

```
>>> expand(sum(q*g for q,g in zip(Q,G)) + r)
2*x**4 - x**2 + y**3 + y**2
>>> == f
True-
```

set_order(order)

Convert a Gröbner basis from one ordering to another.

Notes

The FGLM algorithm [FaugereGLM93] used to convert reduced Gröbner bases of zero-dimensional ideals from one ordering to another. Sometimes it is infeasible to compute a Gröbner basis with respect to a particular ordering directly.

Examples

```
>>> F = [x**2 - 3*y - x + 1, y**2 - 2*x + y - 1]
>> G = groebner(F, order='grlex')
```

```
>>> G.set_order('lex') == groebner(F, order='lex')
```

True
diofant.polys.polytools.LC(f, *gens, **args)
Return the leading coefficient of f.

Diofant Documentation, Release 0.13.0

Examples

```
>>> LC(4*x**2 + 2*x*y**2 + x*y + 3*y)
```

4
diofant.polys.polytools.LM(f, *gens, **args)
Return the leading monomial of f.

Examples

```
>>> LM(4*x**2 + 2*x*y**2 + x*y + 3*y)
```

x**2
diofant.polys.polytools.LT(f, *gens, **args)
Return the leading term of f.

Examples

```
>>> LT(4*x**2 + 2*x*y**2 + x*y + 3*y)
4*x**2
```

class diofant.polys.polytools.Poly(rep, *gens, **args)
Generic class for representing polynomial expressions.
EC (order=None)
Returns the last non-zero coefficient of self.

Examples

```
>>> (x**3 + 2*x**2 + 3*x).as_poly().EC()
3
```

EM (order=None)

Returns the last non-zero monomial of self.

Examples

```
>>> (4*x**2 + 2*x*y**2 + x*y + 3*y).as_poly().EM()
```

$x^{* *} 0 * y^{* * 1}$

ET (order=None)
Returns the last non-zero term of self.

Examples

```
>>> (4*x**2 + 2*x*y**2 + x*y + 3*y).as_poly().ET()
```

($x^{* *} 0 * y^{* *} 1,3$)

LC (order=None)
Returns the leading coefficient of self.

Examples

```
>>> (4*x**3 + 2*x**2 + 3*x).as_poly().LC()
4
```


LM (order=None)

Returns the leading monomial of self.
The leading monomial signifies the the monomial having the highest power of the principal generator in the polynomial expression.

Examples

```
>>> (4*x**2 + 2*x*y**2 + x*y + 3*y).as_poly().LM()
x**2*y**0
```

LT (order=None)
Returns the leading term of self.
The leading term signifies the term having the highest power of the principal generator in the polynomial expression.

Examples

```
>>> (4*x**2 + 2*x*y**2 + x*y + 3*y).as_poly().LT()
(x**2*y**0, 4)
```

TC ()
Returns the trailing coefficient of self.

Examples

```
>>> (x**3 + 2*x**2 + 3*x).as_poly().TC()
0
```

all_coeffs()
Returns all coefficients from a univariate polynomial self.

Examples

```
>>> (x**3 + 2*x - 1).as_poly().all_coeffs()
```

$[-1,2,0,1]$
all_roots (multiple $=$ True, radicals=True)
Return a list of real and complex roots with multiplicities.

Examples

```
>>> (2*x**3 - 7*x**2 + 4*x + 4).as_poly().all_roots()
[-1/2, 2, 2]
>>> (x**3 + x + 1).as_poly().all_roots()
[RootOf(x**3 + x + 1, 0), Root0f(x**3 + x + 1, 1),
    Root0f(x**3 + x + 1, 2)]
```

property args

Don't mess up with the core.

Examples

```
>>> (x**2 + 1).as_poly().args
(x**2 + 1, x)
```

as_dict (native=False)

Switch to a dict representation.

Examples

```
>>> (x**2 + 2*x*y**2 - y).as_poly().as_dict()
{(0, 1): -1, (1, 2): 2, (2, \overline{0}): 1}
```

as_expr(*gens)

Convert a Poly instance to an Expr instance.

Examples

```
>>> f = (x**2 + 2*x*y**2 - y).as_poly()
```

```
>> f.as expr()
```



```
>> f.as_expr({x: 5})
10*y**2 - y + 25
>> f.as_expr(5, 6)
379
```

cancel (other, include=False)
Cancel common factors in a rational function self/other.

Examples

```
>>> (2*x**2 - 2).as_poly().cancel((x**2 - 2*x + 1).as_poly())
(1, Poly(2*x + 2, x, domain='ZZ'), Poly(x - 1, x, domain='ZZ'))
```

```
>>> (2*x**2 - 2).as_poly().cancel((x**2 - 2*x + 1).as_poly(), include=True)
(Poly(2*x + 2, x, domain='ZZ'), Poly(x - 1, x, domain='ZZ'))
```

clear_denoms (convert=False)
Clear denominators, but keep the ground domain.

Examples

```
>>> f = (x/2 + Rational(1, 3)).as_poly()
```

```
>>> f.clear_denoms()
(6, Poly(3*x + 2, x, domain='QQ'))
>>> f.clear_denoms(convert=True)
(6, Poly(3*\overline{x}}+2, x, domain='ZZ')
```

coeff_monomial (monom)

Returns the coefficient of monom in self if there, else None.

Examples

```
>>> p = (24*x*y*exp(8) + 23*x).as_poly(greedy=False)
```

```
>>> p.coeff_monomial(x)
23
>>> p.coeff_monomial(y)
0
>>> p.coeff_monomial( }\mp@subsup{x}{}{*}y\mathrm{ )
24*E**8
>>> p.coeff_monomial((1, 1))
24*E**8
```

Note that Expr.coeff() behaves differently, collecting terms if possible; the Poly must be converted to an Expr to use that method, however:

```
>>> p.as_expr().coeff(x)
24*E**8*\overline{y}+23
>>> p.as_expr().coeff(y)
24*E**8*
>>> p.as_expr().coeff(x*y)
24*E**8
```

coeffs(order=None)

Returns all non-zero coefficients from self in lex order.

Examples

```
>>> (x**3 + 2*x + 3).as_poly().coeffs()
```

[1, 2, 3]

See also:

all_coeffs (page 589), coeff_monomial (page 591)
cofactors(other)
Returns the GCD of self and other and their cofactors.
For two polynomials f and g it returns polynomials ($h, ~ c f f, ~ c f g$) such that $h=$ $\operatorname{gcd}(f, g)$, and cff $=$ quo($f, h)$ and cfg $=q u o(g, h)$ are, so called, cofactors of f and g.

Examples

```
>>> (x**2 - 1).as_poly().cofactors((x**2 - 3*x + 2).as_poly())
(Poly(x - 1, x, domain='ZZ'),
    Poly(x + 1, x, domain='ZZ'),
    Poly(x - 2, x, domain='ZZ'))
```

compose(other)

Computes the functional composition of self and other.

Examples

```
>>> (x**2 + x).as_poly().compose((x - 1).as_poly())
Poly(x**2 - x, x, domain='ZZ')
```

content()

Returns the GCD of polynomial coefficients.

Examples

```
    >>> (6*x**2 + 8*x + 12).as_poly().content()
```

2
count_roots (inf=None, sup=None)

Return the number of roots of self in [inf, sup] interval.

Examples

```
>>> (x**4 - 4).as_poly().count_roots(-3, 3)
2
>>> (x**4 - 4).as_poly().count_roots(0, 1 + 3*I)
1
decompose()
Computes a functional decomposition of self.
```


Examples

```
    >>> (x**4 + 2*x**3 - x - 1).as_poly().decompose()
    [Poly(x**2 - x - 1, x, domain=`'ZZ'), Poly(x**2 + x, x, domain='ZZ')]
degree(gen=0)
    Returns degree of self in x_j.
The degree of 0 is negative floating-point infinity.
```


Examples

```
>>> (x**2 + y*x + 1).as_poly().degree()
2
>>> (x**2 + y*x + y).as_poly().degree(y)
1
>>> Integer(0).as_poly(x).degree()
-inf
```


discriminant()

Computes the discriminant of self.

Examples

```
>>> (x**2 + 2*x + 3).as_poly().discriminant()
```

-8
dispersionset (other=None)

Compute the dispersion set of two polynomials.

Examples

```
>>> ((x - 3)*(x + 3)).as_poly().dispersionset()
{0, 6}
```

div(other, auto=True)
Polynomial division with remainder of self by other.

Examples

```
>>> (x**2 + 1).as_poly().div((2*x - 4).as_poly())
(Poly(1/2*x + 1, x, domain='QQ'), Poly(5, x, domain='QQ'))
```

>>> $\left(x^{* *} 2+1\right) . a s _p o l y() \cdot d i v\left((2 * x-4) . a s _p o l y()\right.$, auto=False)
(Poly(0, x, domain='ZZ'), Poly(x**2 + 1, \bar{x}, domain='ZZ'))
property domain
Get the ground domain of self.
eject (*gens)
Eject selected generators into the ground domain.

Examples

```
>>> f = (x**2*y + x*y**3 + x*y + 1).as_poly()
```

```
>>> f.eject(x)
Poly(x*y**3 + (x**2 + x)*y + 1, y, domain='ZZ[x]')
>>> f.eject(y)
Poly(y*x**2 + (y**3 + y)*x + 1, x, domain='ZZ[y]')
```

eval ($x, a=$ None, auto=True)
Evaluate self at a in the given variable.

Examples

```
>>> (x**2 + 2*x + 3).as_poly().eval(2)
11
```

```
>>> (2*x*y + 3*x + y + 2).as poly().eval(x, 2)
Poly(5*y + 8, y, domain='ZZ')
```

>>> f = (2*x*y + 3*x + y + 2*z).as_poly()

```
>>> f.eval({x: 2})
Poly(5*y + 2*z + 6, y, z, domain='ZZ')
>>> f.eval({x: 2, y: 5})
Poly(2*z + 31, z, domain='ZZ')
>>> f.eval({x: 2, y: 5, z: 7})
45
```

```
>>> f.eval((2, 5))
Poly(2*z + 31, z, domain='ZZ')
>>> f(2, 5)
Poly(2*z + 31, z, domain='ZZ')
```


exclude()

Remove unnecessary generators from self.

Examples

```
>>> (a + x).as_poly(a, b, c, d, x).exclude()
```

Poly(a + x, a, x, domain='ZZ')
exquo (other, auto=True)
Computes polynomial exact quotient of self by other.

Examples

```
>>> (x**2 - 1).as_poly().exquo((x - 1).as_poly())
Poly(x + 1, x, domain='ZZ')
```

```
>>> (x**2 + 1).as_poly().exquo((2*x - 4).as_poly())
Traceback (most recent call last):
ExactQuotientFailed: 2*x - 4 does not divide x**2 + 1
```

exquo_ground (coeff)

Exact quotient of self by a an element of the ground domain.

Examples

```
>>> (2*x + 4).as_poly().exquo_ground(2)
Poly(x + 2, x, domain='ZZ')
```

>>> (2*x + 3).as poly().exquo ground(2)
Traceback (most recent call last):
ExactQuotientFailed: 2 does not divide 3 in ZZ

factor_list()

Returns a list of irreducible factors of self.

Examples

```
>>> f = (2*x**5 + 2*x**4*y + 4*x**3 + 4*x**2*y + 2*x + 2*y).as poly()
```

```
>>> f.factor list()
(2, [(Poly(x + y, x, y, domain='ZZ'), 1),
    (Poly(x**2 + 1, x, y, domain='ZZ'), 2)])
```

property free_symbols
Free symbols of a polynomial expression.

Examples

```
>>> (x**2 + 1).as_poly().free_symbols
{x}
>>> (x**2 + y).as poly().free symbols
{x,y}
>>> (x**2 + y).as_poly(x).free_symbols
{x, y}
```

property free_symbols_in_domain
Free symbols of the domain of self.

Examples

```
>>> (x**2 + 1).as_poly().free_symbols_in_domain
set()
>>> (x**2 + y).as_poly().free_symbols_in_domain
set()
>>> (x**2 + y).as_poly(x).free_symbols_in_domain
{y}
```

classmethod from_dict(rep, *gens, **args)
Construct a polynomial from a dict.
classmethod from_expr (rep, *gens, **args)
Construct a polynomial from an expression.
classmethod from_list(rep, *gens, **args)
Construct a polynomial from a list.
classmethod from_poly (rep, *gens, **args)
Construct a polynomial from a polynomial.
gcd (other)
Returns the polynomial GCD of self and other.

Examples

```
>>> (x**2 - 1).as_poly().gcd((x**2 - 3*x + 2).as_poly())
Poly(x - 1, x, domain='ZZ')
```

gcdex (other, auto=True)
Extended Euclidean algorithm of self and other.
Returns (s, t, h) such that $h=\operatorname{gcd}(f, g)$ and $s * f+t * g=h$.

Examples

```
>>> f = (x**4 - 2*x**3 - 6*x**2 + 12*x + 15).as_poly()
>>> g = (x**3 + x**2 - 4*x - 4).as_poly()
```

```
>>> f.gcdex(g)
(Poly(-1/5*x + 3/5, x, domain='QQ'),
    Poly(1/5*x**2 - 6/5*x + 2, x, domain='QQ'),
    Poly(x + 1, x, domain='QQ'))
```

property gen

Return the principal generator.

Examples

```
>>> (x**2 + 1).as_poly().gen
```

X
get_modulus ()

Get the modulus of self.

Examples

```
>>> (x**2 + 1).as_poly(modulus=2).get_modulus()
```

2
half_gcdex (other, auto=True)
Half extended Euclidean algorithm of self and other.
Returns (s, h) such that $\mathrm{h}=\operatorname{gcd}(\mathrm{f}, \mathrm{g})$ and $\mathrm{s} * \mathrm{f}=\mathrm{h}(\bmod \mathrm{g})$.

Examples

```
>>> f = (x**4 - 2*x**3 - 6*x**2 + 12*x + 15).as_poly()
>>> g = (x**3 + x**2 - 4*x - 4).as_poly()
```

```
>>> f.half_gcdex(g)
(Poly(-1/5*x + 3/5, x, domain='QQ'), Poly(x + 1, x, domain='QQ'))
```

has_only_gens (*gens)
Return True if Poly(f, *gens) retains ground domain.

Examples

```
>>> (x*y + 1).as_poly(x, y, z).has_only_gens(x, y)
True
>>> (x*y + z).as_poly(x, y, z).has_only_gens(x, y)
False
```

inject (front=False)
Inject ground domain generators into self.

Examples

```
>>> f = (x**2*y + x*y**3 + x*y + 1).as_poly(x)
```

```
>>> f.inject()
Poly(x**2*y + x*y**3 + x*y + 1, x, y, domain='ZZ')
>>> f.inject(front=True)
Poly(y**3*x + y*x**2 + y*x + 1, y, x, domain='ZZ')
```

integrate(*specs, **args)
Computes indefinite integral of self.

Examples

```
>> (x**2 + 2*x + 1).as_poly().integrate()
Poly(1/3*x**3 + x**2 + \overline{x, x, domain='QQ')}
```

```
>>> (x*y**2 + x).as_poly().integrate((0, 1), (1, 0))
Poly(1/2*x**2*y**2 + 1/2*x**2, x, y, domain='QQ')
```

invert (other, auto=True)
Invert self modulo other when possible.

Examples

```
>>> (x**2 - 1).as_poly().invert((2*x - 1).as_poly())
Poly(-4/3, x, domáin='QQ')
```

```
>>> (x**2 - 1).as_poly().invert((x - 1).as_poly())
Traceback (most recent call last):
NotInvertible: zero divisor
```

property is_cyclotomic
Returns $\bar{T} r u e$ if self is a cyclotomic polynomial.

Examples

```
>>> f = (x**16 + x**14 - x**10 + x**8 - x**6 + x**2 + 1).as_poly()
>>> f.is_cyclotomic
False
```

```
>>> g = (x**16 + x**14 - x**10 - x**8 - x**6 + x**2 + 1).as_poly()
>>> g.is_cyclotomic
True
```

property is_ground
Returns True if self is an element of the ground domain.

Examples

```
>>> x.as_poly().is_ground
False
>>> Integer(2).as_poly(x).is_ground
True
>>> y.as_poly(x).is_ground
True
```

property is_homogeneous
Returns True if self is a homogeneous polynomial.
A homogeneous polynomial is a polynomial whose all monomials with non-zero coefficients have the same total degree.

Examples

```
>>> (x**2 + x*y).as_poly().is_homogeneous
True
>>> (x**3 + x*y).as_poly().is_homogeneous
False
```

property is_irreducible
Returns True if self has no factors over its domain.

Examples

```
>>> (x**2 + x + 1).as_poly(modulus=2).is_irreducible
True
>>> (x**2 + 1).as_poly(modulus=2).is_irreducible
False
```

property is_linear
Returns True if self is linear in all its variables.

Examples

```
>>> (x + y + 2).as_poly().is_linear
True
>>> (x*y + 2).as_poly().is_linear
False
```

property is_multivariate
Returns True if self is a multivariate polynomial.

Examples

```
>>> (x**2 + x + 1).as_poly().is multivariate
False
>>> (x*y**2 + x*y + 1).as_poly().is_multivariate
True
>>> (x*y**2 + x*y + 1).as_poly(x).is_multivariate
False
>>> (x**2 + x + 1).as_poly(x, y).is_multivariate
True
```

property is_one
Returns $\bar{T} r u e$ if sel f is a unit polynomial.

Examples

```
>>> Integer(0).as_poly(x).is_one
False
>>> Integer(1).as_poly(x).is_one
True
```

property is_quadratic
Returns True if self is quadratic in all its variables.

Examples

```
>>> (x*y + 2).as_poly().is_quadratic
True
>> (x*y**2 + 2).as_poly().is_quadratic
False
```

property is_squarefree
Returns True if self is a square-free polynomial.

Examples

```
>>> (x**2 - 2*x + 1).as_poly().is_squarefree
False
>>> (x**2 - 1).as_poly().is_squarefree
True
```

property is_term
Returns True if self is zero or has only one term.

Examples

```
>>> (3*x**2).as_poly().is_term
True
>>> (3*x**2 + 1).as_poly().is_term
False
```

property is_univariate
Returns True if self is a univariate polynomial.

Examples

```
>>> (x**2 + x + 1).as_poly().is_univariate
True
>>> (x*y**2 + x*y + 1).as_poly().is univariate
False
>>> (x*y**2 + x*y + 1).as_poly(x).is_univariate
True
>> (x**2 + x + 1).as_poly(x, y).is_univariate
False
property is_zero
Returns \(\bar{T} r u e\) if self is a zero polynomial.
```


Examples

```
>>> Integer(0).as_poly(x).is_zero
True
>>> Integer(1).as_poly(x).is_zero
False
```

lcm (other)
Returns polynomial LCM of self and other.

Examples

```
>>> (x**2 - 1).as_poly().lcm((x**2 - 3*x + 2).as_poly())
Poly(x**3 - 2*x**\overline{2}-x + 2, x, domain='ZZ')
```

length()
Returns the number of non-zero terms in self.

Examples

```
>>> (x**2 + 2*x - 1).as_poly().length()
3
```

monic (auto=True)
Divides all coefficients by LC(f).

Examples

```
>>> (3*x**2 + 6*x + 9).as_poly().monic()
Poly(x**2 + 2*x + 3, x, domain='QQ')
```

```
>>> (3*x**2 + 4*x + 2).as poly().monic()
Poly(x**2 + 4/3*x + 2/3, \overline{x, domain='QQ')}
```

monoms (order=None)
Returns all non-zero monomials from self in lex order.

Examples

```
>>> (x**2 + 2*x*y**2 + x*y + 3*y).as_poly().monoms()
```

$[(2,0),(1,2),(1,1),(0,1)]$

classmethod new(rep, *gens)

Construct Poly (page 588) instance from raw representation.
nroots ($n=15$, maxsteps $=50$, cleanup $=$ True)
Compute numerical approximations of roots of self.

Parameters

- n... the number of digits to calculate
- maxsteps ... the maximum number of iterations to do
- If the accuracy `n` cannot be reached in `maxsteps`, it will raise an
- exception. You need to rerun with higher maxsteps.

Examples

>>> ($x^{* * 2}$ - 3).as_poly().nroots ($\mathrm{n}=15$)
[-1.7320508075688호, 1.73205080756888]
>> ($x^{* * 2}$ - 3).as poly().nroots ($n=30$)
[-1.73205080756887729352744634151, 1.73205080756887729352744634151]
$\operatorname{per}($ rep, gens $=$ None, remove $=$ None $)$
Create a Poly out of the given representation.

Examples

```
>>> a = (x**2 + 1).as_poly()
>>> R = ZZ.inject(x)
```

```
>>> a.per(R.from_list([ZZ(1), ZZ(1)]), gens=[y])
Poly(y + 1, y, domain='ZZ')
```

primitive()
Returns the content and a primitive form of self.

Examples

```
>>> (2*x**2 + 8*x + 12).as_poly().primitive()
(2, Poly(x**2 + 4*x + 6, x, domain='ZZ'))
```

quo(other, auto=True)
Computes polynomial quotient of self by other.

Examples

```
>>> (x**2 + 1).as_poly().quo((2*x - 4).as_poly())
Poly(1/2*x + 1, x, domain='QQ')
```

```
>>> (x**2 - 1).as_poly().quo((x - 1).as_poly())
Poly(x + 1, x, domain='ZZ')
```

quo_ground (coeff)

Quotient of self by a an element of the ground domain.

Examples

```
>>> (2*x + 4).as_poly().quo_ground(2)
Poly(x + 2, x, domain='ZZ')
```

```
>>> (2*x + 3).as_poly().quo_ground(2)
Poly(x + 1, x, domain='ZZ')
```

rat_clear_denoms (other)
Clear denominators in a rational function self/other.

Examples

```
>>> f = (x**2/y + 1).as_poly(x)
>>> g=(x**3 + y).as poly(x)
```

>>> p, q = f.rat_clear_denoms(g)

```
>> p
Poly(x**2 + y, x, domain='ZZ[y]')
>>> q
Poly(y*x**3 + y**2, x, domain='ZZ[y]')
```

real_roots (multiple $=$ True, radicals=True)
Return a list of real roots with multiplicities.

Examples

```
>>> (2*x**3 - 7*x**2 + 4*x + 4).as_poly().real_roots()
[-1/2, 2, 2]
>>> (x**3 + x + 1).as poly().real_roots()
[Root0f(x**3 + x + 1, 0)]
```

rem (other, auto=True)
Computes the polynomial remainder of self by other.

Examples

```
>>> (x**2 + 1).as_poly().rem((2*x - 4).as_poly())
Poly(5, x, domain='ZZ')
```

>>> ($x^{* * 2 ~+~ 1) . a s _p o l y() . r e m\left((2 * x ~-~ 4) . a s _p o l y(), ~ a u t o=F a l s e\right) ~}$
Poly(x**2 + 1, x, domain='ZZ')
reorder (*gens, **args)
Efficiently apply new order of generators.

Examples

```
>>> (x**2 + x*y**2).as_poly().reorder(y, x)
Poly(y**2*x + x**2, y, x, domain='ZZ')
```

replace $(x, y=$ None $)$
Replace x with y in generators list.

Examples

```
>>> (x**2 + 1).as_poly().replace(x, y)
Poly(y**2 + 1, y, domain='ZZ')
```

resultant (other, includePRS=False)
Computes the resultant of self and other via PRS.
If includePRS=True, it includes the subresultant PRS in the result. Because the PRS is used to calculate the resultant, this is more efficient than calling subresultants() (page 616) separately.

Examples

```
>>> f = (x**2 + 1).as_poly()
```

```
>>> f.resultant((x**2 - 1).as_poly())
4
>>> f.resultant((x**2 - 1).as_poly(), includePRS=True)
(4, [Poly(x**2 + 1, x, domain='ZZ'), Poly(x**2 - 1, x, domain='ZZ'),
    Poly(-2, x, domain='ZZ')])
```

retract (field=None)

Recalculate the ground domain of a polynomial.

Examples

```
>>> f = (x**2 + 1).as_poly(domain=QQ.inject(y))
>> f
Poly(x**2 + 1, x, domain='QQ[y]')
```

```
>>> f.retract()
Poly(x**2 + 1, x, domain='ZZ')
>>> f.retract(field=True)
Poly(x**2 + 1, x, domain='QQ')
```

root (index, radicals=True)
Get an indexed root of a polynomial.

Examples

```
>>> f = (2*x**3 - 7*x**2 + 4*x + 4).as_poly()
```

```
>>> f.root(0)
```

-1/2
>>> f.root(1)
2
>>> f.root(2)
2
>>> f.root(3)
Traceback (most recent call last):
IndexError: root index out of [-3, 2] range, got 3

```
>>> (x**5 + x + 1).as poly().root(0)
RootOf(x**3 - x**2 + 1, 0)
```


set_domain(domain)

Set the ground domain of self.
set_modulus (modulus)
Set the modulus of self.

Examples

```
>>> (5*x**2 + 2*x - 1).as_poly().set_modulus(2)
Poly(x**2 + 1, x, modulus=2)
```

shift (a)

Efficiently compute Taylor shift $f(x+a)$.

Examples

```
>>> (x**2 - 2*x + 1).as_poly().shift(2)
Poly(x**2 + 2*x + 1, x, domain='ZZ')
```

slice ($x, m, n=$ None)
Take a continuous subsequence of terms of self.

```
sqf_list()
```

Returns a list of square-free factors of self.

Examples

>>> $\mathrm{f}=\left(2 * \mathrm{x}^{* *} 5+16 * \mathrm{x}^{* *} 4+50 * \mathrm{x}^{* *} 3+76 * \mathrm{x}^{* *} 2+56 * \mathrm{x}+16\right)$. as_poly()

```
>>> f.sqf_list()
(2, [(Poly(x + 1, x, domain='ZZ'), 2),
    (Poly(x + 2, x, domain='ZZ'), 3)j)
```

sqf_norm()

Computes square-free norm of self.

Returns s, f, r, such that $g(x)=f(x-s a)$ and $r(x)=\operatorname{Norm}(g(x))$ is a square-free polynomial over K, where a is the algebraic extension of the ground domain.

Examples

```
>>> s, f, r = (x**2 + 1).as_poly(extension=[sqrt(3)]).sqf_norm()
```

$\rightarrow \gg$
1
>> f
Poly($x^{* * 2 ~-~ 2 * s q r t(3) * x ~}+4, x$, domain='QQ<sqrt(3) $\left.>^{\prime}\right)$
\ggg
Poly($x^{* *} 4-4 * x^{* *} 2+16, x$, domain=' $\left.Q Q^{\prime}\right)$
sqf_part()

Computes square-free part of self.

Examples

```
>>> (x**3 - 3*x - 2).as_poly().sqf_part()
Poly(x**2 - x - 2, x, domain='ZZ')
```

subresultants(other)
Computes the subresultant PRS of self and other.

Examples

```
>>> (x**2 + 1).as_poly().subresultants((x**2 - 1).as_poly())
    [Poly(x**2 + 1, x, domain='ZZ'),
    Poly(x**2 - 1, x, domain='ZZ'),
    Poly(-2, x, domain='ZZ')]
```

terms (order=None)
Returns all non-zero terms from self in lex order.

Examples

```
>>> (x**2 + 2*x*y**2 + x*y + 3*y).as poly().terms()
[((2, 0), 1), ((1, 2), 2), ((1, 1), 1), ((0, 1), 3)]
```

terms_gcd()

Remove GCD of terms from the polynomial self.

Examples

```
>>> (x**6*y**2 + x**3*y).as_poly().terms_gcd()
((3, 1), Poly(x**3*y + 1, x, y, domain='ZZ'))
```

termwise(func, *gens, **args)
Apply a function to all terms of self.

Examples

```
>>> def func(k, coeff):
... k = k[0]
#. return coeff//10**(2-k)
```

```
>>> (x**2 + 20*x + 400).as_poly().termwise(func)
Poly(x**2 + 2*x + 4, x, domain='ZZ')
```


to_exact()

Make the ground domain exact.

Examples

```
>>> (x**2 + 1.0).as poly().to exact()
Poly(x**2 + 1, x, domain='QQ')
```

```
to_field()
```

Make the ground domain a field.

Examples

```
>>> (x**2 + 1).as poly().to field()
Poly(x**2 + 1, x, - domain='QQ'')
```


to_ring()

Make the ground domain a ring.

Examples

```
>>> (x**2 + 1).as_poly(field=True).to_ring()
Poly(x**2 + 1, x, domain='ZZ')
```

total_degree()
Returns the total degree of self.

Examples

```
>>> (x**2 + y*x + 1).as_poly().total_degree()
2
>>> (x + y**5).as_poly().total_degree()
5
```

trunc (p)
Reduce self modulo a constant p.

Examples

```
>>> (2*x**3 + 3*x**2 + 5*x + 7).as_poly().trunc(3)
Poly(-x**3 - x + 1, x, domain='ZZ')
```

unify (other)
Make self and other belong to the same domain.

Examples

```
>>> f, g = (x/2 + 1).as_poly(), (2*x + 1).as_poly()
>>> f
Poly(1/2*x + 1, x, domain='QQ')
>>> g
Poly(2*x + 1, x, domain='ZZ')
```

>>> F, G = f.unify(g)

```
>>> F
Poly(1/2*x + 1, x, domain='QQ')
>>> G
Poly(2*x + 1, x, domain='QQ')
```

class diofant.polys.polytools.PurePoly(rep, *gens, **args)

Class for representing pure polynomials.
property free_symbols
Free symbols of a polynomial.

Examples

```
>>> PurePoly(x**2 + 1).free_symbols
set()
>>> PurePoly(x**2 + y).free_symbols
set()
>>> PurePoly(x**2 + y, x).free_symbols
{y}
```

diofant.polys.polytools.cancel (f, *gens, **args)
Cancel common factors in a rational function f.

Examples

```
>>> A = Symbol('A', commutative=False)
```

```
>>> cancel((2*x**2 - 2)/(x**2 - 2*x + 1))
```

(2*x + 2)/(x - 1)
>>> cancel((sqrt(3) + sqrt(15)*A)/(sqrt(2) + sqrt(10)*A))
sqrt(6)/2
diofant.polys.polytools.cofactors(f, g, *gens, **args)
Compute GCD and cofactors of f and g.
Returns polynomials (h, cff, cfg) such that $h=\operatorname{gcd}(f, g)$, and cff $=q u o(f, h)$ and $c f g=q u o(g, h)$ are, so called, cofactors of f and g.

Examples

```
>>> cofactors(x**2 - 1, x**2 - 3*x + 2)
(x - 1, x + 1, x - 2)
```

diofant.polys.polytools.compose(f, g, *gens, **args)
Compute functional composition $f(g)$.

Examples

```
>> compose( }\mp@subsup{x}{}{**2 + x, x - 1)
```

$x^{* * 2}-\mathrm{x}$
diofant.polys.polytools.content (f, *gens, **args)
Compute GCD of coefficients of f.

Examples

```
>>> content(6*x**2 + 8*x + 12)
2
```

diofant.polys.polytools.count_roots(f, inf=None, sup=None)
Return the number of roots of f in [inf, sup] interval.
If one of inf or sup is complex, it will return the number of roots in the complex rectangle with corners at inf and sup.

Examples

```
>>> count roots(x**4 - 4, -3, 3)
2
>>> count_roots(x**4 - 4, 0, 1 + 3*I)
1
```

diofant.polys.polytools.decompose(f, *gens, **args)
Compute functional decomposition of f.

Examples

\ggg decompose $\left(x^{* *} 4+2 * x^{* * 3}-\mathrm{x}-1\right)$
$\left[x^{* * 2}-x-1, x^{* * 2}+x\right]$
diofant. polys.polytools.degree (f, *gens, **args)
Return the degree of f in the given variable.
The degree of 0 is negative infinity.

Examples

```
>>> degree(x**2 + y*x + 1, gen=x)
2
>>> degree(x**2 + y*x + 1, gen=y)
1
>>> degree(0, x)
-inf
```

diofant.polys.polytools.discriminant(f, *gens, **args)
Compute discriminant of f.

Examples

```
>>> discriminant(x**2 + 2*x + 3)
```

-8
diofant.polys.polytools.div(f, g, *gens, **args)
Compute polynomial division of f and g.

Examples

```
>>> div(x**2 + 1, 2*x - 4, field=False)
(0, x**2 + 1)
>>> div(x**2 + 1, 2*x - 4)
(x/2 + 1, 5)
```

diofant.polys.polytools.exquo(f, g, *gens, $^{* *}$ args)
Compute polynomial exact quotient of f and g.

Examples

```
>>> exquo(x**2 - 1, x - 1)
```

$x+1$
>>> exquo(x**2 + 1, $2 * x-4)$
Traceback (most recent call last):
ExactQuotientFailed: 2*x - 4 does not divide $x^{* *} 2+1$
diofant.polys.polytools.factor(f, *gens, **args)
Compute the factorization of expression, f, into irreducibles. (To factor an integer into primes, use factorint.)

There two modes implemented: symbolic and formal. If f is not an instance of Poly (page 588) and generators are not specified, then the former mode is used. Otherwise, the formal mode is used.
In symbolic mode, factor() (page 610) will traverse the expression tree and factor its components without any prior expansion, unless an instance of Add (page 106) is encountered (in this case formal factorization is used). This way factor() (page 610) can handle large or symbolic exponents.

By default, the factorization is computed over the rationals. To factor over other domain, e.g. an algebraic or finite field, use appropriate options: extension, modulus or domain.

Examples

```
>> factor(2*x**5 + 2* x**4*y + 4*x**3 + 4*x**2*y + 2*x + 2*y)
2*(x + y)*(x**2 + 1)**2
```

```
>>> factor(x**2 + 1)
x**2 + 1
>>> factor(x**2 + 1, modulus=2)
(x + 1)**2
>>> factor(x**2 + 1, gaussian=True)
(x - I)*(X + I)
```

```
>>> factor(x**2 - 2, extension=sqrt(2))
```

(x - sqrt(2))*(x + sqrt(2))

```
>>> factor((x**2 - 1)/(x**2 + 4*x + 4))
(x - 1)*(x + 1)/(x + 2)**2
>>> factor((x**2 + 4*x + 4)**10000000*(x**2 + 1))
(x + 2)**20000000*(x**2 + 1)
```

By default, factor deals with an expression as a whole:

```
>>> eq = 2**(x**2 + 2*x + 1)
>>> factor(eq)
2**(x**2 + 2*x + 1)
```

If the deep flag is True then subexpressions will be factored:

```
>>> factor(eq, deep=True)
2**((x + 1)**2)
```


See also:

diofant.ntheory.factor_.factorint (page 245)
diofant.polys.polytools.factor_list(f, *gens, **args)
Compute a list of irreducible factors of f.

Examples

>>> factor_list(2*x**5 + 2*x**4*y + 4*x**3 + 4*x**2*y + 2*x + 2*y)
(2, [(x + y, 1), (x**2 + 1, 2)])
diofant.polys.polytools.gcd(f, g, *gens, **args)
Compute GCD of f and g.

Examples

```
>>> gcd(x**2 - 1, x**2 - 3*x + 2)
```

x - 1
diofant.polys.polytools.gcdex (f, g, *gens, **args)
Extended Euclidean algorithm of f and g.
Returns ($\mathrm{s}, \mathrm{t}, \mathrm{h}$) such that $\mathrm{h}=\mathrm{gcd}(\mathrm{f}, \mathrm{g})$ and $\mathrm{s}^{*} \mathrm{f}+\mathrm{t} * \mathrm{~g}=\mathrm{h}$.

Examples

```
>>> gcdex(x**4 - 2*x**3 - 6*x**2 + 12*x + 15, x**3 + x**2 - 4*x - 4)
(-x/5 + 3/5, x**2/5 - 6*x/5 + 2, x + 1)
```

diofant.polys.polytools.groebner (F, *gens, **args)
Computes the reduced Gröbner basis for a set of polynomials.

Parameters

- F (list) - a set of polynomials
- *gens (tuple) - polynomial generators
- **args (dict) - a dictionary of parameters, namely order [str, optional] Monomial order, defaults to lex.
method [\{'buchberger', 'f5b'\}, optional] Set algorithm to compute Gröbner basis. By default, an improved implementation of the Buchberger algorithm is used.
field [bool, optional] Force coefficients domain to be a field. Defaults to False.

Examples

```
>>> F = [x*y - 2*x, 2*x**2 - y**2]
```

```
>>> groebner(F)
GroebnerBasis([2*x**2 - y**2, x*y - 2*x, y**3 - 2*y**2],
    x, y, domain='ZZ', order='lex')
```

```
>>> groebner(F, order=grevlex)
GroebnerBasis([y**3 - 2*y**2, 2*x**2 - y**2, x*y - 2*x],
    x, y, domain='ZZ', order='grevlex')
```

```
>>> groebner(F, field=True)
```

GroebnerBasis([x**2 - y**2/2, $\left.x^{*} y-2 * x, y^{* * 3}-2 * y * * 2\right]$,
$\mathrm{x}, \mathrm{y}, \mathrm{domain=} \mathrm{CQ}^{\prime}$, order='lex')

References

- [Buc01]
- [CLOShea15]

See also:

diofant.solvers.polysys.solve_poly_system (page 745)
diofant.polys.polytools.half_gcdex (f, g, *gens, **args)
Half extended Euclidean algorithm of f and g.
Returns (s, h) such that $\mathrm{h}=\mathrm{gcd}(\mathrm{f}, \mathrm{g})$ and $\mathrm{s} * \mathrm{f}=\mathrm{h}(\bmod \mathrm{g})$.

Examples

```
>>> half_gcdex(x**4 - 2*x**3 - 6*x**2 + 12*x + 15, x**3 + x**2 - 4*x - 4)
(-x/5 + 3/5, x + 1)
```

diofant.polys.polytools.invert (f, g, *gens, **args)
Invert f modulo g when possible.

Examples

```
>>> invert(x**2 - 1, 2*x - 1)
-4/3
```

```
>>> invert(x**2 - 1, x - 1)
Traceback (most recent call last):
NotInvertible: zero divisor
```

For more efficient inversion of Rationals, use the mod_inverse function:

```
>>> mod_inverse(3, 5)
2
>>> (Integer(2)/5).invert(Integer(7)/3)
5/2
```


See also:

diofant. core.numbers.mod_inverse (page 93)
diofant. polys.polytools.lcm(f, g, *gens, **args)
Compute LCM of f and g.

Examples

```
>>> lcm(x**2 - 1, x**2 - 3*x + 2)
x**3 - 2*x**2 - x + 2
```

diofant.polys.polytools.monic(f, *gens, **args)
Divide all coefficients of f by LC (f).

Examples

```
>>> monic(3*x**2 + 4*x + 2)
x**2 + 4*x/3 + 2/3
```

diofant.polys.polytools.nroots ($f, n=15$, maxsteps $=50$, cleanup=True)
Compute numerical approximations of roots of f.

Examples

```
>>> nroots(x**2 - 3, n=15)
[-1.73205080756888, 1.73205080756888]
>>> nroots(x**2 - 3, n=30)
[-1.73205080756887729352744634151, 1.73205080756887729352744634151]
```

diofant.polys.polytools.parallel_poly_from_expr(exprs, *gens, **args)
Construct polynomials from expressions.
diofant.polys.polytools.poly(expr, *gens, **args)
Efficiently transform an expression into a polynomial.

Examples

```
>>> poly(x*(x**2 + x - 1)**2)
Poly(x**5 + 2*x**4 - x**3 - 2*x**2 + x, x, domain='ZZ')
```

diofant.polys.polytools.primitive(f, *gens, **args)
Compute content and the primitive form of f.

Examples

```
>>> primitive(6*x**2 + 8*x + 12)
(2, 3*x**2 + 4*x + 6)
```

$\gg \mathrm{eq}=(2+2 * x) * x+2$

Expansion is performed by default:

```
>>> primitive(eq)
(2, x**2 + x + 1)
```

Set expand to False to shut this off. Note that the extraction will not be recursive; use the as_content_primitive method for recursive, non-destructive Rational extraction.

```
>>> primitive(eq, expand=False)
(1, x*(2*x + 2) + 2)
```

>>> eq.as_content_primitive()
$\left(2, x^{*}(x+1)+1\right)$
diofant. polys. polytools.quo(f, g, *gens, **args)
Compute polynomial quotient of f and g.

Examples

```
>>> quo(x**2 + 1, 2*x - 4)
x/2 + 1
>>> quo(x**2 - 1, x - 1)
x + 1
```

diofant.polys.polytools.real_roots (f, multiple=True)
Return a list of real roots with multiplicities of f.

Examples

```
>>> real_roots(2*x**3 - 7*x**2 + 4*x + 4)
```

$[-1 / 2,2,2]$
diofant. polys.polytools.reduced (f, G, *gens, **args)
Reduces a polynomial f modulo a set of polynomials G.
Given a polynomial f and a set of polynomials $G=\left(g_{-} 1, \ldots, g_{-} n\right)$, computes a set of quotients $q^{\prime}=\left(q_{1} 1, \ldots, q_{n} n\right)$ and the remainder r such that $f=q_{-} 1 * g_{-} 1+\ldots+$ $\mathrm{q} \mathrm{n}^{*} \mathrm{~g}_{\mathrm{Z}} \mathrm{n}+\mathrm{r}$, where r vanishes or r is a completely reduced polynomial with respect to G.

Examples

```
>>> reduced(2*x**4 + y**2 - x**2 + y**3, [x**3 - x, y**3 - y])
```

([2*x, 1], $x^{* * 2}+y^{* * 2}+y$)
diofant.polys.polytools.rem(f,g, *gens, **args)
Compute polynomial remainder of f and g.

Examples

```
>>> rem(x**2 + 1, 2*x - 4, field=False)
x**2 + 1
>>> rem(x**2 + 1, 2*x - 4)
5
```

diofant. polys.polytools.resultant (f,g, *gens, **args)
Compute resultant of f and g.

Examples

\ggg resultant $\left(x^{* *} 2+1, x^{* * 2}-1\right)$
4
diofant.polys.polytools.sqf(f, *gens, **args)
Compute square-free factorization of f.

Examples

```
>>> sqf(2*x**5 + 16*x**4 + 50*x**3 + 76*x**2 + 56*x + 16)
2*(x + 1)**2*(x + 2)**3
```

diofant.polys.polytools.sqf_list(f, *gens, **args)
Compute a list of square-free factors of f.

Examples

```
>>> sqf_list(2*x**5 + 16*x**4 + 50*x**3 + 76*x**2 + 56*x + 16)
```

$\left(2,\left[\left(x^{-}+1,2\right),(x+2,3)\right]\right)$
diofant.polys.polytools.sqf_norm(f, *gens, **args)
Compute square-free norm of f.
Returns s, f, r, such that $g(x)=f(x-s a)$ and $r(x)=\operatorname{Norm}(g(x))$ is a square-free polynomial over K, where a is the algebraic extension of the ground domain.

Examples

```
>>> sqf norm(x**2 + 1, extension=[sqrt(3)])
(1, x**2 - 2*sqrt(3)*x + 4, x**4 - 4*x**2 + 16)
```

diofant.polys.polytools.sqf_part(f, *gens, **args)
Compute square-free part of f.

Examples

```
>>> sqf_part(x**3 - 3*x - 2)
```

$x^{* *} 2-\bar{x}-2$
diofant. polys. polytools.subresultants ($f, g, * g e n s, * * a r g s)$
Compute subresultant PRS of f and g.

Examples

```
>>> subresultants(x**2 + 1, x**2 - 1)
```

$\left[x^{* * 2}+1, x^{* * 2}-1,-2\right]$
diofant.polys.polytools.terms_gcd (f, *gens, **args)
Remove GCD of terms from f.

If the deep flag is True, then the arguments of f will have terms_gcd applied to them.
If a fraction is factored out of f and f is an Add, then an unevaluated Mul will be returned so that automatic simplification does not redistribute it. The hint clear, when set to False, can be used to prevent such factoring when all coefficients are not fractions.

Examples

```
>> terms_gcd(x**6*y**2 + x**3*y)
x**3*y*(x**3*y + 1)
```

The default action of polys routines is to expand the expression given to them. terms_gcd follows this behavior:

```
>> terms_gcd((3+3*x)*(x+x*y))
3*x*}(\mp@subsup{x}{}{*}y+x+y+1
```

If this is not desired then the hint expand can be set to False. In this case the expression will be treated as though it were comprised of one or more terms:

```
>>> terms_gcd((3+3*x)*(x+x*y), expand=False)
(3*x + 3)*(x*y + x)
```

In order to traverse factors of a Mul or the arguments of other functions, the deep hint can be used:

```
>>> terms_gcd((3 + 3*x)*(x + x*y), expand=False, deep=True)
3*x*(x + \overline{1})*(y + 1)
>>> terms_gcd(cos(x + x*y), deep=True)
cos(x*(y + 1))
```

Rationals are factored out by default:

```
>>> terms_gcd(x + y/2)
(2*x + y)//2
```

Only the y-term had a coefficient that was a fraction; if one does not want to factor out the $1 / 2$ in cases like this, the flag clear can be set to False:

```
>>> terms_gcd(x + y/2, clear=False)
x + y/2
>>> terms_gcd(x*y/2 + y**2, clear=False)
y*(x/2 + y)
```

The clear flag is ignored if all coefficients are fractions:

```
>>> terms_gcd(x/3 + y/2, clear=False)
(2*x + 3*y)/6
```


See also:

diofant.core.exprtools.gcd_terms (page 146), diofant.core.exprtools. factor_terms (page 147)
diofant. polys.polytools.trunc (f, p, *gens, **args)
Reduce f modulo a constant p.

Examples

```
>>> trunc(2*x**3 + 3*x**2 + 5*x + 7, 3)
-x**3 - x + 1
```


4.12.2 Extra polynomial manipulation functions

High-level polynomials manipulation functions.
diofant.polys.polyfuncs.horner(f, *gens, **args)
Rewrite a polynomial in Horner form.
Among other applications, evaluation of a polynomial at a point is optimal when it is applied using the Horner scheme.

Examples

```
>>> from diofant.abc import e
>>> horner(9*x**4 + 8*x**3 + 7*x**2 + 6*x + 5)
x* (x* (x* (9*x + 8) + 7) + 6) + 5
```

>>> horner (a*x**4 + b*x**3 + c* ${ }^{* * * 2 ~+~ d * x ~+~ e) ~}$
$\mathrm{e}+\mathrm{x}^{*}\left(\mathrm{~d}+\mathrm{x}^{*}\left(\mathrm{c}+\mathrm{x}^{*}(\mathrm{a} * \mathrm{x}+\mathrm{b})\right)\right)$
>>> $\mathrm{f}=4 * \mathrm{x}^{* *} 2 * \mathrm{y}^{* *} 2+2 * \mathrm{x}^{* *} 2 * \mathrm{y}+2 * \mathrm{x}^{*} \mathrm{y}^{* * 2}+\mathrm{x}^{*} \mathrm{y}$
>>> horner(f, wrt=x)
$x^{*}\left(x^{*} y^{*}(4 * y+2)+y^{*}(2 * y+1)\right)$

```
>>> horner(f, wrt=y)
y*(x*y*(4*x + 2) + x*(2*x + 1))
```


References

- https://en.wikipedia.org/wiki/Horner_scheme
diofant.polys.polyfuncs.interpolate(data, x)
Construct an interpolating polynomial for the data points.

Examples

A list is interpreted as though it were paired with a range starting from 1:

```
>>> interpolate([1, 4, 9, 16], x)
x**2
```

This can be made explicit by giving a list of coordinates:

```
>>> interpolate([(1, 1), (2, 4), (3, 9)], x)
x**2
```

The (x, y) coordinates can also be given as keys and values of a dictionary (and the points need not be equispaced):

```
>>> interpolate([(-1, 2), (1, 2), (2, 5)], x)
x**2 + 1
>>> interpolate({-1: 2, 1: 2, 2: 5}, x)
x**2 + 1
```

diofant.polys.polyfuncs.symmetrize(F, *gens, **args)
Rewrite a polynomial in terms of elementary symmetric polynomials.
A symmetric polynomial is a multivariate polynomial that remains invariant under any variable permutation, i.e., if $f=f\left(x _1, x _2, \ldots, x_{-}\right)$, then $f=f\left(x _\left\{i _1\right\}\right.$, x_\{i_2\}, ..., x_\{i_n\}), where (i_1, i_2, ..., i_n) is a permutation of (1, 2 , \ldots, n) (an element of the group S_n).
Returns a tuple of symmetric polynomials (f1, f2, ..., fn) such that f = f1 + f2 + ... + fn.

Examples

```
>>> symmetrize(x**2 + y**2)
(-2*x*y + (x + y)**2, 0)
```

```
>>> symmetrize(x**2 + y**2, formal=True)
(s1**2 - 2*s2, 0, [(s1, x + y), (s2, x*y)])
```

```
>>> symmetrize(x**2 - y**2)
(-2*x*y + (x + y)**2, -2*y**2)
```

>>> symmetrize (x**2 - $y^{* * 2}$, formal=True)
(s1**2 - 2*s2, -2*y**2, [(s1, x + y), (s2, $\left.\left.\left.x^{*} y\right)\right]\right)$
diofant.polys.polyfuncs.viete(f, roots=None, *gens, **args)
Generate Viete's formulas for f.

Examples

$\gg r 1, r 2=$ symbols('r1:3')
\ggg viete $\left(a^{*} x^{* *} 2+b^{*} x+c,[r 1, r 2], x\right)$
$[(r 1+r 2,-b / a),(r 1 * r 2, c / a)]$

4.12.3 Domain constructors

Tools for constructing domains for expressions.

```
diofant.polys.constructor.construct_domain(obj, **args)
```

Construct a minimal domain for the list of coefficients.

4.12.4 Algebraic number fields

Computational algebraic field theory.
diofant.polys.numberfields.field_isomorphism(a, b, **args)
Construct an isomorphism between two number fields.
diofant.polys.numberfields.minimal_polynomial(ex, method=None, **args)
Computes the minimal polynomial of an algebraic element.

Parameters

- ex (algebraic element expression)
- method (str, optional) - If compose, the minimal polynomial of the subexpressions of ex are computed, then the arithmetic operations on them are performed using the resultant and factorization. If groebner, a bottomup algorithm, using Gröbner bases is used. Defaults are determined by setup() (page 41).
- domain (Domain, optional) - If no ground domain is given, it will be generated automatically from the expression.

Examples

```
>>> minimal_polynomial(sqrt(2))(x)
x**2 - 2
>>> minimal_polynomial(sqrt(2), domain=QQ.algebraic_field(sqrt(2)))(x)
x - sqrt(2)
>>> minimal_polynomial(sqrt(2) + sqrt(3))(x)
x**4 - 10*x**2 + 1
>>> minimal_polynomial(solve(x**3 + x + 3)[0][x])(x)
x**3 + x + 3
>>> minimal_polynomial(sqrt(y))(x)
x**2 - y
```

diofant.polys.numberfields.primitive_element(extension, **args)
Construct a common number field for all extensions.

References

- [YNT89]
- [ARW96]

4.12.5 Monomials encoded as tuples

Tools and arithmetics for monomials of distributed polynomials.
class diofant. polys.monomials.Monomial(monom, gens=None)
Class representing a monomial, i.e. a product of powers.
as_expr(*gens)
Convert a monomial instance to a Diofant expression.
divides(other)
Check if self divides other.
gcd (other)
Greatest common divisor of monomials.
lcm (other)
Least common multiple of monomials.
diofant.polys.monomials.itermonomials(variables, degree)
Generate a set of monomials of the given total degree or less.

Examples

>> set(itermonomials([x, y], 2))
$\left\{1, \mathrm{x}, \mathrm{x}^{* *} 2, \mathrm{y}, \mathrm{y}^{* *} 2, \mathrm{x}^{*} \mathrm{y}\right\}$

4.12.6 Orderings of monomials

Definitions of monomial orderings.
class diofant. polys.orderings.GradedLexOrder
Graded lexicographic order of monomials.
class diofant.polys.orderings.LexOrder
Lexicographic order of monomials.
class diofant.polys.orderings.ReversedGradedLexOrder
Reversed graded lexicographic order of monomials.

4.12.7 Formal manipulation of roots of polynomials

Implementation of RootOf class and related tools.
class diofant. polys. rootoftools.RootOf (f, x, index=None, radicals=True, expand=True, evaluate=None)
Represents k-th root of a univariate polynomial.
The ordering used for indexing takes real roots to come before complex ones, sort complex roots by real part, then by imaginary part and finally takes complex conjugate pairs of roots to be adjacent.

Parameters

- f (Expr) - Univariate polynomial expression.
- x (Symbol or Integer) - Polynomial variable or the index of the root.
- index (Integer or None, optional) - Index of the root. If None (default), parameter x is used instead as index.
- radicals (bool, optional) - Explicitly solve linear or quadratic polynomial equation (enabled by default).
- expand (bool, optional) - Expand polynomial, enabled default.
- evaluate (bool or None, optional) - Control automatic evaluation.

Examples

```
>>> expand_func(Root0f(x**3 + I*x + 2, 0))
Root0f(x**\overline{6}+4*x**3 + x**2 + 4, 1)
```

classmethod all_roots (poly, radicals=True)

Get real and complex roots of a polynomial.
eval_rational(tol)
Returns a Rational approximation to self with the tolerance tol.
The returned instance will be at most 'tol' from the exact root.
The following example first obtains Rational approximation to $1 \mathrm{e}-7$ accuracy for all roots of the 4 -th order Legendre polynomial, and then evaluates it to 5 decimal digits (so all digits will be correct including rounding):

```
>>> p = legendre_poly(4, x, polys=True)
>>> roots = [r.eval_rational(Rational(1, 10)**7) for r in p.real_roots()]
>>> roots = [str(r.evalf(5)) for r in roots]
>>> roots
['-0.86114', '-0.33998', '0.33998', '0.86114']
```


property interval

Return isolation interval for the root.
classmethod real_roots (poly, radicals=True)
Get real roots of a polynomial.
refine()
Refine isolation interval for the root.

```
class diofant.polys.rootoftools.RootSum(expr, func=None, x=None, auto=True,
    quadratic=False)
```

Represents a sum of all roots of a univariate polynomial.
classmethod new(poly, func, auto=True)
Construct new RootSum instance.

4.12.8 Symbolic root-finding algorithms

Algorithms for computing symbolic roots of polynomials.
diofant.polys.polyroots.roots(f, *gens, **flags)
Computes symbolic roots of a univariate polynomial.
Given a univariate polynomial f with symbolic coefficients (or a list of the polynomial's coefficients), returns a dictionary with its roots and their multiplicities.

Only roots expressible via radicals will be returned. To get a complete set of roots use RootOf class or numerical methods instead. By default cubic and quartic formulas are used in the algorithm. To disable them because of unreadable output set cubics=False or quartics=False respectively. If cubic roots are real but are expressed in terms of complex numbers (casus irreducibilis) the trig flag can be set to True to have the solutions returned in terms of cosine and inverse cosine functions.

To get roots from a specific domain set the filter flag with one of the following specifiers: Z, Q, R, I, C. By default all roots are returned (this is equivalent to setting filter='C').

By default a dictionary is returned giving a compact result in case of multiple roots. However to get a list containing all those roots set the multiple flag to True; the list will have identical roots appearing next to each other in the result. (For a given Poly, the all_roots method will give the roots in sorted numerical order.)

Examples

```
>>> roots(x**2 - 1, x)
{-1: 1, 1: 1}
```

```
>>> p = (x**2 - 1).as_poly()
>>> roots(p)
{-1: 1, 1: 1}
```

```
>>> p = (x**2 - y).as_poly()
```

```
>>> roots(p.as_poly(x))
{-sqrt(y): 1, sqrt(y): 1}
```

```
>>> roots(x**2 - y, x)
{-sqrt(y): 1, sqrt(y): 1}
```

```
>>> roots([1, 0, -1])
```

\{-1: 1, 1: 1\}

References

- https://en.wikipedia.org/wiki/Cubic_equation\#Trigonometric_and_hyperbolic_ solutions

4.12.9 Special polynomials

Functions for generating interesting polynomials, e.g. for benchmarking.
diofant.polys.specialpolys.cyclotomic_poly($n, x=$ None, **args)
Generates cyclotomic polynomial of order n in x.
diofant. polys.specialpolys.interpolating_poly ($n, x, X=' x^{\prime}, Y=' y^{\prime}$)
Construct Lagrange interpolating polynomial for n data points.
diofant.polys.specialpolys.random_poly(x, n, inf, sup, domain=PythonIntegerRing(), polys=False, percent=None)
Return a polynomial of degree n with coefficients in [inf, sup].
diofant.polys.specialpolys.swinnerton_dyer_poly($n, x=$ None, **args)
Generates n-th Swinnerton-Dyer polynomial in x.
diofant.polys.specialpolys.symmetric_poly(n, *gens, **args)
Generates symmetric polynomial of order n.

4.12.10 Orthogonal polynomials

Efficient functions for generating orthogonal polynomials.
diofant.polys.orthopolys.chebyshevt_poly ($n, x=$ None, **args)
Generates Chebyshev polynomial of the first kind of degree n in x.
diofant.polys.orthopolys.chebyshevu_poly ($n, x=$ None, **args)
Generates Chebyshev polynomial of the second kind of degree n in x.
diofant.polys.orthopolys.gegenbauer_poly($n, a, x=$ None, **args)
Generates Gegenbauer polynomial of degree n in x.
diofant.polys.orthopolys.hermite_poly ($n, x=$ None, $* *$ args)
Generates Hermite polynomial of degree n in x.
diofant.polys.orthopolys.jacobi_poly ($n, a, b, x=$ None, **args)
Generates Jacobi polynomial of degree n in x.
diofant.polys.orthopolys.laguerre_poly ($n, x=$ None, alpha=None, **args)
Generates Laguerre polynomial of degree n in x.
diofant.polys.orthopolys.legendre_poly($n, x=$ None, **args)
Generates Legendre polynomial of degree n in x.
diofant.polys.orthopolys.spherical_bessel_fn($n, x=$ None, **args)
Coefficients for the spherical Bessel functions.
Those are only needed in the jn() function.
The coefficients are calculated from:
$\mathrm{fn}(0, \mathrm{z})=1 / \mathrm{zfn}(1, \mathrm{z})=1 / \mathrm{z}^{* *} \mathrm{fn}(\mathrm{n}-1, \mathrm{z})+\mathrm{fn}(\mathrm{n}+1, \mathrm{z})==(2 * \mathrm{n}+1) / \mathrm{z} * \mathrm{fn}(\mathrm{n}, \mathrm{z})$

Examples

```
>>> spherical_bessel_fn(1, z)
z**(-2)
>>> spherical_bessel_fn(2, z)
-1/z + 3/z**3
>>> spherical bessel_fn(3, z)
-6/z**2 + 15/\overline{z}**4
>>> spherical_bessel_fn(4, z)
1/z - 45/z**3-+ 105/\}***
```


4.12.11 Manipulation of rational functions

Tools for manipulation of rational expressions.

```
diofant.polys.rationaltools.together(expr, deep=False)
```

Denest and combine rational expressions using symbolic methods.
This function takes an expression or a container of expressions and puts it (them) together by denesting and combining rational subexpressions. No heroic measures are taken to minimize degree of the resulting numerator and denominator. To obtain completely reduced expression use cancel() (page 608). However, together() (page 625) can preserve as much as possible of the structure of the input expression in the output (no expansion is performed).

A wide variety of objects can be put together including lists, tuples, sets, relational objects, integrals and others. It is also possible to transform interior of function applications, by setting deep flag to True.
By definition, together() (page 625) is a complement to apart() (page 626), so apart(together(expr)) should return expr unchanged. Note however, that together() (page 625) uses only symbolic methods, so it might be necessary to use can$\mathrm{cel}($) (page 608) to perform algebraic simplification and minimise degree of the numerator and denominator.

Examples

```
>>> together(1/x + 1/y)
(x + y)/(x*y)
>>> together(1/x + 1/y + 1/z)
(x*y + x*z + y*z)/(x*y*z)
```

```
>>> together(1/(x*y) + 1/y**2)
```

$(x+y) /\left(x^{*} y^{* *} 2\right)$

```
>>> together(1/(1 + 1/x) + 1/(1 + 1/y))
(x*(y + 1) + y*(x + 1))/((x + 1)*(y + 1))
```

```
>>> together(exp(1/x + 1/y))
E**(1/y + 1/x)
>>> together(exp(1/x + 1/y), deep=True)
E**((x + y)/(x*y))
```

```
>>> together(1/exp(x) + 1/(x*exp(x)))
E**(-x)*(x + 1)/x
```



```
E**(-3*x)*(E**X*x + 1)/x
```


4.12.12 Partial fraction decomposition

Algorithms for partial fraction decomposition of rational functions.
diofant.polys.partfrac.apart ($f, x=$ None, full=False, **options)
Compute partial fraction decomposition of a rational function.
Given a rational function f, computes the partial fraction decomposition of f. Two algorithms are available: One is based on the undertermined coefficients method, the other is Bronstein's full partial fraction decomposition algorithm.
The undetermined coefficients method (selected by full=False) uses polynomial factorization (and therefore accepts the same options as factor) for the denominator. Per default it works over the rational numbers, therefore decomposition of denominators with non-rational roots (e.g. irrational, complex roots) is not supported by default (see options of factor).
Bronstein's algorithm can be selected by using full=True and allows a decomposition of denominators with non-rational roots. A human-readable result can be obtained via doit() (see examples below).

Examples

By default, using the undetermined coefficients method:

```
>>> apart(y/(x + 2)/(x + 1), x)
-y/(x + 2) + y/(x + 1)
```

The undetermined coefficients method does not provide a result when the denominators roots are not rational:

```
>>> apart(y/(x**2 + x + 1), x)
y/(x**2 + x + 1)
```

You can choose Bronstein's algorithm by setting full=True:

```
>>> apart(y/(x**2 + x + 1), x, full=True)
RootSum(_w**2 + _w + 1, Lambda(_a, (-2*y*_a/3 - y/3)/(x - _a)))
```

Calling doit () yields a human-readable result:

```
>>> apart(y/(x**2 + x + 1), x, full=True).doit()
(-y/3 - 2*y*(-1/2 - sqrt(3)*I/2)/3)/(x + 1/2 + sqrt(3)*I/2) + (-y/3 -
    2*y*(-1/2 + sqrt(3)*I/2)/3)/(x + 1/2 - sqrt(3)*I/2)
```


See also:

apart_list (page 626), assemble_partfrac_list (page 628)
diofant.polys.partfrac.apart_list($f, x=$ None, dummies $=$ None, ${ }^{* *}$ options)
Compute partial fraction decomposition of a rational function and return the result in structured form.

Given a rational function f compute the partial fraction decomposition of f. Only Bronstein's full partial fraction decomposition algorithm is supported by this method. The return value is highly structured and perfectly suited for further algorithmic treatment rather than being human-readable. The function returns a tuple holding three elements:

- The first item is the common coefficient, free of the variable x used for decomposition. (It is an element of the base field K.)
- The second item is the polynomial part of the decomposition. This can be the zero polynomial. (It is an element of $K[x]$.)
- The third part itself is a list of quadruples. Each quadruple has the following elements in this order:
- The (not necessarily irreducible) polynomial D whose roots w_{i} appear in the linear denominator of a bunch of related fraction terms. (This item can also be a list of explicit roots. However, at the moment apart_list never returns a result this way, but the related assemble_partfrac_list function accepts this format as input.)
- The numerator of the fraction, written as a function of the root w
- The linear denominator of the fraction excluding its power exponent, written as a function of the root w.
- The power to which the denominator has to be raised.

On can always rebuild a plain expression by using the function assemble_partfrac_list.

Examples

A first example:

```
>>> f = (2*x**3 - 2*x) / (x**2 - 2*x + 1)
>>> pfd = apart_list(f)
>>> pfd
(1,
Poly(2*x + 4, x, domain='ZZ'),
[(Poly(_w - 1, _w, domain='ZZ'), Lambda(_a, 4), Lambda(_a, x - _a), 1)])
```

```
>>> assemble_partfrac_list(pfd)
2*x + 4 + 4/(x - 1)
```

Second example:

```
>>> f = (-2*x - 2*x**2) / (3*x**2 - 6*x)
>>> pfd = apart_list(f)
>>> pfd
(-1,
Poly(2/3, x, domain='QQ'),
[(Poly(_w - 2, _w, domain='ZZ'), Lambda(_a, 2), Lambda(_a, x - _a), 1)])
```

```
>>> assemble_partfrac_list(pfd)
-2/3 - 2/(x - 2)
```

Another example, showing symbolic parameters:

```
>>> pfd = apart_list(t/(x**2 + x + t), x)
>>> pfd
(1,
Poly(0, x, domain='ZZ[t]'),
[(Poly(_w**2 + _w + t, _w, domain='ZZ[t]'),
Lambda(-a, -2*t\overline{*}}a/(4*\mp@subsup{t}{}{-}-1) - t/(4*t - 1))
Lambda(__a, x - _ā), 1)])
```

>>> assemble_partfrac_list(pfd)
RootSum(t + _ w**2 + _w, Lambda(_a, (-2*t*_a/(4*t - 1) - t/(4*t - 1))/(x - _a)))

This example is taken from Bronstein's original paper:

```
>>> f = 36 / (x**5 - 2*x**4 - 2*x**3 + 4*x**2 + x - 2)
>>> pfd = apart_list(f)
>>> pfd
(1,
Poly(0, x, domain='ZZ'),
[(Poly(w - 2, w, domain='ZZ'), Lambda( a, 4), Lambda( a, x - a), 1),
(Poly(_\mp@subsup{\overline{w}}{}{**2 - 1, _w, domain='ZZ'), Lambd\overline{a}(_a, -3*_a - 6\overline{)}, Lambd\overline{a}(_a, x - _a), 2),}
(Poly(_w + 1, _w, domain='ZZ'), Lambda(_a,- -4), Lāmbda(_a, x - _a), 1)])
```

```
>>> assemble_partfrac_list(pfd)
-4/(x + 1) - 3/(x + 1)**2 - 9/(x - 1)**2 + 4/(x - 2)
```


See also:

apart (page 626), assemble_partfrac_list (page 628)

References

- [BS93]
diofant.polys.partfrac.assemble_partfrac_list(partial_list)
Reassemble a full partial fraction decomposition from a structured result obtained by the function apart_list.

Examples

This example is taken from Bronstein's original paper:

```
>>> f = 36 / (x**5 - 2*x**4 - 2*x**3 + 4*x**2 + x - 2)
>>> pfd = apart_list(f)
>>> pfd
(1,
Poly(0, x, domain='ZZ'),
[(Poly(_w - 2, _w, domain='ZZ'), Lambda(_a, 4), Lambda(_a, x - _ a), 1),
(Poly(_\overline{w}**2 - 1, _w, domain='ZZ'), Lambd\overline{a}(_a, -3*_a - 6\overline{)}, Lambd\overline{a}(_a, x - _a), 2),
(Poly(_w + 1, _w, domain='ZZ'), Lambda(_a, -4), Lambda(_a, x - __a), 1)])
```

```
>>> assemble_partfrac_list(pfd)
-4/(x + 1) - 3/(x + 1)**2 - 9/(x - 1)**2 + 4/(x - 2)
```

If we happen to know some roots we can provide them easily inside the structure:

```
>>> pfd = apart_list(2/(x**2-2))
>>> pfd
(1,
Poly(0, x, domain='ZZ'),
[(Poly(_w**2 - 2, _w, domain='ZZ'),
Lambda(_a, _a/2), Lambda(_a, x - _a),
1)])
```

```
>>> pfda = assemble_partfrac_list(pfd)
>>> pfda
RootSum(_w**2 - 2, Lambda(_a, _a/(x - _a)))/2
```

>>> pfda.doit()
$-\operatorname{sqrt}(2) /\left(2^{*}(x+\operatorname{sqrt}(2))\right)+\operatorname{sqrt}(2) /(2 *(x-\operatorname{sqrt}(2)))$
>>> a = Dummy('a')
>>> pfd = (1, Integer(0).as_poly(x),
... [([sqrt(2), -sqr̄(2)],
$\because \quad L a m b d a(a, a / 2), L a m b d a(a,-a+x), 1)])$

```
>>> assemble_partfrac_list(pfd)
-sqrt(2)/(2*(x + sqrt(2))) + sqrt(2)/(2*(x - sqrt(2)))
```


See also:

apart (page 626), apart_list (page 626)

4.13 Printing

See the Printing (page 10) section in Tutorial for introduction into printing.
This guide documents the printing system in Diofant and how it works internally.

4.13.1 Printer Class

Printing subsystem driver
Diofant's printing system works the following way: Any expression can be passed to a designated Printer who then is responsible to return an adequate representation of that expression.
The basic concept is the following:

1. Let the object print itself if it knows how.
2. Take the best fitting method defined in the printer.
3. As fall-back use the emptyPrinter method for the printer.

Some more information how the single concepts work and who should use which:

1. The object prints itself

This was the original way of doing printing in diofant. Every class had its own latex, mathml, str and repr methods, but it turned out that it is hard to produce a high quality printer, if all the methods are spread out that far. Therefore all printing code was combined into the different printers, which works great for
built-in diofant objects, but not that good for user defined classes where it is inconvenient to patch the printers.
Nevertheless, to get a fitting representation, the printers look for a specific method in every object, that will be called if it's available and is then responsible for the representation. The name of that method depends on the specific printer and is defined under Printer.printmethod.
2. Take the best fitting method defined in the printer.

The printer loops through expr classes (class + its bases), and tries to dispatch the work to _print_<EXPR_CLASS>
e.g., suppose we have the following class hierarchy:

then, for expr=Rational(...), in order to dispatch, we will try calling printer methods as shown in the figure below:

```
p._print(expr)
| -- p._print_Rational(expr)
|-- p._print_Number(expr)
|-- p._print_Atom(expr)
-- p._print_Basic(expr)
```

if ._print_Rational method exists in the printer, then it is called, and the result is returned back.
otherwise, we proceed with trying Rational bases in the inheritance order.
3. As fall-back use the emptyPrinter method for the printer.

As fall-back self.emptyPrinter will be called with the expression. If not defined in the Printer subclass this will be the same as str(expr).
The main class responsible for printing is Printer (see also its source code):
class diofant.printing.printer. Printer(settings=None)
Generic printer
Its job is to provide infrastructure for implementing new printers easily.
Basically, if you want to implement a printer, all you have to do is:

1. Subclass Printer.
2. Define Printer.printmethod in your subclass. If a object has a method with that name, this method will be used for printing.
3. In your subclass, define _print_<CLASS> methods

For each class you want to provide printing to, define an appropriate method how to do it. For example if you want a class FOO to be printed in its own way, define _print_FOO:

```
def _print_FOO(self, e):
```

this should return how FOO instance e is printed
Also, if BAR is a subclass of F00,_print_FOO (bar) will be called for instance of BAR, if no _print_BAR is provided. Thus, usually, we don't need to provide printing routines for every class we want to support - only generic routine has to be provided for a set of classes.

A good example for this are functions - for example PrettyPrinter only defines _print_Function, and there is no _print_sin, _print_tan, etc...
On the other hand, a good printer will probably have to define separate routines for Symbol, Atom, Number, Integral, Limit, etc...
4. If convenient, override self.emptyPrinter

This callable will be called to obtain printing result as a last resort, that is when no appropriate print method was found for an expression.

Examples

Here we will overload StrPrinter.

```
>>> from diofant.printing.str import StrPrinter
```

```
>>> class CustomStrPrinter(StrPrinter):
.". def _print_Derivative(self, expr):
. \overline{return}\mp@subsup{}{~}{str(expr.args[0].func) + "'"*len(expr.args[1:])}
>>> def mystr(e):
#. return CustomStrPrinter().doprint(e)
>>> print(mystr(f(t).diff((t, 2))))
f''
```

printmethod: Optional[str] = None
_print(expr, *args, **kwargs)
Internal dispatcher

Tries the following concepts to print an expression:

1. Let the object print itself if it knows how.
2. Take the best fitting method defined in the printer.
3. As fall-back use the emptyPrinter method for the printer.
doprint (expr)
Returns printer's representation for expr (as a string).
classmethod set_global_settings (**settings)
Set system-wide printing settings.

4.13.2 PrettyPrinter Class

The pretty printing subsystem is implemented in diofant.printing.pretty.pretty by the PrettyPrinter class deriving from Printer. It relies on the modules diofant. printing. pretty.stringPict, and diofant.printing.pretty.pretty_symbology for rendering nicelooking formulas.
The module stringPict provides a base class stringPict and a derived class prettyForm that ease the creation and manipulation of formulas that span across multiple lines.
The module pretty_symbology provides primitives to construct 2D shapes (hline, vline, etc) together with a technique to use unicode automatically when possible.
class diofant.printing.pretty.pretty.PrettyPrinter(settings=None)
Printer, which converts an expression into 2D ASCII-art figure.
diofant.printing.pretty.pretty.pprint (expr, ${ }^{* *}$ settings)
diofant.printing.pretty.pretty.pretty (expr, **settings)
Returns a string containing the prettified form of expr.
For information on keyword arguments see pretty_print function.
diofant.printing.pretty.pretty.pretty_print(expr, **settings)
Prints expr in pretty form.
pprint is just a shortcut for this function.

Parameters

- expr (expression) - the expression to print
- wrap_line (bool, optional) - line wrapping enabled/disabled, defaults to True
- num_columns (int or None, optional) - number of columns before line breaking (default to None which reads the terminal width), useful when using Diofant without terminal.
- use_unicode (bool or None, optional) - use unicode characters, such as the Greek letter pi instead of the string pi.
- full_prec (bool or string, optional) - use full precision. Default to "auto"
- order (bool or string, optional) - set to 'none' for long expressions if slow; default is None

4.13.3 CCodePrinter

This class implements C code printing (i.e. it converts Python expressions to strings of C code).
Usage:

```
>>> print(ccode(sin(x)**2 + cos(x)**2))
pow(\operatorname{sin}(x), 2) + pow(cos(x), 2)
>>> print(ccode(2*x + cos(x), assign_to='result'))
result = 2*x + cos(x);
>>> print(ccode(abs(x**2)))
fabs(pow(x, 2))
```

```
class diofant.printing.ccode.CCodePrinter(settings={})
    A printer to convert python expressions to strings of c code.
    printmethod: Optional[str] = '_ccode'
    indent_code(code)
        Accepts a string of code or a list of code lines.
diofant.printing.ccode.ccode(expr, assign_to=None,**settings)
    Converts an expr to a string of c code
```


Parameters

- expr (Expr) - A diofant expression to be converted.
- assign_to (optional) - When given, the argument is used as the name of the variable to which the expression is assigned. Can be a string, Symbol, MatrixSymbol, or Indexed type. This is helpful in case of line-wrapping, or for expressions that generate multi-line statements.
- precision (integer, optional) - The precision for numbers such as pi [default=15].
- user_functions (dict, optional) - A dictionary where the keys are string representations of either FunctionClass or UndefinedFunction instances and the values are their desired C string representations. Alternatively, the dictionary value can be a list of tuples i.e. [(argument_test, cfunction_string)] or [(argument_test, cfunction_formater)]. See below for examples.
- dereference (iterable, optional) - An iterable of symbols that should be dereferenced in the printed code expression. These would be values passed by address to the function. For example, if dereference=[a], the resulting code would print ($* a$) instead of a.
- human (bool, optional) - If True, the result is a single string that may contain some constant declarations for the number symbols. If False, the same information is returned in a tuple of (symbols_to_declare, not_supported_functions, code_text). [default=True].
- contract (bool, optional) - If True, Indexed instances are assumed to obey tensor contraction rules and the corresponding nested loops over indices are generated. Setting contract=False will not generate loops, instead the user is responsible to provide values for the indices in the code. [default=True].

Examples

```
>>> ccode((2*x)**Rational(7, 2))
'8*sqrt(2)*pow(x, 7.0L/2.0L)'
>>> ccode(sin(x), assign_to='s')
's = sin(x);'
```

Simple custom printing can be defined for certain types by passing a dictionary of \{"type" : "function"\} to the user_functions kwarg. Alternatively, the dictionary value can be a list of tuples i.e. [(argument_test, cfunction_string)].

```
>>> custom_functions = {'ceiling': 'CEIL',
... 'Abs': [(lambda x: not x.is_integer, 'fabs'),
#. (lambda x: x.is_integer, 'ABS')],
#.. 'func': 'f'}
>>> func = Function('func')
>>> ccode(func(abs(x) + ceiling(x)), user_functions=custom_functions)
'f(fabs(x) + CEIL(x))'
```

or if the C-function takes a subset of the original arguments:

```
>>> ccode(2**x + 3**x,
... user_functions={'Pow': [(lambda b, e: b == 2,
#." lambda b, e: f'exp2({e})'),
exp2(x)+\operatorname{pow}(3,x)', (lambda b, e: b != 2, 'pow')]})
'exp2(x) + pow(3, x)'
```

Piecewise expressions are converted into conditionals. If an assign_to variable is provided an if statement is created, otherwise the ternary operator is used. Note that if the Piecewise lacks a default term, represented by (expr, True) then an error will be thrown. This is to prevent generating an expression that may not evaluate to anything.

```
>>> expr = Piecewise((x + 1, x > 0), (x, True))
>>> print(ccode(expr, y))
if (x > 0) {
y = x + 1;
}
else {
y = x;
}
```

Support for loops is provided through Indexed types. With contract=True these expressions will be turned into loops, whereas contract=False will just print the assignment expression that should be looped over:

```
>>> len y = 5
>>> y = IndexedBase('y', shape=[len_y])
>>> t = IndexedBase('t', shape=[len-y])
>>> Dy = IndexedBase('Dy', shape=[lēn_y - 1])
>>> i = Idx('i', len_y-1)
>> e = Eq(Dy[i], (y[i+1]-y[i])/(t[i+1]-t[i]))
>>> ccode(e.rhs, assign_to=e.lhs, contract=False)
'Dy[i] = (y[i + 1] - y[\overline{i}])/(t[i + 1] - t[i]);
```

Matrices are also supported, but a MatrixSymbol of the same dimensions must be provided to assign_to. Note that any expression that can be generated normally can also exist inside a Matrix:

```
>>> mat = Matrix([x**2, Piecewise((x + 1, x > 0), (x, True)), sin(x)])
>>> A = MatrixSymbol('A', 3, 1)
>>> print(ccode(mat, A))
A[0] = pow(x, 2);
if (x > 0) {
    A[1] = x + 1;
}
else {
    A[1] = x;
}
A[2] = sin(x);
```


4.13.4 Fortran Printing

The fcode function translates a diofant expression into Fortran code. The main purpose is to take away the burden of manually translating long mathematical expressions. Therefore the resulting expression should also require no (or very little) manual tweaking to make it compilable. The optional arguments of fcode can be used to fine-tune the behavior of fcode in such a way that manual changes in the result are no longer needed.

```
diofant.printing.fcode.fcode(expr, assign_to=None,**settings)
Converts an expr to a string of fortran code
```


Parameters

- expr (Expr) - A diofant expression to be converted.
- assign_to (optional) - When given, the argument is used as the name of the variable to which the expression is assigned. Can be a string, Symbol, MatrixSymbol, or Indexed type. This is helpful in case of line-wrapping, or for expressions that generate multi-line statements.
- precision (integer, optional) - The precision for numbers such as pi [default=15].
- user_functions (dict, optional) - A dictionary where keys are FunctionClass instances and values are their string representations. Alternatively, the dictionary value can be a list of tuples i.e. [(argument_test, cfunction_string)]. See below for examples.
- human (bool, optional) - If True, the result is a single string that may contain some constant declarations for the number symbols. If False, the same information is returned in a tuple of (symbols_to_declare, not_supported_functions, code_text). [default=True].
- contract (bool, optional) - If True, Indexed instances are assumed to obey tensor contraction rules and the corresponding nested loops over indices are generated. Setting contract=False will not generate loops, instead the user is responsible to provide values for the indices in the code. [default=True].
- source_format (optional) - The source format can be either 'fixed' or 'free'. [default='fixed']
- standard (integer, optional) - The Fortran standard to be followed. This is specified as an integer. Acceptable standards are 66, 77, 90, 95, 2003, and 2008. Default is 77. Note that currently the only distinction internally is between standards before 95, and those 95 and after. This may change later as more features are added.

Examples

```
>>> fcode((2*x)**Rational(7, 2))
' 8*sqrt(2.0d0)*x**(7.0d0/2.0d0)'
>>> fcode(sin(x), assign_to='s')
' s = sin(x)'
```

Custom printing can be defined for certain types by passing a dictionary of "type" : "function" to the user_functions kwarg. Alternatively, the dictionary value can be a list of tuples i.e. [(argument_test, cfunction_string)].

```
>>> custom_functions = {'ceiling': 'CEIL',
    'floor': [(lambda x: not x.is_integer, 'FLOOR1'),
                            (lambda x: x.is_integer, 'FLOOR2')]}
>>> fcode(floor(x) + ceiling(x), user_functions=custom_functions)
' CEIL(x) + FLOOR1(x)'
```

Piecewise expressions are converted into conditionals. If an assign to variable is provided an if statement is created, otherwise the ternary operator is used. Note that if the Piecewise lacks a default term, represented by (expr, True) then an error will be thrown. This is to prevent generating an expression that may not evaluate to anything.

```
>>> expr = Piecewise((x + 1, x > 0), (x, True))
>>> print(fcode(expr, y))
    if (x > 0) then
        y = x + 1
    else
        y = x
    end if
```

Support for loops is provided through Indexed types. With contract=True these expressions will be turned into loops, whereas contract=False will just print the assignment expression that should be looped over:

```
>>> len y = 5
>>> y = IndexedBase('y', shape=[len_y])
>>> t = IndexedBase('t', shape=[len_y])
>>> Dy = IndexedBase('Dy', shape=[len_y - 1])
>>> i = Idx('i', len y-1)
>> e = Eq(Dy[i], (y[i+1]-y[i])/(t[i+1]-t[i]))
>>> fcode(e.rhs, assign_to=e.lhs, contract=False)
'D Dy(i) = (y(i + 1) - y(i))/(t(i + 1) - t(i))'
```

Matrices are also supported, but a MatrixSymbol of the same dimensions must be provided to assign_to. Note that any expression that can be generated normally can also exist inside a Matrix:

```
>>> mat = Matrix([x**2, Piecewise((x + 1, x > 0), (x, True)), sin(x)])
>>> A = MatrixSymbol('A', 3, 1)
>>> print(fcode(mat, A))
    A(1, 1) = x**2
        if (x > 0) then
    A(2, 1) = x + 1
        else
    A(2, 1) = x
        end if
    A(3,1) = sin(x)
```

class diofant.printing.fcode.FCodePrinter(settings=\{\})
A printer to convert diofant expressions to strings of Fortran code.

```
printmethod: Optional[str] = '_fcode'
indent_code(code)
    Accepts a string of code or a list of code lines.
```

Two basic examples:

```
>>> fcode(sqrt(1-x**2))
' sqrt(-x**2 + 1)'
>>> fcode((3 + 4*I)/(1 - conjugate(x)))
' (cmplx(3,4))/(-\operatorname{conjg(x) + 1)'}
```

An example where line wrapping is required:

```
>>> expr = sqrt(1 - x**2).series(x, n=20).remove0()
>>> print(fcode(expr))
    -715.0d0/65536.0d0*x**18 - 429.0d0/32768.0d0*x**16 - 33.0d0/
    @ 2048.0d0*x**14 - 21.0d0/1024.0d0*x**12 - 7.0d0/256.0d0*x**10 -
    @ 5.0d0/128.0d0*x**8 - 1.0d0/16.0d0*x**6 - 1.0d0/8.0d0*x**4 - 1.0d0
    @ /2.0d0*x**2 + 1
```

In case of line wrapping, it is handy to include the assignment so that lines are wrapped properly when the assignment part is added.

```
>>> print(fcode(expr, assign_to='var'))
    var = -715.0d0/65536.0免0*x**18 - 429.0d0/32768.0d0*x**16 - 33.0d0/
    @ 2048.0d0*x**14 - 21.0d0/1024.0d0*x**12 - 7.0d0/256.0d0*x**10
    @ 5.0d0/128.0d0*x**8 - 1.0d0/16.0d0*x**6 - 1.0d0/8.0d0*x**4 - 1.0d0
    @ /2.0d0*x**2 + 1
```

For piecewise functions, the assign_to option is mandatory:

```
>>> print(fcode(Piecewise((x, x < 1), (x**2, True)), assign_to='var'))
    if (x < 1) then
        var = x
    else
        var = x**2
    end if
```

Note that by default only top-level piecewise functions are supported due to the lack of a conditional operator in Fortran 77. Inline conditionals can be supported using the merge function introduced in Fortran 95 by setting of the kwarg standard=95:

```
>>> print(fcode(Piecewise((x, x < 1), (x**2, True)), standard=95))
    merge(x, x**2, x < 1)
```

Loops are generated if there are Indexed objects in the expression. This also requires use of the assign_to option.

```
>>> A, B = map(IndexedBase, ['A', 'B'])
>>> m = Symbol('m', integer=True)
>>> i = Idx('i', m)
>>> print(fcode(2*B[i], assign_to=A[i]))
    do i = 1, m
    A(i) = 2*B(i)
    end do
```

Repeated indices in an expression with Indexed objects are interpreted as summation. For instance, code for the trace of a matrix can be generated with

```
>>> print(fcode(A[i, i], assign_to=x))
    x = 0
```

```
do i = 1, m
    x = x + A(i, i)
end do
```

By default, number symbols such as pi and E are detected and defined as Fortran parameters. The precision of the constants can be tuned with the precision argument. Parameter definitions are easily avoided using the N function.

```
>>> print(fcode(x - pi**2 - E))
    parameter (E = 2.71828182845905d0)
    parameter (pi = 3.14159265358979d0)
    x - pi**2 - E
>>> print(fcode(x - pi**2 - E, precision=25))
    parameter (E = 2.718281828459045235360287d0)
    parameter (pi = 3.141592653589793238462643d0)
    x - pi**2 - E
>>> print(fcode(N(x - pi**2, 25)))
    x - 9.869604401089358618834491d0
```

When some functions are not part of the Fortran standard, it might be desirable to introduce the names of user-defined functions in the Fortran expression.

```
>>> print(fcode(1 - gamma(x)**2, user_functions={'gamma': 'mygamma'}))
    -mygamma(x)**2 + 1
```

However, when the user_functions argument is not provided, fcode attempts to use a reasonable default and adds a comment to inform the user of the issue.

```
>>> print(fcode(1 - gamma(x)**2))
C Not supported in Fortran:
C gamma
    -gamma(x)**2 + 1
```

By default the output is human readable code, ready for copy and paste. With the option human=False, the return value is suitable for post-processing with source code generators that write routines with multiple instructions. The return value is a three-tuple containing: (i) a set of number symbols that must be defined as 'Fortran parameters', (ii) a list functions that cannot be translated in pure Fortran and (iii) a string of Fortran code. A few examples:

```
>>> fcode(1 - gamma(x)**2, human=False)
(set(), {gamma(x)}, ' -gamma(x)**2 + 1')
>>> fcode(1 - sin(x)**2, human=False)
(set(), set(), ' -sin(x)**2 + 1')
>>> fcode(x - pi**2, human=False)
({(pi, '3.14159265358979d0')}, set(), ' x - pi**2')
```


4.13.5 Mathematica code printing

class diofant.printing.mathematica.MCodePrinter(settings=\{\})
A printer to convert python expressions to strings of the Wolfram's Mathematica code.
printmethod: Optional[str] = '_mcode'
doprint (expr)
Returns printer's representation for expr (as a string).
diofant.printing.mathematica.mathematica_code(expr, **settings)
Converts an expr to a string of the Wolfram Mathematica code

Examples

>>> mathematica code(sin(x).series(x).remove0())
' (1/120)* $x^{\wedge} 5-1 / 6 * x^{\wedge} 3+x^{\prime}$

4.13.6 LambdaPrinter

This classes implements printing to strings that can be used by the diofant.utilities. lambdify. lambdify() (page 902) function.
class diofant.printing.lambdarepr.LambdaPrinter(settings=None)
This printer converts expressions into strings that can be used by lambdify.
printmethod: typing.Optional[str] = '_diofantstr'
diofant.printing.lambdarepr.lambdarepr(expr, **settings)
Returns a string usable for lambdifying.

4.13.7 LatexPrinter

This class implements LaTeX printing. See diofant.printing.latex.

```
diofant.printing.latex.accepted_latex_functions = ['arcsin', 'arccos',
'arctan', 'sin', 'cos', 'tan', 'sinh', 'cosh', 'tanh', 'sqrt', 'ln', 'log',
'sec', 'csc', 'cot', 'coth', 're', 'im', 'frac', 'root', 'arg']
    Built-in mutable sequence.
```

If no argument is given, the constructor creates a new empty list. The argument must be an iterable if specified.
class diofant.printing.latex.LatexPrinter(settings=None)
LaTex printer.
printmethod: Optional[str] = '_latex'
diofant.printing.latex.latex(expr, **settings)
Convert the given expression to LaTeX representation.

```
>>> from diofant.abc import mu, r, tau
```

```
>>> print(latex((2*tau)**Rational(7, 2)))
8 \sqrt{2} \tau^{\frac{7}{2}}
```

Not using a print statement for printing, results in double backslashes for latex commands since that's the way Python escapes backslashes in strings.

```
>>> latex((2*tau)**Rational(7, 2))
'8 \\sqrt{2} \\tau^{\\frac{7}{2}}'
```

order: Any of the supported monomial orderings (currently "lex", "grlex", or "grevlex") and "none". This parameter does nothing for Mul objects. For very large expressions, set the 'order' keyword to 'none' if speed is a concern.
mode: Specifies how the generated code will be delimited. 'mode' can be one of 'plain', 'inline', 'equation' or 'equation*'. If 'mode' is set to 'plain', then the resulting code will not be delimited at all (this is the default). If 'mode' is set to 'inline' then inline LaTeX $\$ \$$ will be used. If 'mode' is set to 'equation' or 'equation*', the resulting code will be
enclosed in the 'equation' or 'equation*' environment (remember to import 'amsmath' for 'equation*'), unless the 'itex' option is set. In the latter case, the $\$ \$ \$ \$$ syntax is used.

```
>>> print(latex((2*mu)**Rational(7, 2), mode='plain'))
8 \sqrt{2} \mu^{\frac{7}{2}}
>>> print(latex((2*tau)**Rational(7, 2), mode='inline'))
$8 \sqrt{2} \tau^{7 / 2}$
```

```
>>> print(latex((2*mu)**Rational(7, 2), mode='equation*'))
\begin{equation*}8 \sqrt{2} \mu^{\frac{7}{2}}\end{equation*}
```

```
>>> print(latex((2*mu)**Rational(7, 2), mode='equation'))
\begin{equation}8 \sqrt{2} \mu^{\frac{7}{2}}\end{equation}
```

itex: Specifies if itex-specific syntax is used, including emitting \$\$ \$.

```
>>> print(latex((2*mu)**Rational(7, 2), mode='equation', itex=True))
$$8 \sqrt{2} \mu^{\frac{7}{2}}$$
```

fold_frac_powers: Emit "^ \{p/q\}" instead of "^\{frac $\{p\}\{q\}\}$ " for fractional powers.

```
>>> print(latex((2*tau)**Rational(7, 2), fold_frac_powers=True))
8 \sqrt{2} \tau^{7/2}
```

fold_func_brackets: Fold function brackets where applicable.

```
>>> print(latex((2*tau)**sin(Rational(7, 2))))
\left(2 \tau\right)^{\sin{\left (\frac{7}{2} \right )}}
>>> print(latex((2*tau)**sin(Rational(7, 2)), fold_func_brackets=True))
\left(2 \tau\right)^{\sin {\frac{7}{2}}}
```

fold_short_frac: Emit "p / q" instead of "frac $\{p\}\{q\}$ " when the denominator is simple enough (at most two terms and no powers). The default value is True for inline mode, False otherwise.

```
>>> print(latex(3*x**2/y))
\frac{3 x^{2}}{y}
>>> print(latex(3*x**2/y, fold_short_frac=True))
3 x^{2} / y
```

long_frac_ratio: The allowed ratio of the width of the numerator to the width of the denominator before we start breaking off long fractions. The default value is 2 .

```
>>> print(latex(Integral(r, r)/2/pi, long_frac_ratio=2))
\frac{\int r\, dr}{2 \pi}
>>> print(latex(Integral(r, r)/2/pi, long_frac_ratio=0))
\frac{1}{2 \pi} \int r\, dr
```

mul_symbol: The symbol to use for multiplication. Can be one of None, "ldot", "dot", or "times".

```
>>> print(latex((2*tau)**sin(Rational(7, 2)), mul_symbol='times'))
\left(2 \times \tau\right)^{\sin{\left (\frac{7}{\overline{2}} \right )}}
```

inv_trig_style: How inverse trig functions should be displayed. Can be one of "abbreviated", "full", or "power". Defaults to "abbreviated".

```
>>> print(latex(asin(Rational(7, 2))))
\operatorname{asin}{\left (\frac{7}{2} \right )}
>>> print(latex(asin(Rational(7, 2)), inv_trig_style='full'))
\arcsin{\left (\frac{7}{2} \right )}
>>> print(latex(asin(Rational(7, 2)), inv_trig_style='power'))
\sin^{-1}{\left (\frac{7}{2} \right )}
```

mat_str: Which matrix environment string to emit. "smallmatrix", "matrix", "array", etc. Defaults to "smallmatrix" for inline mode, "matrix" for matrices of no more than 10 columns, and "array" otherwise.

```
>>> print(latex(Matrix(2, 1, [x, y])))
\left[\begin{matrix}x\\y\end{matrix}\right]
```

>>> print(latex(Matrix(2, 1, [x, y]), mat_str='array'))
$\backslash l e f t[\backslash$ begin\{array\}\{c\}x
y\end\{array\}\right] }
mat_delim: The delimiter to wrap around matrices. Can be one of "[", "(", or the empty string. Defaults to "[".

```
>>> print(latex(Matrix(2, 1, [x, y]), mat_delim='('))
\left(\begin{matrix}x\\y\end{matrix}\righ\overline{t})
```

symbol_names: Dictionary of symbols and the custom strings they should be emitted as.

```
>>> print(latex(x**2, symbol_names={x: 'x_i'}))
x_i^{2}
```

latex also supports the builtin container types list, tuple, and dictionary.

```
>>> print(latex([2/x, y], mode='inline'))
```

\$\left [$2 / \mathrm{x}$, \quad $\mathrm{y} \backslash$ right] \$

4.13.8 MathMLPrinter

This class is responsible for MathML printing. See diofant.printing.mathml.
More info on mathml content: http://www.w3.org/TR/MathML2/chapter4.html
class diofant.printing.mathml.MathMLPrinter(settings=None)
Prints an expression to the MathML markup language
Whenever possible tries to use Content markup and not Presentation markup.

References

- https://www.w3.org/TR/MathML3/
printmethod: typing.Optional[str] = '_mathml'
doprint (expr)
Prints the expression as MathML.
mathml_tag (e)
Returns the MathML tag for an expression.
diofant.printing.mathml.mathml (expr, **settings)
Returns the MathML representation of expr.

4.13.9 PythonPrinter

This class implements Python printing. Usage:

```
>>> print(python(5*x**3 + sin(x)))
x = Symbol('x')
e = 5*x**3 + sin(x)
```


4.13.10 ReprPrinter

This printer generates executable code. This code satisfies the identity eval (srepr(expr)) == expr.

```
class diofant.printing.repr.ReprPrinter(settings=None)
```

Repr printer.
printmethod: Optional[str] = '_diofantrepr'
emptyPrinter(expr)
The fallback printer.
reprify (args, sep)
Prints each item in args and joins them with sep.
diofant.printing.repr.srepr(expr, **settings)
Return expr in repr form.

4.13.11 StrPrinter

This module generates readable representations of Diofant expressions.

```
class diofant.printing.str.StrPrinter(settings=None)
    Str printer.
    printmethod: Optional[str] = '_diofantstr'
diofant.printing.str.sstr(expr,**settings)
    Returns the expression as a string.
```

 For large expressions where speed is a concern, use the setting order='none'.
 Examples
 \(\gg \operatorname{sstr}(E q(a+b, 0))\)
 \({ }^{\prime} E q(a+b, 0)^{\prime}\)
 diofant.printing.str.sstrrepr(expr, **settings)
Return expr in mixed str/repr form.
i.e. strings are returned in repr form with quotes, and everything else is returned in str
form.

This function could be useful for hooking into sys.displayhook

4.13.12 Implementation - Helper Classes/Functions

```
diofant.printing.conventions.split_super_sub(text)
```

Split a symbol name into a name, superscripts and subscripts
The first part of the symbol name is considered to be its actual 'name', followed by super- and subscripts. Each superscript is preceded with a "^" character or by "_". Each subscript is preceded by a "_" character. The three return values are the actual name, a list with superscripts and a list with subscripts.

```
>>> split_super_sub('a_x^1')
('a', ['1'], ['र'])
>>> split_super_sub('var_sub1__sup_sub2')
('var', ['sup'], ['sub1', 'su\overline{b2'])}
```


CodePrinter

This class is a base class for other classes that implement code-printing functionality, and additionally lists a number of functions that cannot be easily translated to C or Fortran.

```
class diofant.printing.codeprinter.CodePrinter(settings=None)
```

The base class for code-printing subclasses.

```
    printmethod: Optional[str] = '_diofantstr'
exception diofant.printing.codeprinter.AssignmentError
```

Raised if an assignment variable for a loop is missing.

Precedence

A module providing information about the necessity of brackets

4.13.13 Pretty-Printing Implementation Helpers

```
diofant.printing.pretty.pretty symbology.U(name)
```

Unicode character by name or None if not found.

```
diofant.printing.pretty.pretty_symbology.pretty_use_unicode(flag=None)
```

Set whether pretty-printer should use unicode by default.
The following two functions return the Unicode version of the inputted Greek letter.

```
diofant.printing.pretty.pretty_symbology.g(l)
```

diofant.printing.pretty.pretty_symbology.G(l)
diofant.printing.pretty.pretty_symbology.greek_letters = ['alpha', 'beta',
'gamma', 'delta', 'epsilon', 'zeta', 'eta', 'theta', 'iota', 'kappa', 'lamda',
'mu', 'nu', 'xi', 'omicron', 'pi', 'rho', 'sigma', 'tau', 'upsilon', 'phi',
'chi', 'psi', 'omega']

Built-in mutable sequence.
If no argument is given, the constructor creates a new empty list. The argument must be an iterable if specified.
The following functions return Unicode vertical objects.
diofant.printing.pretty.pretty_symbology.xobj(symb, length)
Construct spatial object of given length.
return: [] of equal-length strings
diofant.printing.pretty.pretty_symbology.vobj(symb, height)
Construct vertical object of a given height.

See also:

xobj (page 643)
diofant.printing.pretty.pretty_symbology.hobj(symb, width)
Construct horizontal object of a given width.
See also:
xobj (page 643)
The following functions are for rendering atoms and symbols.

```
diofant.printing.pretty.pretty symbology.xsym(sym)
```

Get symbology for a 'character'.

```
diofant.printing.pretty.pretty_symbology.pretty_atom(atom_name, default=None)
```

Return pretty representation of an atom.
diofant.printing.pretty.pretty_symbology.pretty_symbol(symb_name)
Return pretty representation of a symbol.
diofant.printing.pretty.pretty_symbology.annotated(letter)
Return a stylised drawing of the letter letter, together with information on how to put annotations (super- and subscripts to the left and to the right) on it.
See pretty.py functions _print_meijerg, _print_hyper on how to use this information.
Prettyprinter by Jurjen Bos.
(I hate spammers: mail me at pietjepuk314 at the reverse of ku.oc.oohay). All objects have a method that create a "stringPict", that can be used in the str method for pretty printing.

Updates by Jason Gedge (email <my last name> at cs mun ca)

- terminal_string() method
- minor fixes and changes (mostly to prettyForm)

TODO:

- Allow left/center/right alignment options for above/below and top/center/bottom alignment options for left/right
class diofant.printing.pretty.stringpict.stringPict(s, baseline=0)
An ASCII picture. The pictures are represented as a list of equal length strings.
above(*args)
Put pictures above this picture. Returns string, baseline arguments for stringPict. Baseline is baseline of bottom picture.
below (*args)
Put pictures under this picture. Returns string, baseline arguments for stringPict.
Baseline is baseline of top picture

Examples

```
>>> from diofant.printing.pretty.pretty_symbology import pretty_use_unicode
>>> f = pretty_use_unicode(flag=False)
>>> print(stringPict('x+3').below(stringPict.LINE, '3')[0])
x+3
-
```

height ()
The height of the picture in characters.
left (*args)
Put pictures (left to right) at left. Returns string, baseline arguments for stringPict.
static next(*args)
Put a string of stringPicts next to each other. Returns string, baseline arguments for stringPict.
parens(left='(', right=')', ifascii_nougly=False)
Put parentheses around self. Returns string, baseline arguments for stringPict.
left or right can be None or empty string which means 'no paren from that side'
render (*args, **kwargs)
Return the string form of self.
Unless the argument line_break is set to False, it will break the expression in a form that can be printed on the terminal without being broken up.
right (*args)
Put pictures next to this one. Returns string, baseline arguments for stringPict. (Multiline) strings are allowed, and are given a baseline of 0 .

Examples

```
>>> from diofant.printing.pretty.pretty_symbology import pretty_use_unicode
>>> f = pretty_use_unicode(flag=False)
>>> print(stringPi\overline{c}t('10').right(' + ', stringPict('1\r-\r2', 1))[0])
10+
10 + -
```

static stack(*args)

Put pictures on top of each other, from top to bottom. Returns string, baseline arguments for stringPict. The baseline is the baseline of the second picture. Everything is centered. Baseline is the baseline of the second picture. Strings are allowed. The special value stringPict.LINE is a row of ' - ' extended to the width.

terminal_width()

Return the terminal width if possible, otherwise return 0.
width ()
The width of the picture in characters.
class diofant.printing.pretty.stringpict.prettyForm(s, baseline $=0$, binding $=0$, unicode=None)
Extension of the stringPict class that knows about basic math applications, optimizing double minus signs.
"Binding" is interpreted as follows:

```
ATOM this is an atom: never needs to be parenthesized
FUNC this is a function application: parenthesize if added (?)
DIV this is a division: make wider division if divided
POW this is a power: only parenthesize if exponent
MUL this is a multiplication: parenthesize if powered
ADD this is an addition: parenthesize if multiplied or powered
NEG this is a negative number: optimize if added, parenthesize if
    multiplied or powered
OPEN this is an open object: parenthesize if added, multiplied, or
    powered (example: Piecewise)
```


4.13.14 dotprint

```
diofant.printing.dot.dotprint(expr, styles=[(<class 'diofant.core.basic.Basic'>,
                    {'color': 'blue', 'shape': 'ellipse'}), (<class
                                    'diofant.core.expr.Expr'>, {'color': 'black'})],
                                    atom=<function <lambda>>, maxdepth=None,
    repeat=True, labelfunc=<class 'str'>, **kwargs)
```

DOT description of a Diofant expression tree
Options are
styles: Styles for different classes. The default is:

```
[(Basic, {'color': 'blue', 'shape': 'ellipse'}),
(Expr, {'color': 'black'})]`
```

atom: Function used to determine if an arg is an atom. The default is lambda x : not isinstance(x, Basic). Another good choice is lambda x: not x.args.
maxdepth: The maximum depth. The default is None, meaning no limit.
repeat: Whether to different nodes for separate common subexpressions. The default is True. For example, for $x+x^{*} y$ with repeat=True, it will have two nodes for x and with repeat=False, it will have one (warning: even if it appears twice in the same object, like Pow(x, x), it will still only appear only once. Hence, with repeat=False, the number of arrows out of an object might not equal the number of args it has).
label func: How to label leaf nodes. The default is str. Another good option is repr. For example with str, the leaf nodes of $x+1$ are labeled, x and 1 . With repr, they are labeled Symbol ('x') and Integer(1).
Additional keyword arguments are included as styles for the graph.

Examples

```
>>> print(dotprint(x + 2))
digraph{
# Graph style
"bgcolor"="transparent"
"ordering"="out"
"rankdir"="TD"
#########
# Nodes #
#########
"Add(Symbol('x'), Integer(2))_()" ["color"="black", "label"="Add", "shape"=
    "ellipse"];
"Integer(2)(0,)" ["color"="black", "label"="2", "shape"="ellipse"];
"Symbol('x')_(1,)" ["color"="black", "label"="x", "shape"="ellipse"];
#########
# Edges #
#########
"Add(Symbol('x'), Integer(2))_()" -> "Integer(2)_(0,)";
"Add(Symbol('x'), Integer(2))_()" -> "Symbol('x')_(1,)";
}
```


4.14 Interactive

Helper module for setting up interactive Diofant sessions.
AST/string-based transformations, provided here, could be used in IPython to reduce boilerplate while interacting with Diofant due to the Python language syntax.
diofant.interactive.printing.init_printing($\underset{* * \text { settings })}{\text { no_global })}$ False, pretty_print=None,
Initializes pretty-printer depending on the environment.

Parameters

- no_global (boolean) - If True, the settings become system wide; if False, use just for this console/session.
- pretty_print (boolean or None) - Enable pretty printer (turned on by default for IPython, but disabled for plain Python console).
- **settings (dict) - A dictionary of default settings for printers.

Notes

This function runs automatically for wildcard imports (e.g. for from diofant import *) in interactive sessions.

Examples

```
>>> from diofant.abc import theta
>>> sqrt(5)
sqrt(5)
>>> init_printing(pretty_print=True, no_global=True)
>>> sqrt(5)
\
>>> theta
0
>>> init_printing(pretty_print=True, use_unicode=False, no_global=True)
>>> theta
theta
>>> init_printing(pretty_print=True, order='grevlex', no_global=True)
>> y + \overline{x + y**2 + x**2}
2 2
x + y + x + y
```

class diofant.interactive.session. AutomaticSymbols ($n s=\{ \}$)
Add missing Symbol (page 82) definitions automatically.
class diofant.interactive.session. FloatRationalizer
Wraps all floats in a call to Fraction.
class diofant.interactive.session.IntegerDivisionWrapper
Wrap all int divisions in a call to Fraction.
diofant.interactive.session.unicode_identifiers(lines)
Transform original code to allow any unicode identifiers.

4.15 Plotting

4.15.1 Introduction

The plotting module allows you to make 2-dimensional and 3-dimensional plots. Presently the plots are rendered using matplotlib as a backend.

The plotting module has the following functions:

- plot: Plots 2D line plots.
- plot_parametric: Plots 2D parametric plots.
- plot_implicit: Plots 2D implicit and region plots.
- plot3d: Plots 3D plots of functions in two variables.
- plot3d_parametric_line: Plots 3D line plots, defined by a parameter.
- plot3d_parametric_surface: Plots 3D parametric surface plots.

The above functions are only for convenience and ease of use. It is possible to plot any plot by passing the corresponding Series class to Plot as argument.

4.15.2 Plot Class

class diofant.plotting.plot.Plot(*args, **kwargs)
The central class of the plotting module.
For interactive work the function plot is better suited.
This class permits the plotting of diofant expressions using numerous backends (matplotlib, Google charts api, etc).
The figure can contain an arbitrary number of plots of diofant expressions, lists of coordinates of points, etc. Plot has a private attribute _series that contains all data series to be plotted (expressions for lines or surfaces, lists of points, etc (all subclasses of BaseSeries)). Those data series are instances of classes not imported by from diofant import *.
The customization of the figure is on two levels. Global options that concern the figure as a whole (eg title, xlabel, scale, etc) and per-data series options (eg name) and aesthetics (eg. color, point shape, line type, etc.).
The difference between options and aesthetics is that an aesthetic can be a function of the coordinates (or parameters in a parametric plot). The supported values for an aesthetic are: - None (the backend uses default values) - a constant - a function of one variable (the first coordinate or parameter) - a function of two variables (the first and second coordinate or parameters) - a function of three variables (only in nonparametric 3D plots) Their implementation depends on the backend so they may not work in some backends.

If the plot is parametric and the arity of the aesthetic function permits it the aesthetic is calculated over parameters and not over coordinates. If the arity does not permit calculation over parameters the calculation is done over coordinates.
Only cartesian coordinates are supported for the moment, but you can use the parametric plots to plot in polar, spherical and cylindrical coordinates.
The arguments for the constructor Plot must be subclasses of BaseSeries.
Any global option can be specified as a keyword argument.
The global options for a figure are:

- title : str
- xlabel : str
- ylabel : str
- xscale : \{'linear', 'log’\}
- yscale : \{'linear', 'log’\}
- axis : bool
- axis_center : tuple of two floats or \{'center', ‘auto’\}
- xlim : tuple of two floats
- ylim : tuple of two floats
- aspect_ratio : tuple of two floats or \{‘auto’\}
- autoscale : bool
- margin : float in [0, 1]

The per data series options and aesthetics are: There are none in the base series. See below for options for subclasses.
Some data series support additional aesthetics or options:
ListSeries, LineOver1DRangeSeries, Parametric2DLineSeries, Parametric3DLineSeries support the following:
Aesthetics:

- line_color : function which returns a float.
options:
- label : str
- steps : bool
- integers_only : bool

SurfaceOver2DRangeSeries, ParametricSurfaceSeries support the following:
aesthetics:

- surface_color : function which returns a float.
append (arg)
Adds an element from a plot's series to an existing plot.

Examples

Consider two Plot objects, p1 and p2. To add the second plot's first series object to the first, use the append method, like so:

```
>>> p1 = plot(x*x)
>>> p2 = plot(x)
>>> p1.append(p2[0])
>>> print(str(p1))
Plot object containing:
[0]: cartesian line: x**2 for x over (-10.0, 10.0)
[1]: cartesian line: x for x over (-10.0, 10.0)
```


See also:

extend (page 650)
extend (arg)
Adds all series from another plot.

Examples

Consider two Plot objects, p1 and p2. To add the second plot to the first, use the extend method, like so:

```
>>> pl = plot(x*x)
>>> p2 = plot(x)
>>> p1.extend(p2)
>>> print(str(pl))
Plot object containing:
[0]: cartesian line: x**2 for x over (-10.0, 10.0)
[1]: cartesian line: x for x over (-10.0, 10.0)
```


4.15.3 Plotting Function Reference

diofant.plotting.plot.plot(*args, **kwargs)
Plots a function of a single variable and returns an instance of the Plot class (also, see the description of the show keyword argument below).

The plotting uses an adaptive algorithm which samples recursively to accurately plot the plot. The adaptive algorithm uses a random point near the midpoint of two points that has to be further sampled. Hence the same plots can appear slightly different.
Single Plot.
plot(expr, range, **kwargs)
If the range is not specified, then a default range of $(-10,10)$ is used.
Multiple plots with same range.
plot(expr1, expr2, ..., range, **kwargs)
If the range is not specified, then a default range of $(-10,10)$ is used.
Multiple plots with different ranges.
plot((expr1, range), (expr2, range), ..., **kwargs)
Range has to be specified for every expression.
Default range may change in the future if a more advanced default range detection algorithm is implemented.

Parameters

- "expr`` (Expr) - Expression representing the function of single variable
- "'range" (tuple) - (x, 0, 5), A 3-tuple denoting the range of the free variable.
- "show" (Boolean, optional) - The default value is set to True. Set show to False and the function will not display the plot. The returned instance of the Plot class can then be used to save or display the plot by calling the save() and show() methods respectively.
- Arguments for '`LineOver1DRangeSeries`` class
- '`adaptive" (Boolean, optional) - The default value is set to True. Set adaptive to False and specify nb_of_points if uniform sampling is required.
- "'depth" (int, optional) - Recursion depth of the adaptive algorithm. A depth of value n samples a maximum of 2^{n} points.
- "nb_of_points" (int, optional) - Used when the adaptive is set to False. The function is uniformly sampled at nb_of_points number of points.
- Aesthetics options
- '`line_color`` (float, optional) - Specifies the color for the plot. See Plot to see how to set color for the plots.
- If there are multiple plots, then the same series series are applied to
- all the plots. If you want to set these options separately, you can index
- the "'Plot" object returned and set it.
- Arguments for '`Plot` class
- '"title" (str, optional) - Title of the plot. It is set to the latex representation of the expression, if the plot has only one expression.
- "'xlabel" (str, optional) - Label for the x-axis.
- "ylabel" (str, optional) - Label for the y-axis.
- ' x xcale" ($\{$ 'linear', 'log'\}, optional) - Sets the scaling of the x-axis.
- ' $\mathbf{y s c a l e}{ }^{\text {` }}$ (\{'linear', 'log'\}, optional) - Sets the scaling if the y-axis.
- '`axis_center" (tuple of two floats) - denoting the coordinates of the center or \{'center', 'auto’\}
- "xlim" (tuple of two floats) - denoting the x-axis limits.
- ' ${ }^{\prime}$ ylim ${ }^{`}$ (tuple of two floats) - denoting the y-axis limits.

Examples

Single Plot

```
>>> print(str(plot(x**2, (x, -5, 5))))
Plot object containing:
[0]: cartesian line: x**2 for x over (-5.0, 5.0)
```

Multiple plots with single range.

```
>>> print(str(plot(x, x**2, x**3, (x, -5, 5))))
Plot object containing:
[0]: cartesian line: x for x over (-5.0, 5.0)
[1]: cartesian line: x**2 for x over (-5.0, 5.0)
[2]: cartesian line: x**3 for x over (-5.0, 5.0)
```

Multiple plots with different ranges.

```
>>> print(str(plot((x**2, (x, -6, 6)), (x, (x, -5, 5)))))
Plot object containing:
[0]: cartesian line: x**2 for x over (-6.0, 6.0)
[1]: cartesian line: x for x over (-5.0, 5.0)
```

No adaptive sampling.

```
>>> print(str(plot(x**2, adaptive=False, nb_of_points=400)))
Plot object containing:
[0]: cartesian line: x**2 for x over (-10.0, 10.0)
```


See also:

Plot (page 649), diofant.plotting.plot.LineOver1DRangeSeries (page 660)
diofant.plotting.plot.plot_parametric(*args, **kwargs)
Plots a 2D parametric plot.
The plotting uses an adaptive algorithm which samples recursively to accurately plot the plot. The adaptive algorithm uses a random point near the midpoint of two points that has to be further sampled. Hence the same plots can appear slightly different.

Single plot.
plot_parametric(expr_x, expr_y, range, **kwargs)
If the range is not specified, then a default range of $(-10,10)$ is used.
Multiple plots with same range.
plot_parametric((expr1_x, expr1_y), (expr2_x, expr2_y), range, **kwargs)
If the range is not specified, then a default range of $(-10,10)$ is used.
Multiple plots with different ranges.
plot_parametric((expr_x, expr_y, range), ..., **kwargs)
Range has to be specified for every expression.
Default range may change in the future if a more advanced default range detection algorithm is implemented.

Parameters

- "expr_x" (Expr) - Expression representing the function along x.
- "expr_y" (Expr) - Expression representing the function along y.
- "'range" (tuple) - (u, 0, 5), A 3-tuple denoting the range of the parameter variable.
- Arguments for '`Parametric2DLineSeries" class
- "`adaptive" (Boolean, optional) - The default value is set to True. Set adaptive to False and specify nb_of_points if uniform sampling is required.
- "depth" (int, optional) - Recursion depth of the adaptive algorithm. A depth of value n samples a maximum of 2^{n} points.
- "'nb_of_points" (int, optional) - Used when the adaptive is set to False. The function is uniformly sampled at nb_of_points number of points.
- Aesthetics
- `line_color` (function which returns a float) - Specifies the color for the plot. See diofant.plotting. Plot for more details.
- If there are multiple plots, then the same Series arguments are applied to
- all the plots. If you want to set these options separately, you can index
- the returned '`Plot` object and set it.
- Arguments for '`Plot` class
- "xlabel" (str) - Label for the x-axis.
- "'ylabel" (str) - Label for the y-axis.
- ' "xscale" ('linear', 'log'\}) - Sets the scaling of the x-axis. $_{\text {. }}$
- ' ${ }^{\prime} y s c a l e{ }^{\prime}$ ($\{$ 'linear', 'log'\}) - Sets the scaling if the y-axis.
- "'axis_center" (tuple of two floats) - denoting the coordinates of the center or \{'center', 'auto’\}
- "xlim" (tuple of two floats) - denoting the x-axis limits.
- ' $\mathbf{y l i m}$ " (tuple of two floats) - denoting the y-axis limits.

Examples

```
>>> u = symbols('u')
```

Single Parametric plot

```
>>> print(str(plot_parametric(cos(u), sin(u), (u, -5, 5))))
Plot object containing:
[0]: parametric cartesian line: (cos(u), sin(u)) for u over (-5.0, 5.0)
```

Multiple parametric plot with single range.

```
>>> print(str(plot_parametric((cos(u), sin(u)), (u, cos(u)))))
Plot object containing:
[0]: parametric cartesian line: (cos(u), sin(u)) for u over (-10.0, 10.0)
[1]: parametric cartesian line: (u, cos(u)) for u over (-10.0, 10.0)
```

Multiple parametric plots.

```
>>> print(str(plot_parametric((cos(u), sin(u), (u, -5, 5)),
#. (cos(u), u, (u, -5, 5)))))
Plot object containing:
[0]: parametric cartesian line: (cos(u), sin(u)) for u over (-5.0, 5.0)
[1]: parametric cartesian line: (cos(u), u) for u over (-5.0, 5.0)
```


See also:

Plot (page 649), Parametric2DLineSeries (page 660)
diofant.plotting.plot.plot3d(*args, **kwargs)
Plots a 3D surface plot.
Single plot.
plot3d(expr, range_x, range_y, **kwargs)
If the ranges are not specified, then a default range of $(-10,10)$ is used.
Multiple plot with the same range.
plot3d(expr1, expr2, range_x, range_y, **kwargs)

If the ranges are not specified, then a default range of $(-10,10)$ is used.
Multiple plots with different ranges.
plot3d((expr1, range_x, range_y), (expr2, range_x, range_y), ..., **kwargs)
Ranges have to be specified for every expression.
Default range may change in the future if a more advanced default range detection algorithm is implemented.

Parameters

- "'expr" (Expr) - Expression representing the function along x.
- '`range_x" (tuple) - (x, 0, 5), A 3-tuple denoting the range of the x variable.
- "'range_y" (tuple) - (y, 0, 5), A 3-tuple denoting the range of the y variable.
- Arguments for "'SurfaceOver2DRangeSeries` class
- "nb_of_points_x" (int) - The x range is sampled uniformly at nb_of_points_x of points.
- "nb_of_points_y" (int) - The y range is sampled uniformly at nb_of_points_y of points.
- Aesthetics
- "'surface_color` (Function which returns a float) - Specifies the color for the surface of the plot. See diofant.plotting. Plot for more details.
- If there are multiple plots, then the same series arguments are applied to
- all the plots. If you want to set these options separately, you can index
- the returned '`Plot` object and set it.
- Arguments for '`Plot` class
- "title" (str) - Title of the plot.

Examples

Single plot

```
>>> print(str(plot3d(x*y, (x, -5, 5), (y, -5, 5))))
Plot object containing:
[0]: cartesian surface: x*y for x over (-5.0, 5.0) and y over (-5.0, 5.0)
```

Multiple plots with same range

```
>>> print(str(plot3d(x*y, -x*y, (x, -5, 5), (y, -5, 5))))
Plot object containing:
[0]: cartesian surface: x*y for x over (-5.0, 5.0) and y over (-5.0, 5.0)
[1]: cartesian surface: -x*y for x over (-5.0, 5.0) and y over (-5.0, 5.0)
```

Multiple plots with different ranges.

```
>>> print(str(plot3d((x**2 + y**2, (x, -5, 5), (y, -5, 5)),
#.. (x*y, (x, -3, 3), (y, -3, 3)))))
Plot object containing:
[0]: cartesian surface: x**2 + y**2 for x over (-5.0, 5.0) and y over (-5.0, 5.0)
[1]: cartesian surface: x*y for x over (-3.0, 3.0) and y over (-3.0, 3.0)
```


See also:

Plot (page 649), SurfaceOver2DRangeSeries (page 661)
diofant.plotting.plot.plot3d_parametric_line(*args, **kwargs)
Plots a 3D parametric line plot.
Single plot.

```
plot3d_parametric_line(expr_x, expr_y, expr_z, range, **kwargs)
```

If the range is not specified, then a default range of $(-10,10)$ is used.
Multiple plots.
plot3d_parametric_line((expr_x, expr_y, expr_z, range), ..., **kwargs)
Ranges have to be specified for every expression.
Default range may change in the future if a more advanced default range detection algorithm is implemented.

Parameters

- '`expr_x" (Expr) - Expression representing the function along x.
- "`expr_y" (Expr) - Expression representing the function along y.
- '`expr_z` (Expr) - Expression representing the function along z.
- "'range" (tuple) - (u, 0, 5), A 3-tuple denoting the range of the parameter variable.
- Arguments for "'Parametric3DLineSeries" class.
- "nb_of_points" (int) - The range is uniformly sampled at nb_of_points number of points.
- Aesthetics
- "line_color" (function which returns a float.) - Specifies the color for the plot. See diofant.plotting. Plot for more details.
- If there are multiple plots, then the same series arguments are applied to
- all the plots. If you want to set these options separately, you can index
- the returned '`Plot" object and set it.
- Arguments for `'Plot` class.
- "title` (str) - Title of the plot.

Examples

>>> u = symbols('u')
Single plot.

```
>>> print(str(plot3d_parametric_line(cos(u), sin(u), u, (u, -5, 5))))
Plot object containing:
[0]: 3D parametric cartesian line: (cos(u), sin(u), u) for u over (-5.0, 5.0)
```

Multiple plots.

```
>>> print(str(plot3d_parametric_line((cos(u), sin(u), u, (u, -5, 5)),
Plot object containing:
[0]: 3D parametric cartesian line: (cos(u), sin(u), u) for u over (-5.0, 5.0)
[1]: 3D parametric cartesian line: (sin(u), u**2, u) for u over (-5.0, 5.0)
```


See also:

Plot (page 649), Parametric3DLineSeries (page 661)
diofant.plotting.plot.plot3d_parametric_surface(*args, **kwargs)
Plots a 3D parametric surface plot.
Single plot.
plot3d_parametric_surface(expr_x, expr_y, expr_z, range_u, range_v, **kwargs)

If the ranges is not specified, then a default range of $(-10,10)$ is used.
Multiple plots.
plot3d_parametric_surface((expr_x, expr_y, expr_z, range_u, range_v), ..., **kwargs)
Ranges have to be specified for every expression.
Default range may change in the future if a more advanced default range detection algorithm is implemented.

Parameters

- "expr_x" (Expr) - Expression representing the function along x .
- `'expr_y` (Expr) - Expression representing the function along y.
- '`expr_z" (Expr) - Expression representing the function along z.
- '`range_u " (tuple)-(u, 0, 5), A 3-tuple denoting the range of the u variable.
- "'range_v" (tuple) - (v, 0, 5), A 3-tuple denoting the range of the v variable.
- Arguments for "’ParametricSurfaceSeries`` class
- "nn_of_points_u"` (int) - The u range is sampled uniformly at nb_of_points_v of points
- `nb_of_points_y" (int) - The v range is sampled uniformly at nb_of_points_y of points
- Aesthetics
- "'surface_color` (Function which returns a float) - Specifies the color for the surface of the plot. See diofant.plotting. Plot for more details.
- If there are multiple plots, then the same series arguments are applied for
- all the plots. If you want to set these options separately, you can index
- the returned '`Plot" object and set it.
- Arguments for '`Plot` class
- '`title" (str) - Title of the plot.

Examples

```
>>> u, v = symbols('u v')
```

Single plot.

```
>>> print(str(plot3d_parametric_surface(cos(u + v), sin(u - v), u - v,
...
                (u, -5, 5), (v, -5, 5))))
Plot object containing:
[0]: parametric cartesian surface: (cos(u + v), sin(u - v), u - v) for u over (-5.
->0, 5.0) and v over (-5.0, 5.0)
```


See also:

Plot (page 649), ParametricSurfaceSeries (page 661)
diofant.plotting.plot_implicit.plot_implicit(expr, x_var=None, y_var=None, **kwargs)
A plot function to plot implicit equations / inequalities.

Parameters

- "expr" (Expr) - The equation / inequality that is to be plotted.
- "'x_var" (symbol or tuple, optional) - symbol to plot on x-axis or tuple giving symbol and range as (symbol, xmin, xmax)
- ' \mathbf{y}_{-}var" (symbol or tuple, optional) - symbol to plot on y-axis or tuple giving symbol and range as (symbol, ymin, ymax)
- If neither "'x_var`` nor '`y_var" are given then the free symbols in the
- expression will be assigned in the order they are sorted.
- The following keyword arguments can also be used
- '`adaptive" (Boolean, optional) - The default value is set to True. It has to be set to False if you want to use a mesh grid.
- "depth" (integer) - The depth of recursion for adaptive mesh grid. Default value is 0 . Takes value in the range (0,4).
- '`points" (integer) - The number of points if adaptive mesh grid is not used. Default value is 200.
- "title" (str) - The title for the plot.
- '"xlabel" (str) - The label for the x-axis
- "'ylabel" (string) - The label for the y-axis
- Aesthetics options
- "'line_color" (float or str) - Specifies the color for the plot. See Plot to see how to set color for the plots.
- plot_implicit, by default, uses interval arithmetic to plot functions. If
- the expression cannot be plotted using interval arithmetic, it defaults to
- a generating a contour using a mesh grid of fixed number of points. By
- setting adaptive to False, you can force plot_implicit to use the mesh
- grid. The mesh grid method can be effective when adaptive plotting using
- interval arithmetic, fails to plot with small line width.

Examples

Plot expressions:
Without any ranges for the symbols in the expression

```
>>> p1 = plot_implicit(Eq(x**2 + y**2, 5))
```

With the range for the symbols

```
>>> p2 = plot_implicit(Eq(x**2 + y**2, 3),
... (x, -3, 3), (y, -3, 3))
```

With depth of recursion as argument.

```
>>> p3 = plot_implicit(Eq(x**2 + y**2, 5),
... (x, -4, 4), (y, -4, 4), depth=2)
```

Using mesh grid and not using adaptive meshing.

```
>>> p4 = plot_implicit(Eq(x**2 + y**2, 5),
... (x, -5, 5), (y, -2, 2), adaptive=False)
```

Using mesh grid with number of points as input.

```
>>> p5 = plot_implicit(Eq(x**2 + y**2, 5),
... (x, -5, 5), (y, -2, 2),
#. adaptive=False, points=400)
```

Plotting regions.

```
>>> p6 = plot_implicit(y > x**2)
```

Plotting Using boolean conjunctions.

```
>>> p7 = plot_implicit(And(y > x, y > -x))
```

When plotting an expression with a single variable ($\mathrm{y}-1$, for example), specify the x or the y variable explicitly:

```
>>> p8 = plot_implicit(y - 1, y_var=y)
>>> p9 = plot_implicit(x - 1, x_var=x)
```


4.15.4 Series Classes

class diofant.plotting.plot.BaseSeries

Base class for the data objects containing stuff to be plotted.
The backend should check if it supports the data series that it's given. (eg TextBackend supports only LineOver1DRange). It's the backend responsibility to know how to use the class of data series that it's given.
Some data series classes are grouped (using a class attribute like is_2Dline) according to the api they present (based only on convention). The backend is not obliged to use that api (eg. The LineOver1DRange belongs to the is_2Dline group and presents the get_points method, but the TextBackend does not use the get_points method).
class diofant.plotting.plot.Line2DBaseSeries
A base class for 2D lines.

- adding the label, steps and only_integers options
- making is_2Dline true
- defining get_segments and get_color_array
class diofant.plotting.plot.LineOver1DRangeSeries(expr, var_start_end, **kwargs) Representation for a line consisting of a Diofant expression over a range.
get_segments()
Adaptively gets segments for plotting.
The adaptive sampling is done by recursively checking if three points are almost collinear. If they are not collinear, then more points are added between those points.

References

[1] Adaptive polygonal approximation of parametric curves, Luiz Henrique de Figueiredo.
class diofant.plotting.plot.Parametric2DLineSeries (expr_x, expr_y, var_start_end, **kwargs)
Representation for a line consisting of two parametric diofant expressions over a range.
get_segments()
Adaptively gets segments for plotting.
The adaptive sampling is done by recursively checking if three points are almost collinear. If they are not collinear, then more points are added between those points.

References

[1] Adaptive polygonal approximation of parametric curves, Luiz Henrique de Figueiredo.
class diofant.plotting.plot.Line3DBaseSeries
A base class for 3D lines.
Most of the stuff is derived from Line2DBaseSeries.
class diofant.plotting.plot.Parametric3DLineSeries(expr_x, expr_y, expr_z, var_start_end, **kwargs)
Representation for a 3D line consisting of two parametric diofant expressions and a range.
class diofant.plotting.plot.SurfaceBaseSeries
A base class for 3D surfaces.
class diofant.plotting.plot.SurfaceOver2DRangeSeries(expr, var_start_end_x, var_start_end_y, **kwargs)
Representation for a 3D surface consisting of a diofant expression and $\overrightarrow{2 D}$ range.
class diofant.plotting.plot.ParametricSurfaceSeries(expr_x, expr_y, expr_z, var_start_end_u, var_start_end_v, **kwargs)
Representation for a 3D surface consisting of three parametric diofant expressions and a range.
class diofant.plotting.plot_implicit.ImplicitSeries(expr, var_start_end_x, var_start_end_y, has_equality, use_interval_math, depth, nb_of_points, line_color)
Representation for Implicit plot.

4.16 Series

The series module implements series expansions as a function and many related functions.
class diofant.series.limits. Limit (e, $z, z 0$, dir='+')
Represents a directional limit of expr at the point $z 0$.

Parameters

- expr (Expr) - algebraic expression
- z (Symbol) - variable of the expr
- z0 (Expr) - limit point, z_{0}
- dir ($\{$ "+", "-", "real" \}, optional) - For dir="+" (default) it calculates the limit from the right ($z \rightarrow z_{0}+0$) and for dir=" - " the limit from the left ($z \rightarrow z_{0}-0$). If dir="real", the limit is the bidirectional real limit. For infinite z 0 (oo or - oo), the dir argument is determined from the direction of the infinity (i.e., dir=" - " for oo).

Examples

```
>>> Limit(sin(x)/x, x, 0)
Limit(sin(x)/x, x, 0)
>> Limit(1/x, x, 0, dir='-')
Limit(1/x, x, 0, dir='-')
```

doit (**hints)

Evaluates limit.

Notes

First we handle some trivial cases (i.e. constant), then try Gruntz algorithm (see the gruntz (page 995) module).
diofant.series.limits.limit(expr, $z, z 0$, dir='+')
Compute the directional limit of expr at the point z0.

Examples

```
>>> limit(sin(x)/x, x, 0)
1
>>> limit(1/x, x, 0, dir='+')
OO
>>> limit(1/x, x, 0, dir='-')
-00
>>> limit(1/x, x, oo)
0
```


See also:

Limit (page 661)
diofant.series.series.series(expr, $x=$ None, $x 0=0, n=6, d i r='+'$)
Series expansion of expr in x around point $x 0$.

See also:

diofant.core.expr.Expr.series (page 80)
diofant.series.order. 0
alias of diofant.series.order. Order (page 662)
class diofant.series.order. Order (expr, *args, **kwargs)
Represents the limiting behavior of function.
The formal definition for order symbol $O(f(x))$ (Big \mathbf{O}) is that $g(x) \in O(f(x))$ as $x \rightarrow a$ iff

$$
\lim _{x \rightarrow a} \sup \left|\frac{g(x)}{f(x)}\right|<\infty
$$

Parameters

- expr (Expr) - an expression
- args (sequence of Symbol's or pairs (Symbol, Expr), optional) - If only symbols are provided, i.e. no limit point are passed, then the limit point is assumed to be zero. If no symbols are passed then all symbols in the expression are used.

Examples

The order of a function can be intuitively thought of representing all terms of powers greater than the one specified. For example, $O\left(x^{3}\right)$ corresponds to any terms proportional to x^{3}, x^{4}, \ldots and any higher power. For a polynomial, this leaves terms proportional to x^{2}, x and constants.

```
>>> 1 + x + x**2 + x**3 + x**4 + 0(x**3)
1 + x + x**2 + 0(x**3)
```

$0(f(x))$ is automatically transformed to $0(f(x)$.as_leading_term $(x))$:

```
>> 0(x+ x**2)
O(x)
>>> 0(cos(x))
0(1)
```

Some arithmetic operations:

```
>>> 0(x)*x
0(x**2)
>>> 0(x) - 0(x)
O(x)
```

The Big O symbol is a set, so we support membership test:

```
>>> x in O(x)
True
>>> O(1) in O(1, x)
True
>> O(1, x) in O(1)
False
>>> O(x) in O(1, x)
True
>> O(x**2) in O(x)
True
```

Limit points other then zero and multivariate Big O are also supported:

```
>>> O(x) == O(x, (x, 0))
True
>>> 0(x + x**2, (x, oo))
0(x**2, (x, oo))
>>> 0(cos(x), (x, pi/2))
O(x - pi/2, (x, pi/2))
```

```
>>> 0(1 + x*y)
O(1, x, y)
>> 0(1 + x*y, (x, 0), (y, 0))
O(1, x, y)
>> 0(1 + x*y, (x, oo), (y, oo))
O(x*y, (x, oo), (y, oo))
```


References

- https://en.wikipedia.org/wiki/Big_O_notation
contains (expr)
Membership test.
Returns Boolean or None - Return True if expr belongs to self. Return False if self belongs to expr. Return None if the inclusion relation cannot be determined.
diofant.series.residues.residue (expr, $x, x 0$)
Finds the residue of expr at the point $x=x 0$.
The residue is defined as the coefficient of $1 /\left(x-x_{0}\right)$ in the power series expansion around $x=x_{0}$.
This notion is essential for the Residue Theorem.

Examples

```
>>> residue(1/x, x, 0)
1
>>> residue(1/x**2, x, 0)
0
>>> residue(2/sin(x), x, 0)
2
```


References

- https://en.wikipedia.org/wiki/Residue_\(complex_analysis\)
- https://en.wikipedia.org/wiki/Residue_theorem

4.17 Sets

Generic set theory interfaces.
class diofant.sets.sets.Set(*args)
The base class for any kind of set.
This is not meant to be used directly as a container of items. It does not behave like the builtin set; see FiniteSet (page 672) for that.
Real intervals are represented by the Interval (page 670) class and unions of sets by the Union (page 673) class. The empty set is represented by the EmptySet (page 675) class and available as a singleton as S.EmptySet.
property boundary
The boundary or frontier of a set
A point x is on the boundary of a set S if

1. x is in the closure of S. I.e. Every neighborhood of x contains a point in S.
2. x is not in the interior of S. I.e. There does not exist an open set centered on x contained entirely within S.
There are the points on the outer rim of S. If S is open then these points need not actually be contained within S .
For example, the boundary of an interval is its start and end points. This is true regardless of whether or not the interval is open.

Examples

```
>>> Interval(0, 1).boundary
{0, 1}
>>> Interval(0, 1, True, False).boundary
{0, 1}
```

property closure
Return the closure of a set.

Examples

>>> Interval(0, 1, right_open=True).closure
$[0,1]$
complement (universe)
The complement of 'self' w.r.t the given the universe.

Examples

>>> Interval(0, 1).complement(S.Reals)
(-00, 0) U (1, oo)

```
>>> Interval(0, 1).complement(S.UniversalSet)
UniversalSet() \ [0, 1]
```

contains(other)
Returns True if 'other' is contained in 'self' as an element.
As a shortcut it is possible to use the 'in' operator:

Examples

```
>>> Interval(0, 1).contains(0.5)
true
>>> 0.5 in Interval(0, 1)
True
```

property inf
The infimum of 'self'

Examples

```
>>> Interval(0, 1).inf
0
>>> Union(Interval(0, 1), Interval(2, 3)).inf
0
```

property interior
Return the interior of a set.
The interior of a set consists all points of a set that do not belong to its boundary.

Examples

```
>>> Interval(0, 1).interior
(0, 1)
>>> Interval(0, 1).boundary.interior
EmptySet()
```

intersection(other)
Returns the intersection of 'self' and 'other'.

```
>>> Interval(1, 3).intersection(Interval(1, 2))
[1, 2]
```

property is_closed
Test if a set is closed.

Examples

```
>>> Interval(0, 1).is_closed
```

True

is_disjoint(other)

Returns True if 'self' and 'other' are disjoint

Examples

```
>>> Interval(0, 2).is_disjoint(Interval(1, 2))
False
>>> Interval(0, 2).is_disjoint(Interval(3, 4))
True
```


References

- https://en.wikipedia.org/wiki/Disjoint_sets

property is_open

Test if a set is open.
A set is open if it has an empty intersection with its boundary.

Examples

```
>>> S.Reals.is_open
```

True

See also:

boundary (page 664)
is_proper_subset (other)
Returns True if 'self' is a proper subset of 'other'.

Examples

```
>>> Interval(0, 0.5).is_proper_subset(Interval(0, 1))
True
>>> Interval(0, 1).is_proper_subset(Interval(0, 1))
False
```

is_proper_superset (other)
Returns True if 'self' is a proper superset of 'other'.

Examples

```
>>> Interval(0, 1).is_proper_superset(Interval(0, 0.5))
True
>>> Interval(0, 1).is_proper_superset(Interval(0, 1))
False
```

is_subset (other)

Returns True if 'self' is a subset of 'other'.

Examples

```
>>> Interval(0, 0.5).is_subset(Interval(0, 1))
True
>>> Interval(0, 1).is_subset(Interval(0, 1, left_open=True))
False
```


is_superset (other)

Returns True if 'self' is a superset of 'other'.

Examples

```
>>> Interval(0, 0.5).is_superset(Interval(0, 1))
False
>>> Interval(0, 1).is_superset(Interval(0, 1, left_open=True))
True
```


isdisjoint (other)

Alias for is_disjoint() (page 666).

issubset (other)

Alias for is_subset() (page 667).

Diofant Documentation, Release 0.13.0

issuperset (other)
Alias for is_superset() (page 667).
property measure
The (Lebesgue) measure of 'self'

Examples

```
>>> Interval(0, 1).measure
1
>>> Union(Interval(0, 1), Interval(2, 3)).measure
2
```

powerset ()
Find the Power set of 'self'.

Examples

```
>>> A = EmptySet()
>>> A.powerset()
{EmptySet()}
>>> A = FiniteSet(1, 2)
>>> a, b, c = FiniteSet(1), FiniteSet(2), FiniteSet(1, 2)
>>> A.powerset() == FiniteSet(a, b, c, EmptySet())
True
```


References

- https://en.wikipedia.org/wiki/Power_set

property sup

The supremum of 'self'

Examples

```
>>> Interval(0, 1).sup
1
>>> Union(Interval(0, 1), Interval(2, 3)).sup
3
```

symmetric_difference(other)
Returns symmetric difference of self and other.

Examples

```
>>> Interval(1, 3).symmetric_difference(Reals)
(-00, 1) U (3, 00)
```


References

- https://en.wikipedia.org/wiki/Symmetric_difference
union (other)
Returns the union of 'self' and 'other'.

Examples

As a shortcut it is possible to use the ' + ' operator:

```
>>> Interval(0, 1).union(Interval(2, 3))
[0, 1] U [2, 3]
>>> Interval(0, 1) + Interval(2, 3)
[0, 1] U [2, 3]
>>> Interval(1, 2, True, True) + FiniteSet(2, 3)
(1, 2] U {3}
```

Similarly it is possible to use the '-' operator for set differences:

```
>>> Interval(0, 2) - Interval(0, 1)
(1, 2]
>>> Interval(1, 3) - FiniteSet(2)
[1, 2) U (2, 3]
```

diofant.sets.sets.imageset (*args)
Image of set under transformation f.
If this function can't compute the image, it returns an unevaluated ImageSet object.

$$
f(x) \mid x \in \operatorname{sel} f
$$

Examples

```
>>> imageset(x, 2*x, Interval(0, 2))
[0, 4]
```

>>> imageset(lambda x: 2*x, Interval(0, 2))
[0, 4]
>>> imageset(Lambda(x, sin(x)), Interval(-2, 1))
ImageSet(Lambda(x, sin(x)), [-2, 1])

See also:

diofant.sets.fancysets.ImageSet (page 677)

4.17.1 Elementary Sets

class diofant.sets.sets.Interval(start, end, left_open=False, right_open=False)
Represents a real interval as a Set.
Returns an interval with end points "start" and "end".
For left_open=True (default left_open is False) the interval will be open on the left. Similarly, for right_open=True the interval will be open on the right.

Examples

```
>>> Interval(0, 1)
[0, 1]
>>> Interval(0, 1, False, True)
[0, 1)
>>> Interval.Ropen(0, 1)
[0, 1)
>>> Interval.Lopen(0, 1)
(0, 1]
>>> Interval.open(0, 1)
(0, 1)
```

```
>>> a = Symbol('a', real=True)
>>> Interval(0, a)
[0, a]
```


Notes

- Only real end points are supported
- Interval(a, b) with $\mathrm{a}>\mathrm{b}$ will return the empty set
- Use the evalf() method to turn an Interval into an mpmath 'mpi' interval instance

References

- https://en.wikipedia.org/wiki/Interval_\(mathematics\)
classmethod Lopen (a, b)
Return an interval not including the left boundary.
classmethod Ropen (a, b)
Return an interval not including the right boundary.
as_relational (x)
Rewrite an interval in terms of inequalities and logic operators.
property end
The right end point of 'self'.
This property takes the same value as the 'sup' property.

Examples

>>> Interval(0, 1).end
1
property inf
The left end point of 'self'.
This property takes the same value as the 'inf' property.

Examples

```
>>> Interval(0, 1).start
0
```

property is_left_unbounded
Return True if the left endpoint is negative infinity.
property is_right_unbounded
Return True if the right endpoint is positive infinity.
property left
The left end point of 'self'.
This property takes the same value as the 'inf' property.

Examples

```
>>> Interval(0, 1).start
```

0
property left_open
True if 'self' is left-open.

Examples

```
>>> Interval(0, 1, left_open=True).left_open
true
>>> Interval(0, 1, left_open=False).left_open
false
```

classmethod open (a, b)
Return an interval including neither boundary.
property right
The right end point of 'self'.
This property takes the same value as the 'sup' property.

Diofant Documentation, Release 0.13.0

Examples

>>> Interval(0, 1).end
1
property right_open
True if 'self' is right-open.

Examples

```
>>> Interval(0, 1, right_open=True).right_open
true
>>> Interval(0, 1, right_open=False).right_open
false
```

property start
The left end point of 'self'.
This property takes the same value as the 'inf' property.

Examples

```
>>> Interval(0, 1).start
0
```

property sup
The right end point of 'self'.
This property takes the same value as the 'sup' property.

Examples

```
>>> Interval(0, 1).end
```

1
class diofant.sets.sets.FiniteSet(*args, **kwargs)
Represents a finite set of discrete numbers

Examples

```
>>> FiniteSet(1, 2, 3, 4)
{1, 2, 3, 4}
>>> 3 in FiniteSet(1, 2, 3, 4)
True
```


References

- https://en.wikipedia.org/wiki/Finite_set
as_relational (symbol)
Rewrite a FiniteSet in terms of equalities and logic operators.

4.17.2 Compound Sets

class diofant.sets.sets.Union (*args, **kwargs)
Represents a union of sets as a Set (page 664).

Examples

```
>>> Union(Interval(1, 2), Interval(3, 4))
```

$[1,2]$ U [3, 4]

The Union constructor will always try to merge overlapping intervals, if possible. For example:

```
>>> Union(Interval(1, 2), Interval(2, 3))
[1, 3]
```


See also:

```
Intersection (page 673)
```


References

- https://en.wikipedia.org/wiki/Union_\(set_theory\)
as_relational(symbol)
Rewrite a Union in terms of equalities and logic operators.
static reduce(args)
Simplify a Union (page 673) using known rules
We first start with global rules like 'Merge all FiniteSets'
Then we iterate through all pairs and ask the constituent sets if they can simplify themselves with any other constituent
class diofant.sets.sets.Intersection (*args, **kwargs)
Represents an intersection of sets as a Set (page 664).

Examples

```
>>> Intersection(Interval(1, 3), Interval(2, 4))
[2, 3]
```

We often use the .intersect method

```
>>> Interval(1, 3).intersection(Interval(2, 4))
[2, 3]
```


See also:

Union (page 673)

References

- https://en.wikipedia.org/wiki/Intersection_\(set_theory\)
as_relational(symbol)
Rewrite an Intersection in terms of equalities and logic operators.
static reduce(args)
Simplify an intersection using known rules
We first start with global rules like 'if any empty sets return empty set' and 'distribute any unions'
Then we iterate through all pairs and ask the constituent sets if they can simplify themselves with any other constituent
class diofant.sets.sets.ProductSet(*sets, **assumptions)
Represents a Cartesian Product of Sets.
Returns a Cartesian product given several sets as either an iterable or individual arguments.

Can use '*' operator on any sets for convenient shorthand.

Examples

```
>>> I = Interval(0, 5)
>>> S = FiniteSet(1, 2, 3)
>>> ProductSet(I, S)
[0, 5] x {1, 2, 3}
```

>>> $(2,2)$ in ProductSet (I, S)
True

```
>>> Interval(0, 1) * Interval(0, 1) # The unit square
[0, 1] x [0, 1]
```

```
>>> H, T = Symbol('H'), Symbol('T')
>>> coin = FiniteSet(H, T)
>>> set(coin**2)
{(H, H), (H, T), (T, H), (T, T)}
```


Notes

- Passes most operations down to the argument sets
- Flattens Products of ProductSets

References

- https://en.wikipedia.org/wiki/Cartesian_product
class diofant.sets.sets.Complement (a, b, evaluate $=$ True)
Represents relative complement of a set with another set.
$A-B=\{x \in A \mid x \notin B\}$

Examples

```
>>> Complement(FiniteSet(0, 1, 2), FiniteSet(1))
{0, 2}
```


See also:

Intersection (page 673), Union (page 673)

References

- https://mathworld.wolfram.com/ComplementSet.html
static reduce (A, B)
Simplify a Complement (page 675).

4.17.3 Singleton Sets

class diofant.sets.sets.EmptySet(*args, **kwargs)
Represents the empty set.
The empty set is available as a singleton as S.EmptySet.

Examples

```
>>> S.EmptySet
```

EmptySet()

```
>>> Interval(1, 2).intersection(S.EmptySet)
EmptySet()
```


See also:

```
UniversalSet (page 676)
```


References

- https://en.wikipedia.org/wiki/Empty_set
class diofant.sets.sets.UniversalSet (*args, **kwargs)
Represents the set of all things.
The universal set is available as a singleton as S.UniversalSet

Examples

```
>>> S.UniversalSet
UniversalSet()
```

>>> Interval(1, 2).intersection(S.UniversalSet)
[1, 2]

See also:

EmptySet (page 675)

References

- https://en.wikipedia.org/wiki/Universal_set

4.17.4 Special Sets

Special sets.

```
class diofant.sets.fancysets.Naturals(*args,**kwargs)
```

The set of natural numbers.
Represents the natural numbers (or counting numbers) which are all positive integers starting from 1. This set is also available as the Singleton, S.Naturals.

Examples

```
>>> 5 in S.Naturals
True
>>> iterable = iter(S.Naturals)
>>> next(iterable)
1
>>> next(iterable)
2
>>> next(iterable)
3
>>> S.Naturals.intersection(Interval(0, 10))
Range(1, 11, 1)
```


See also:

Naturals0 (page 677) non-negative integers
Integers (page 677) also includes negative integers
class diofant.sets.fancysets.Naturals0(*args, **kwargs)
The set of natural numbers, starting from 0 .
Represents the whole numbers which are all the non-negative integers, inclusive of zero.
See also:
Naturals (page 676) positive integers
Integers (page 677) also includes the negative integers
class diofant.sets.fancysets.Integers(*args, **kwargs)
The set of all integers.
Represents all integers: positive, negative and zero. This set is also available as the Singleton, S.Integers.

Examples

```
>>> 5 in S.Naturals
True
>>> iterable = iter(S.Integers)
>>> next(iterable)
0
>>> next(iterable)
1
>>> next(iterable)
-1
>>> next(iterable)
2
```

>>> S.Integers.intersection(Interval(-4, 4))
Range(-4, 5, 1)

See also:

Naturals0 (page 677) non-negative integers
Integers (page 677) positive and negative integers and zero
class diofant.sets.fancysets.Rationals(*args, **kwargs)
The set of all rationals.
class diofant.sets.fancysets.ImageSet(lamda, base_set)
Image of a set under a mathematical function.

Examples

```
>>> squares = ImageSet(Lambda(x, x**2), S.Naturals)
>>> 4 in squares
True
>>> 5 in squares
False
```

```
>>> FiniteSet(0, 1, 2, 3, 4, 5, 6, 7, 9, 10).intersection(squares)
{1, 4, 9}
```

```
>>> square iterable = iter(squares)
>>> for i in range(4):
#". next(square_iterable)
1
4
9
16
```

If you want to get value for $x=2,1 / 2$ etc. (Please check whether the x value is in bases $e t$ or not before passing it as args)

```
>>> squares.lamda(2)
4
>>> squares.lamda(Rational(1, 2))
1/4
```

class diofant.sets.fancysets.Range(*args)
Represents a range of integers.

Examples

```
>>> list(Range(5))
[0, 1, 2, 3, 4]
>>> list(Range(10, 15))
[10, 11, 12, 13, 14]
>>> list(Range(10, 20, 2))
[10, 12, 14, 16, 18]
>>> list(Range(20, 10, -2))
[12, 14, 16, 18, 20]
```

class diofant.sets.fancysets.ExtendedReals(*args, **kwargs)
The set of all extended reals.
class diofant.sets.fancysets.Reals(*args, **kwargs)
The set of all reals.

4.18 Simplify

4.18.1 simplify

diofant.simplify.simplify.simplify (expr, ratio=1.7, measure $=<$ function count_ops>, fu=False)
Simplifies the given expression.
Simplification is not a well defined term and the exact strategies this function tries can change in the future versions of Diofant. If your algorithm relies on "simplification" (whatever it is), try to determine what you need exactly - is it powsimp()?, radsimp()?, together()?, logcombine()?, or something else? And use this particular function directly, because those are well defined and thus your algorithm will be robust.

Nonetheless, especially for interactive use, or when you don't know anything about the structure of the expression, simplify() tries to apply intelligent heuristics to make the input expression "simpler". For example:

```
>>> a = (x + x**2)/(x*sin(y)**2 + x* cos(y)**2)
>>> a
(x**2 + x)/(x*sin(y)**2 + x* cos(y)**2)
>>> simplify(a)
x + 1
```

Note that we could have obtained the same result by using specific simplification functions:

```
>>> trigsimp(a)
(x**2 + x)/x
>>> cancel(_)
x + 1
```

In some cases, applying simplify() (page 678) may actually result in some more complicated expression. The default ratio $=1.7$ prevents more extreme cases: if (result length)/(input length) > ratio, then input is returned unmodified. The measure parameter lets you specify the function used to determine how complex an expression is. The function should take a single argument as an expression and return a number such that if expression a is more complex than expression b, then measure (a) > measure(b). The default measure function is count_ops() (page 138), which returns the total number of operations in the expression.
For example, if ratio=1, simplify output can't be longer than input.

```
>>> root = 1/(sqrt(2)+3)
```

Since simplify(root) would result in a slightly longer expression, root is returned unchanged instead:

```
>>> simplify(root, ratio=1) == root
True
```

If ratio=oo, simplify will be applied anyway:

```
>>> count_ops(simplify(root, ratio=oo)) > count_ops(root)
True
```

Note that the shortest expression is not necessary the simplest, so setting ratio to 1 may not be a good idea. Heuristically, the default value ratio $=1.7$ seems like a reasonable choice.

You can easily define your own measure function based on what you feel should represent the "size" or "complexity" of the input expression. Note that some choices, such as lambda expr: len(str(expr)) may appear to be good metrics, but have other problems (in this case, the measure function may slow down simplify too much for very large expressions). If you don't know what a good metric would be, the default, count_ops, is a good one.

For example:

```
>>> a, b = symbols('a b', positive=True, real=True)
>>> g = log(a) + log(b) + log(a)*log(1/b)
>>> h = simplify(g)
>>> h
log(a*b**(-log(a) + 1))
>>> count_ops(g)
8
>>> count_ops(h)
5
```

So you can see that h is simpler than g using the count_ops metric. However, we may not like how simplify (in this case, using logcombine) has created the $b^{* *}(\log (1 / a)+1)$ term. A simple way to reduce this would be to give more weight to powers as operations in count_ops. We can do this by using the visual=True option:

```
>>> print(count_ops(g, visual=True))
2*ADD + DIV + 4*LOG + MUL
>>> print(count_ops(h, visual=True))
2*LOG + MUL + PO\overline{W + SUB}
```

```
>>> def my_measure(expr):
... # D
... count = count_ops(expr, visual=True).subs({'POW': 10})
... # Every other-operation gets a weight of 1 (the default)
#. count = count.replace(Symbol, type(Integer(1)))
#.. return count
>>> my_measure(g)
8
>>> my_measure(h)
14
>>> 15./8 > 1.7 # 1.7 is the default ratio
True
>>> simplify(g, measure=my measure)
-log(a)*log(b) + log(a) + log(b)
```

Note that because simplify() internally tries many different simplification strategies and then compares them using the measure function, we get a completely different result that is still different from the input expression by doing this.

4.18.2 separatevars

diofant.simplify.simplify.separatevars(expr, symbols=[], dict=False, force=False) Separates variables in an expression, if possible. By default, it separates with respect to all symbols in an expression and collects constant coefficients that are independent of symbols.
If dict=True then the separated terms will be returned in a dictionary keyed to their corresponding symbols. By default, all symbols in the expression will appear as keys; if symbols are provided, then all those symbols will be used as keys, and any terms in the expression containing other symbols or non-symbols will be returned keyed to the string 'coeff'. (Passing None for symbols will return the expression in a dictionary keyed to 'coeff'.)
If force=True, then bases of powers will be separated regardless of assumptions on the symbols involved.

Notes

The order of the factors is determined by Mul, so that the separated expressions may not necessarily be grouped together.

Although factoring is necessary to separate variables in some expressions, it is not necessary in all cases, so one should not count on the returned factors being factored.

Examples

```
>>> from diofant.abc import alpha
>>> separatevars((x*y)**y)
(x*y)**y
>>> separatevars((x*y)**y, force=True)
x**y*y**y
```

```
>>> e = 2*x**2*z*sin(y)+2*z*x**2
>>> separatevars(e)
2*x**2*z*(sin(y) + 1)
>>> separatevars(e, symbols=(x, y), dict=True)
{'coeff': 2*z, x: x**2, y: sin(y) + 1}
>>> separatevars(e, [x, y, alpha], dict=True)
{'coeff': 2*z, alpha: 1, x: x**2, y: sin(y) + 1}
```

If the expression is not really separable, or is only partially separable, separatevars will do the best it can to separate it by using factoring.

```
>>> separatevars(x + x*y - 3*x**2)
-x*(3*x - y - 1)
```

If the expression is not separable then expr is returned unchanged or (if dict=True) then None is returned.

```
>>> eq = 2*x + y*sin(x)
>>> separatevars(eq) == eq
True
>>> separatevars(2*x + y*sin(x), symbols=(x, y), dict=True) is None
True
```


4.18.3 nthroot

diofant.simplify.simplify.nthroot(expr, n, max_len=4, prec=15)
Compute a real nth-root of a sum of surds.

Parameters

- expr (sum of surds)
- n (integer)
- max_len (maximum number of surds passed as constants to nsimplify)

Notes

First nsimplify is used to get a candidate root; if it is not a root the minimal polynomial is computed; the answer is one of its roots.

Examples

```
>>> nthroot(90 + 34*sqrt(7), 3)
```

sqrt(7) + 3

4.18.4 besselsimp

diofant.simplify.simplify.besselsimp (expr)
Simplify bessel-type functions.
This routine tries to simplify bessel-type functions. Currently it only works on the Bessel J and I functions, however. It works by looking at all such functions in turn, and eliminating factors of "I" and "-1" (actually their polar equivalents) in front of the argument. Then, functions of half-integer order are rewritten using trigonometric functions and functions of integer order (>1) are rewritten using functions of low order. Finally, if the expression was changed, compute factorization of the result with factor().

```
>>> from diofant.abc import nu
>>> besselsimp(besselj(nu, z*polar_lift(-1)))
E**(I*pi*nu)*besselj(nu, z)
>>> besselsimp(besseli(nu, z*polar_lift(-I)))
E**(-I*pi*nu/2)*besselj(nu, z)
>>> besselsimp(besseli(Rational(-1, 2), z))
sqrt(2)*cosh(z)/(sqrt(pi)*sqrt(z))
>>> besselsimp(z*besseli(0, z) + z*(besseli(2, z))/2 + besseli(1, z))
3*z*besseli(0, z)/2
```


4.18.5 hypersimp

diofant.simplify.simplify.hypersimp(f, k)
Given combinatorial term $f(k)$ simplify its consecutive term ratio i.e. $f(k+1) / f(k)$. The input term can be composed of functions and integer sequences which have equivalent representation in terms of gamma special function.

Notes

The algorithm performs three basic steps:

1. Rewrite all functions in terms of gamma, if possible.
2. Rewrite all occurrences of gamma in terms of products
of gamma and rising factorial with integer, absolute constant exponent.
3. Perform simplification of nested fractions, powers
and if the resulting expression is a quotient of polynomials, reduce their total degree.

If $f(k)$ is hypergeometric then as result we arrive with a quotient of polynomials of minimal degree. Otherwise None is returned.

References

- W. Koepf, Algorithms for m-fold Hypergeometric Summation, Journal
of Symbolic Computation (1995) 20, 399-417

4.18.6 hypersimilar

diofant.simplify.simplify.hypersimilar (f, g, k)
Returns True if ' f ' and ' g ' are hyper-similar.
Similarity in hypergeometric sense means that a quotient of $f(k)$ and $g(k)$ is a rational function in k . This procedure is useful in solving recurrence relations.

See also:

hypersimp (page 682)

4.18.7 nsimplify

diofant.simplify.simplify.nsimplify (expr, constants=[], tolerance $=$ None, full=False, rational=None)
Find a simple representation for a number or, if there are free symbols or if rational=True, then replace Floats with their Rational equivalents. If no change is made and rational is not False then Floats will at least be converted to Rationals.
For numerical expressions, a simple formula that numerically matches the given numerical expression is sought (and the input should be possible to evalf to a precision of at least 30 digits).
Optionally, a list of (rationally independent) constants to include in the formula may be given.
A lower tolerance may be set to find less exact matches. If no tolerance is given then the least precise value will set the tolerance (e.g. Floats default to 15 digits of precision, so would be tolerance $=10^{* *}-15$).
With full=True, a more extensive search is performed (this is useful to find simpler numbers when the tolerance is set low).

Examples

```
>>> nsimplify(4/(1+sqrt(5)), [GoldenRatio])
-2 + 2*GoldenRatio
>>> nsimplify((1/(exp(3*pi*I/5)+1)))
1/2 - I*sqrt(sqrt(5)/10 + 1/4)
>>> nsimplify(I**I, [pi])
E**(-pi/2)
>>> nsimplify(pi, tolerance=0.01)
22/7
```


See also:

diofant. core.function.nfloat (page 142)

4.18.8 posify

diofant.simplify.simplify.posify(eq)
Return eq (with generic symbols made positive) and a dictionary containing the mapping between the old and new symbols.
Any symbol that has positive=None will be replaced with a positive dummy symbol having the same name. This replacement will allow more symbolic processing of expressions, especially those involving powers and logarithms.
A dictionary that can be sent to subs to restore eq to its original symbols is also returned.

```
>>> posify(x + Symbol('p', positive=True) + Symbol('n', negative=True))
(n + p + _x, {_x: x})
```

```
>>> eq = 1/x
>>> log(eq).expand()
log(1/x)
>>> log(posify(eq)[0]).expand()
-log(_x)
>>> p, rep = posify(eq)
>>> log(p).expand().subs(rep)
-log(x)
```

It is possible to apply the same transformations to an iterable of expressions:

```
>>> eq = x**2 - 4
>>> solve(eq, x)
[{x: -2}, {x: 2}]
>>> eq_x, reps = posify([eq, x])
>>> eq_x
[_x**2-- 4, _x]
>>> solve(*e\overline{q_x})
[{_x: 2}]
```


4.18.9 logcombine

diofant.simplify.simplify.logcombine (expr, force=False)

Takes logarithms and combines them using the following rules:

- $\log (\mathrm{x})+\log (\mathrm{y})==\log \left(\mathrm{x}^{*} \mathrm{y}\right)$ if both are not negative
- $\mathrm{a}^{*} \log (\mathrm{x})==\log \left(\mathrm{x}^{* *} \mathrm{a}\right)$ if x is positive and a is real

If force is True then the assumptions above will be assumed to hold if there is no assumption already in place on a quantity. For example, if a is imaginary or the argument negative, force will not perform a combination but if a is a symbol with no assumptions the change will take place.

Examples

```
>>> logcombine(a*log(x) + log(y) - log(z))
a*log(x) + log(y) - log(z)
>>> logcombine(a*\operatorname{log}(x) + log(y) - log(z), force=True)
log(x**a*y/z)
>>> x, y, z = symbols('x y z', positive=True)
>>> a = Symbol('a', real=True)
>>> logcombine(a*log(x) + log(y) - log(z))
log(x**a*y/z)
```

The transformation is limited to factors and/or terms that contain logs, so the result depends on the initial state of expansion:

```
>>> eq = (2 + 3*I)*log(x)
>>> logcombine(eq, force=True) == eq
True
>>> logcombine(eq.expand(), force=True)
log(x**2) + I* log(x**3)
```


See also:

posify (page 684) replace all symbols with symbols having positive assumptions

4.18.10 Radsimp

radsimp

diofant.simplify.radsimp. radsimp (expr, symbolic=True, max_terms=4)
Rationalize the denominator by removing square roots.
Note: the expression returned from radsimp must be used with caution since if the denominator contains symbols, it will be possible to make substitutions that violate the assumptions of the simplification process: that for a denominator matching a +b *sqrt(c), a $!=+/-b^{*}$ sqrt(c). (If there are no symbols, this assumptions is made valid by collecting terms of sqrt(c) so the match variable a does not contain sqrt(c).) If you do not want the simplification to occur for symbolic denominators, set symbolic to False.
If there are more than max_terms radical terms then the expression is returned unchanged.

Examples

```
>>> radsimp(1/(I + 1))
(1 - I)/2
>>> radsimp(1/(2 + sqrt(2)))
(-sqrt(2) + 2)/2
>>> e = ((2 + 2*sqrt(2))*x + (2 + sqrt(8))*y)/(2 + sqrt(2))
>>> radsimp(e)
sqrt(2)*(x + y)
```

No simplification beyond removal of the gcd is done. One might want to polish the result a little, however, by collecting square root terms:

```
>>> r2 = sqrt(2)
>>> r5 = sqrt(5)
>>> ans = radsimp(1/(y*r2 + x*r2 + a*r5 + b*r5))
>>> pprint(ans, use_unicode=False)
    \/\
-----------------------------------------
    2 2 2 2
5*a + 10*a*b + 5*b - 2*x - 4*x*y - 2*y
```

```
>>> n, d = fraction(ans)
>>> pprint(factor_terms(signsimp(collect_sqrt(n))/d, radical=True),
... use_unícode=False)
    \/5}*(a+b)-\/\overline{2}*(x+y
-----------------------------------------
    2 2 2 2
5*a + 10*a*b + 5*b - 2*x - 4*x*y - 2*y
```

If radicals in the denominator cannot be removed or there is no denominator, the original expression will be returned.

```
>>> radsimp(sqrt(2)*x + sqrt(2))
sqrt(2)*x + sqrt(2)
```

Results with symbols will not always be valid for all substitutions:

```
>>> eq = l/(a + b*sqrt(c))
>>> eq.subs({a: b*sqrt(c)})
1/(2*b*sqrt(c))
>>> radsimp(eq).subs({a: b*sqrt(c)})
nan
```

If symbolic=False, symbolic denominators will not be transformed (but numeric denominators will still be processed):

```
>>> radsimp(eq, symbolic=False)
1/(a + b*sqrt(c))
```


rad_rationalize

diofant.simplify.radsimp.rad_rationalize(num, den)
Rationalize num/den by removing square roots in the denominator; num and den are sum of terms whose squares are rationals

Examples

```
>>> rad_rationalize(sqrt(3), 1 + sqrt(2)/3)
(-sqrt(3) + sqrt(6)/3, -7/9)
```


collect

diofant.simplify.radsimp.collect(expr, syms, func=None, evaluate=True, exact=False, distribute_order_term=True)
Collect additive terms of an expression.
This function collects additive terms of an expression with respect to a list of expression up to powers with rational exponents. By the term symbol here are meant arbitrary expressions, which can contain powers, products, sums etc. In other words symbol is a pattern which will be searched for in the expression's terms.

The input expression is not expanded by collect() (page 687), so user is expected to provide an expression is an appropriate form (for example, by using expand () (page 133) prior to calling this function). This makes collect() (page 687) more predictable as there is no magic happening behind the scenes. However, it is important to note, that powers of products are converted to products of powers using the expand_power_base() (page 141) function.

Parameters

- expr (Expr) - an expression
- syms (iterable of Symbol's) - collected symbols
- evaluate (boolean) - First, if evaluate flag is set (by default), this function will return an expression with collected terms else it will return a dictionary with expressions up to rational powers as keys and collected coefficients as values.

Examples

This function can collect symbolic coefficients in polynomials or rational expressions. It will manage to find all integer or rational powers of collection variable:

```
>>> collect(a* (**2 + b* (x*2 + a*x - b*x + c, x)
c + x**2*}(a+b)+\mp@subsup{x}{}{*}(a-b
```

The same result can be achieved in dictionary form:

```
>>> d = collect(a*x**2 + b*x**2 + a*x - b*x + c, x, evaluate=False)
>>> d[x**2]
a + b
>>> d[x]
a - b
>>> d[1]
C
```

You can also work with multivariate polynomials. However, remember that this function is greedy so it will care only about a single symbol at time, in specification order:

```
>>> collect(x**2 + y*x**2 + x*y + y + a*y, [x, y])
x**2*(y + 1) + x*y + y*(a + 1)
```

Also more complicated expressions can be used as patterns:

```
>>> collect(a*sin(2*x) + b*sin(2*x), sin(2*x))
(a + b)*sin(2*x)
```

```
>>> collect(a***}\operatorname{log}(x)+\mp@subsup{b}{}{*}(\mp@subsup{x}{}{*}\operatorname{log}(x)), x*\operatorname{log}(x)
x*(a + b)*log(x)
```

You can use wildcards in the pattern:

```
>>> w = Wild('w1')
>>> collect(a*x**y - b*x**y, w**y)
x**y*(a - b)
```

It is also possible to work with symbolic powers, although it has more complicated behavior, because in this case power's base and symbolic part of the exponent are treated as a single symbol:

```
>>> collect(a*x**c + b*x**c, x)
a*x**c + b*x**c
>>> collect(a*x**c + b*x** c, x** c)
x**C*(a + b)
```

However if you incorporate rationals to the exponents, then you will get well known behavior:

```
>>> collect(a*x**(2*c) + b*x**(2*c), x**c)
x**(2*C)*(a + b)
```

Note also that all previously stated facts about collect() (page 687) function apply to the exponential function, so you can get:

```
>>> collect(a*exp(2*x) + b*exp(2*x), exp(x))
E**(2*x)*(a + b)
```

If you are interested only in collecting specific powers of some symbols then set exact flag in arguments:

```
>>> collect(a*x**7 + b*x**7, x, exact=True)
a*x**7 + b*x**7
>>> collect(a*x**7 + b*x**7, x**7, exact=True)
x**7*(a + b)
```

You can also apply this function to differential equations, where derivatives of arbitrary order can be collected. Note that if you collect with respect to a function or a derivative of a function, all derivatives of that function will also be collected. Use exact=True to prevent this from happening:

```
>>> f = f(x)
```

```
>>> collect(a*Derivative(f, x) + b*Derivative(f, x), Derivative(f, x))
(a + b)*Derivative(f(x), x)
```

```
>>> collect(a*Derivative(f, (x, 2)) + b*Derivative(f, (x, 2)), f)
```

($\mathrm{a}+\mathrm{b}$)*Derivative(f(x), x, x)
>>> collect(a*Derivative(f, (x, 2)) + b*Derivative(f, (x, 2)),
... Derivative(f, x), exact=True)
a*Derivative($\left.f(x), x, x)^{\prime}+b^{*} \operatorname{Derivative(f(x),~} x, x\right)$
>>> collect(a*Derivative(f, $x)+b * \operatorname{Derivative(f,~} x)+a * f+b * f, f)$
$\mathrm{f}(\mathrm{x}) *(\mathrm{a}+\mathrm{b})+(\mathrm{a}+\mathrm{b}) * \operatorname{Derivative}(\mathrm{f}(\mathrm{x}), \mathrm{x})$

Or you can even match both derivative order and exponent at the same time:

```
>>> collect(a*Derivative(f, (x, 2))**2 + b*Derivative(f, (x, 2))**2,
#.. Derivative(f, x))
(a + b)*Derivative(f(x), x, x)**2
```

Finally, you can apply a function to each of the collected coefficients. For example you can factorize symbolic coefficients of polynomial:

```
>>> f = expand((x + a + 1)**3)
```

>>> collect(f, x, factor)
$x^{* * 3}+33^{*} x^{* *} 2^{*}(a+1)+3 * x^{*}(a+1) * * 2+(a+1) * * 3$

See also:

```
collect_const (page 690), collect_sqrt (page 689), rcollect (page 689)
```

diofant.simplify.radsimp.rcollect(expr, *vars)

Recursively collect sums in an expression.

Examples

```
>>> expr = (x**2*y + x*y + x + y)/(x + y)
```

```
>>> rcollect(expr, y)
(x + y* (x**2 + x + 1))/(x + y)
```


See also:

collect (page 687), collect_const (page 690), collect_sqrt (page 689)

collect_sqrt

diofant.simplify.radsimp.collect_sqrt (expr, evaluate=True)
Return expr with terms having common square roots collected together. If evaluate is False a count indicating the number of sqrt-containing terms will be returned and, if non-zero, the terms of the Add will be returned, else the expression itself will be returned as a single term. If evaluate is True, the expression with any collected terms will be returned.

Note: since I = sqrt(-1), it is collected, too.

Examples

```
>>> r2, r3, r5 = [sqrt(i) for i in [2, 3, 5]]
>>> collect_sqrt(a*r2 + b*r2)
sqrt(2)*(a + b)
>>> collect_sqrt(a*r2 + b*r2 + a*r3 + b*r3)
sqrt(2)*(a + b) + sqrt(3)*(a + b)
>>> collect_sqrt(a*r2 + b*r2 + a*r3 + b*r5)
sqrt(3)*a + sqrt(5)*b + sqrt(2)*(a + b)
```

If evaluate is False then the arguments will be sorted and returned as a list and a count of the number of sqrt-containing terms will be returned:

```
>>> collect_sqrt(a*r2 + b*r2 + a*r3 + b*r5, evaluate=False)
((sqrt(3)*a, sqrt(5)*b, sqrt(2)*(a + b)), 3)
>>> collect sqrt(a*sqrt(2) + b, evaluate=False)
((b, sqrt(2)*a), 1)
>>> collect_sqrt(a + b, evaluate=False)
((a + b,), \overline{0})
```


See also:

collect (page 687), collect_const (page 690), rcollect (page 689)

collect_const

diofant.simplify. radsimp.collect_const (expr, *vars, **kwargs)
A non-greedy collection of terms with similar number coefficients in an Add expr. If vars is given then only those constants will be targeted. Although any Number can also be targeted, if this is not desired set Numbers=False and no Float or Rational will be collected.

Examples

```
>>> from diofant.abc import s
>>> collect_const(sqrt(3) + sqrt(3)*(1 + sqrt(2)))
sqrt(3)*(sqry(2) + 2)
>>> collect_const(sqrt(3)*s + sqrt(7)*s + sqrt(3) + sqrt(7))
(sqrt(3) + sqrt(7))*(s + 1)
>>> s = sqrt(2) + 2
>>> collect_const(sqrt(3)*s + sqrt(3) + sqrt(7)*s + sqrt(7))
(sqrt(2) + \overline{3)*(sqrt(3) + sqrt(7))}
>>> collect_const(sqrt(3)*s + sqrt(3) + sqrt(7)*s + sqrt(7), sqrt(3))
sqrt(7) + sq\overline{rt}(3)*(sqrt(2) + 3) + sqrt(7)*(sqrt(2) + 2)
```

The collection is sign-sensitive, giving higher precedence to the unsigned values:

```
>>> collect_const(x - y - z)
x - (y + z)
>>> collect_const(-y - z)
-(y + z)
>>> collect_const(2*x - 2*y - 2*z, 2)
2*(x - y - \overline{z}
>>> collect_const(2*x - 2*y - 2*z, -2)
2*x - 2*(y + z)
```


See also:

collect (page 687), collect_sqrt (page 689), rcollect (page 689)

fraction

diofant.simplify.radsimp.fraction(expr, exact=False)
Returns a pair with expression's numerator and denominator.
If the given expression is not a fraction then this function will return the tuple (expr, 1).
This function will not make any attempt to simplify nested fractions or to do any term rewriting at all.
If only one of the numerator/denominator pair is needed then use numer(expr) or denom(expr) functions respectively.

```
>>> fraction(x/y)
(x, y)
>> fraction(x)
(x, 1)
```

>>> fraction(1/y**2)
(1, $\mathrm{y}^{* * 2)}$

```
>>> fraction(x*y/2)
(x*y, 2)
>>> fraction(Rational(1, 2))
(1, 2)
```

This function will also work fine with assumptions:

```
>>> k = Symbol('k', negative=True)
>>> fraction(x * y**k)
(x, y**(-k))
```

If we know nothing about sign of some exponent and 'exact' flag is unset, then structure this exponent's structure will be analyzed and pretty fraction will be returned:

```
>>> fraction(2*x**(-y))
(2, x**y)
```

>>> fraction(exp(-x))
(1, E**x)
>>> fraction(exp(-x), exact=True)
($\mathrm{E}^{* *}(-\mathrm{x}), 1$)

4.18.11 Ratsimp

ratsimp
diofant.simplify.ratsimp.ratsimp (expr)
Put an expression over a common denominator, cancel and reduce.

Examples

```
>>> ratsimp(1/x + 1/y)
```

$(x+y) /\left(x^{*} y\right)$

4.18.12 Trigonometric simplification

trigsimp

diofant.simplify.trigsimp.trigsimp(expr, **opts)
Reduces expression by using known trig identities.

Notes

method: - Determine the method to use. Valid choices are 'matching' (default), 'groebner', 'combined', and 'fu'. If 'matching', simplify the expression recursively by targeting common patterns. If 'groebner', apply an experimental groebner basis algorithm. In this case further options are forwarded to trigsimp_groebner, please refer to its docstring. If 'combined', first run the groebner basis algorithm with small default parameters, then run the 'matching' algorithm. 'fu' runs the collection of trigonometric transformations described by Fu, et al.

Examples

```
>> e = 2*sin(x)**2 + 2* cos(x)**2
>> trigsimp(e)
2
```

Simplification occurs wherever trigonometric functions are located.

```
>>> trigsimp(log(e))
log(2)
```

Using method = "groebner" (or "combined") might lead to greater simplification.
The old trigsimp routine can be accessed as with method 'old'.

```
>>> t = 3*tanh(x)**7 - 2/coth(x)**7
>>> trigsimp(t, method='old') == t
True
>>> trigsimp(t)
tanh(x)**7
```


See also:

```
diofant.simplify.fu.fu(page 693)
```


futrig

diofant.simplify.trigsimp.futrig(e, **kwargs)
Return simplified e using Fu-like transformations. This is not the "Fu" algorithm. This is called by default from trigsimp. By default, hyperbolics subexpressions will be simplified, but this can be disabled by setting hyper=False.

Examples

```
>>> trigsimp(1/tan(x)**2)
```

$\tan (\mathrm{x})^{* *}(-2)$

```
>>> futrig(sinh(x)/tanh(x))
```

$\cosh (x)$
fu
diofant.simplify.fu.fu(rv, measure $=<$ function $<$ lambda \gg)
Attempt to simplify expression by using transformation rules given in the algorithm by Fu et al.
$f u()$ (page 693) will try to minimize the objective function measure. By default this first minimizes the number of trig terms and then minimizes the number of total operations.

Examples

```
>>> fu(sin(50)**2 + cos(50)**2 + sin(pi/6))
3/2
>>> fu(sqrt(6)*\operatorname{cos(x) + sqrt(2)*sin(x))}
2*sqrt(2)*sin(x + pi/3)
```

CTR1 example

```
>>> eq = sin(x)**4 - cos(y)**2 + sin(y)**2 + 2*cos(x)**2
>>> fu(eq)
cos(x)**4 - 2* cos(y)**2 + 2
```

CTR2 example

```
>>> fu(Rational(1, 2) - cos(2*x)/2)
sin(x)**2
```

CTR3 example

```
>>> fu(sin(a)*(cos(b) - sin(b)) + cos(a)*(sin(b) + cos(b)))
sqrt(2)*sin(a + b + pi/4)
```

CTR4 example

```
>>> fu(sqrt(3)*\operatorname{cos(x)/2 + sin(x)/2)}
sin(x + pi/3)
```

Example 1

```
>>> fu(1-sin(2*x)**2/4-sin(y)**2-\operatorname{cos}(x)**4)
- cos(x)**2 + cos(y)**2
```

Example 2

```
>>> fu(cos(4*pi/9))
sin(pi/18)
>> fu(cos(pi/9)*cos(2*pi/9)*cos(3*pi/9)*cos(4*pi/9))
1/16
```


Example 3

```
>>> fu(tan(7*pi/18)+tan(5*pi/18)-sqrt(3)*tan(5*pi/18)*tan(7*pi/18))
-sqrt(3)
```

Objective function example

```
>>> fu(sin(x)/cos(x)) # default objective function
tan(x)
>>> fu(sin(x)/cos(x), measure=lambda x: -x.count_ops()) # maximize op count
sin(x)/\operatorname{cos(x)}
```


References

http://rfdz.ph-noe.ac.at/fileadmin/Mathematik_Uploads/ACDCA/
DES-
TIME2006/DES_contribs/Fu/simplification.pdf

4.18.13 Power simplification

powsimp

diofant.simplify.powsimp.powsimp(expr, deep=False, combine='all', force=False, measure=<function count_ops>)
Reduces expression by combining powers with similar bases and exponents.

Notes

If deep is True then powsimp() will also simplify arguments of functions. By default deep is set to False.
If force is True then bases will be combined without checking for assumptions, e.g. $\operatorname{sqrt}(\mathrm{x}) * \operatorname{sqrt}(\mathrm{y})->\operatorname{sqrt}\left(\mathrm{x}^{*} \mathrm{y}\right)$ which is not true if x and y are both negative.
You can make powsimp() only combine bases or only combine exponents by changing combine='base' or combine='exp'. By default, combine='all', which does both. combine='base' will only combine:

```
x a * y a}=> (x*y) a as well as things like 2 2x => 4 4 x
```

and combine='exp' will only combine

```
x a
```

combine='exp' will strictly only combine exponents in the way that used to be automatic. Also use deep=True if you need the old behavior.
When combine='all', 'exp' is evaluated first. Consider the first example below for when there could be an ambiguity relating to this. This is done so things like the second example can be completely combined. If you want 'base' combined first, do something like powsimp(powsimp(expr, combine='base'), combine='exp').

Examples

```
>>> powsimp(x**y*x**z*y**z, combine='all')
x**(y + z)*y**z
>>> powsimp(x**y*x**z*y**z, combine='exp')
x**(y + z)*y**z
>>> powsimp(x**y*x**z*y**z, combine='base', force=True)
x** y* (x*y)**z
```

```
>>> powsimp(x**z****y*n**z*n**y, combine='all', force=True)
(n*x)**(y + z)
>>> powsimp(x**z*x**y*n**z*n**y, combine='exp')
n**(y + z)****(y + z)
>>> powsimp(x** z*x**y*n**z*n**y, combine='base', force=True)
(n*x)**y*(n*x)**z
```

```
>>> x, y = symbols('x y', positive=True)
>>> powsimp(log(exp(x)*exp(y)))
log(E**x*E**y)
>>> powsimp(log(exp(x)*exp(y)), deep=True)
x + y
```

Radicals with Mul bases will be combined if combine='exp'

```
>>> x, y = symbols('x y')
```

Two radicals are automatically joined through Mul:

```
>>> a = sqrt(x*sqrt(y))
>>> a*a**3 == a**4
True
```

But if an integer power of that radical has been autoexpanded then Mul does not join the resulting factors:

```
>>> a**4 # auto expands to a Mul, no longer a Pow
x**2*y
>>> *a # so Mul doesn't combine them
x**2*y*sqrt(x*sqrt(y))
>>> powsimp(_) # but powsimp will
(x*sqrt(y))*\overline{*}}(5/2
>>> powsimp(x*y*a) # but won't when doing so would violate assumptions
x*y*sqrt(x*sqrt(y))
```


powdenest

diofant.simplify.powsimp.powdenest(eq, force=False, polar=False)
Collect exponents on powers as assumptions allow.

Given (bb**e)**e, this can be simplified as follows:

- if bb is positive, or
- e is an integer, or
- |be| < 1 then this simplifies to $\mathrm{bb}^{* *}$ (be*e)

Given a product of powers raised to a power, (bb1**be1 * bb2**be2...)**e, simplification can be done as follows:

- if e is positive, the gcd of all bei can be joined with e;
- all non-negative bb can be separated from those that are negative and their gcd can be joined with e; autosimplification already handles this separation.
- integer factors from powers that have integers in the denominator of the exponent can be removed from any term and the gcd of such integers can be joined with e
Setting force to True will make symbols that are not explicitly negative behave as though they are positive, resulting in more denesting.
Setting polar to True will do simplifications on the Riemann surface of the logarithm, also resulting in more denestings.
When there are sums of logs in $\exp ()$ then a product of powers may be obtained e.g. $\exp \left(3^{*}(\log (a)+2 * \log (b))\right)->a^{* *} 3^{*} b^{* *} 6$.

Examples

```
>>> powdenest((x**(2*a/3))**(3*x))
(x**}(2*a/3))**(3*x
>>> powdenest(exp(3*x*log(2)))
2**(3*x)
```

Assumptions may prevent expansion:

```
>>> powdenest(sqrt(x**2))
sqrt(x**2)
```

>> $\mathrm{p}=$ symbols('p', positive=True)
>>> powdenest(sqrt($\left.p^{* * 2}\right)$)
p

No other expansion is done.

```
>>> i, j = symbols('i j', integer=True)
>>> powdenest((x**x)**(i + j)) # -X-> (x**x)**i* (x**x)**j
x**(x*(i + j))
```

But $\exp ()$ will be denested by moving all non-log terms outside of the function; this may result in the collapsing of the exp to a power with a different base:

```
>>> powdenest(exp(3*y*log(x)))
x**(3*y)
>>> powdenest(exp(y*(log(a) + log(b))))
(a*b)**y
>>> powdenest(exp(3*(log(a) + log(b))))
a**3*b**3
```

If assumptions allow, symbols can also be moved to the outermost exponent:

```
>>> i = Symbol('i', integer=True)
>>> powdenest(((x**(2*i))**(3*y))**x)
((x**(2*i))**(3*y))**x
>>> powdenest(((x**(2*i))**(3*y))**x, force=True)
x**(6*i*x*y)
```

>>> powdenest((($\left.\left.\left.x^{* *}(2 * a / 3)\right)^{* *}\left(3^{*} \mathrm{y} / \mathrm{i}\right)\right)^{* *} \mathrm{x}\right)$
(($\left.\left.x^{* *}\left(2^{*} \mathrm{a} / 3\right)\right)^{* *}\left(3^{*} \mathrm{y} / \mathrm{i}\right)\right)^{* *} \mathrm{x}$
$\ggg \operatorname{powdenest}\left(\left(x^{* *}\left(2^{*} \mathrm{i}\right)^{*} y^{* *}\left(4^{*} \mathrm{i}\right)\right)^{* *} \mathrm{z}\right.$, force=True)
$\left(x^{*} y^{* *} 2\right) * *(2 * i * z)$
>> n = Symbol('n', negative=True)
>>> powdenest((x**i)**y, force=True)
$x^{* *}\left(i^{*} y\right)$
>>> powdenest(($\mathrm{n} * * \mathrm{i})^{* *} \mathrm{x}$, force=True)
$\left(n^{* *} \mathrm{i}\right){ }^{* *} \mathrm{x}$

4.18.14 Combinatorial simplification

combsimp

diofant.simplify.combsimp.combsimp(expr)
Simplify combinatorial expressions.
This function takes as input an expression containing factorials, binomials, Pochhammer symbol and other "combinatorial" functions, and tries to minimize the number of those functions and reduce the size of their arguments.
The algorithm works by rewriting all combinatorial functions as expressions involving rising factorials (Pochhammer symbols) and applies recurrence relations and other transformations applicable to rising factorials, to reduce their arguments, possibly letting the resulting rising factorial to cancel. Rising factorials with the second argument being an integer are expanded into polynomial forms and finally all other rising factorial are rewritten in terms of more familiar functions. If the initial expression consisted of gamma functions alone, the result is expressed in terms of gamma functions. If the initial expression consists of gamma function with some other combinatorial, the result is expressed in terms of gamma functions.
If the result is expressed using gamma functions, the following three additional steps are performed:

1. Reduce the number of gammas by applying the reflection theorem gamma(x)*gamma(1-x) $==\mathrm{pi} / \sin \left(\mathrm{pi}^{*} \mathrm{x}\right)$.
2. Reduce the number of gammas by applying the multiplication theorem $\operatorname{gamma}(\mathrm{x})^{*} \operatorname{gamma}(\mathrm{x}+1 / \mathrm{n})^{*} . .{ }^{*} \operatorname{gamma}(\mathrm{x}+(\mathrm{n}-1) / \mathrm{n})=\mathrm{C}^{*} \operatorname{gamma}(\mathrm{n} * \mathrm{x})$.
3. Reduce the number of prefactors by absorbing them into gammas, where possible.

All transformation rules can be found (or was derived from) here:

1. http://functions.wolfram.com/GammaBetaErf/Pochhammer/17/01/02/
2. http://functions.wolfram.com/GammaBetaErf/Pochhammer/27/01/0005/

Examples

```
>>> combsimp(factorial(n)/factorial(n - 3))
n*(n - 2)*(n - 1)
>>> combsimp(binomial(n+1, k+1)/binomial(n, k))
(n+1)/(k + 1)
```


4.18.15 Square Root Denest

sqrtdenest

diofant.simplify.sqrtdenest.sqrtdenest (expr, max_iter=3)
Denests sqrts in an expression that contain other square roots if possible, otherwise returns the expr unchanged. This is based on the algorithms of [1].

Examples

```
>>> sqrtdenest(sqrt(5 + 2 * sqrt(6)))
```

sqrt(2) $+\operatorname{sqrt}(3)$

See also:

unrad (page 698)

References

- https://researcher.watson.ibm.com/researcher/files/us-fagin/symb85.pdf
- D. J. Jeffrey and A. D. Rich, 'Symplifying Square Roots of Square Roots by Denesting' (available at http://www.cybertester.com/data/denest.pdf)

unrad

diofant.simplify.sqrtdenest.unrad(eq, *syms, **flags)
Remove radicals with symbolic arguments and return (eq, cov), None or raise an error:
None is returned if there are no radicals to remove.
NotImplementedError is raised if there are radicals and they cannot be removed or if the relationship between the original symbols and the change of variable needed to rewrite the system as a polynomial cannot be solved.
Otherwise the tuple, (eq, cov), is returned where:

```
``eq``, ``cov``
    ``eq`` is an equation without radicals (in the symbol(s) of
    interest) whose solutions are a superset of the solutions to the
    original expression. '`eq`` might be re-written in terms of a new
    variable; the relationship to the original variables is given by
    ``cov`` which is a list containing ``v`` and ``v**p - b`` where
    ``p`` is the power needed to clear the radical and '`b"` is the
    radical now expressed as a polynomial in the symbols of interest.
    For example, for sqrt(2 - x) the tuple would be
    ``(c, c**2 - 2 + x)``. The solutions of ``eq`` will contain
    solutions to the original equation (if there are any).
```

syms an iterable of symbols which, if provided, will limit the focus of radical removal: only radicals with one or more of the symbols of interest will be cleared. All free symbols are used if syms is not set.
flags are used internally for communication during recursive calls. Two options are also recognized:

```
`take``, when defined, is interpreted as a single-argument function
that returns True if a given Pow should be handled.
```

Radicals can be removed from an expression if:

```
* all bases of the radicals are the same; a change of variables is
    done in this case.
    if all radicals appear in one term of the expression
    there are only 4 terms with sqrt() factors or there are less than
    four terms having sqrt() factors
    there are only two terms with radicals
```


Examples

```
>>> unrad(sqrt(x)*cbrt(x) + 2)
(x**5 - 64, [])
>>> unrad(sqrt(x) + root(x + 1, 3))
(x**3 - x**2 - 2*x - 1, [])
>>> eq = sqrt(x) + root(x, 3) - 2
>>> unrad(eq)
(_p**3 + _p**2 - 2, [_p, -x + _p**6])
```


4.18.16 Common Subexpresion Elimination

cse
diofant.simplify.cse_main.cse(exprs, symbols=None, optimizations=None, postprocess $=$ None, order='canonical', ignore $=())$
Perform common subexpression elimination on an expression.

Parameters

- exprs (list of diofant expressions, or a single diofant expression) - The expressions to reduce.
- symbols (infinite iterator yielding unique Symbols) - The symbols used to label the common subexpressions which are pulled out. The numbered symbols generator is useful. The default is a stream of symbols of the form " x 0 ", " x 1 ", etc. This must be an infinite iterator.
- optimizations (list of (callable, callable) pairs) - The (preprocessor, postprocessor) pairs of external optimization functions. Optionally 'basic' can be passed for a set of predefined basic optimizations. Such 'basic' optimizations were used by default in old implementation, however they can be really slow on larger expressions. Now, no pre or post optimizations are made by default.
- postprocess (a function which accepts the two return values of cse and) - returns the desired form of output from cse, e.g. if you want the replacements reversed the function might be the following lambda: lambda r, e: return reversed(r), e
- order (string, 'none' or 'canonical') - The order by which Mul and Add arguments are processed. If set to 'canonical', arguments will be canonically ordered. If set to 'none', ordering will be faster but dependent on expressions hashes, thus machine dependent and variable. For large expressions where speed is a concern, use the setting order='none'.
- ignore (iterable of Symbol's) - Substitutions containing these symbols will be ignored.

Returns

- replacements (list of (Symbol, expression) pairs) - All of the common subexpressions that were replaced. Subexpressions earlier in this list might show up in subexpressions later in this list.
- reduced_exprs (list of diofant expressions) - The reduced expressions with all of the replacements above.

Examples

```
>>> from diofant.abc import w
>>> cse(((w + x + y + z)*(w + y + z))/(w + x)**3)
([(x0, y + z), (x1,w + x)], [(w + x0)*(x0 + x1)/x1**3])
```

Note that currently, $\mathrm{y}+\mathrm{z}$ will not get substituted if $-\mathrm{y}-\mathrm{z}$ is used.

```
>>> cse(((w + x + y + z)*(w - y - z))/(w + x)**3)
([(x0, w + x)], [(w - y - z)*(x0 + y + z)/x0**3])
```

List of expressions with recursive substitutions:

```
>>> m = SparseMatrix([x + y, x + y + z])
>>> cse([(x+y)**2, x + y + z, y + z, x + z + y, m])
([(x0, x + y), (x1, x0 + z)], [x0**2, x1, y + z, x1, Matrix([
[x0],
[x1]])])
```

Note: the type and mutability of input matrices is retained.

```
>>> isinstance(_[1][-1], SparseMatrix)
True
```

The user may disallow substitutions containing certain symbols: >>> cse([y**2*(x+1), $\left.3 * y^{* *} 2 *(\mathrm{x}+1)\right]$, ignore $\left.=(\mathrm{y}),\right)\left([(\mathrm{x} 0, \mathrm{x}+1)],\left[\mathrm{x} 0 * \mathrm{y}^{* *} 2,3 * \mathrm{x} 0 * \mathrm{y}^{* *} 2\right]\right)$

```
opt_cse
```

diofant.simplify.cse_main.opt_cse(exprs, order='canonical')
Find optimization opportunities in Adds, Muls, Pows and negative coefficient Muls

Parameters

- exprs (list of diofant expressions) - The expressions to optimize.
- order (string, 'none' or 'canonical') - The order by which Mul and Add arguments are processed. For large expressions where speed is a concern, use the setting order='none'.
Returns opt_subs (dictionary of expression substitutions) - The expression substitutions which can be useful to optimize CSE.

Examples

```
>>> opt_subs = opt_cse([x**-2])
>>> opt_subs
{x**(-2): 1/(x**2)}
```

tree_cse
diofant.simplify.cse_main.tree_cse(exprs, symbols, opt_subs=\{\}, order='canonical',
ignore=())

Perform raw CSE on expression tree, taking opt_subs into account.

Parameters

- exprs (list of diofant expressions) - The expressions to reduce.
- symbols (infinite iterator yielding unique Symbols) - The symbols used to label the common subexpressions which are pulled out.
- opt_subs (dictionary of expression substitutions) - The expressions to be substituted before any CSE action is performed.
- order (string, 'none' or 'canonical') - The order by which Mul and Add arguments are processed. For large expressions where speed is a concern, use the setting order='none'.
- ignore (iterable of Symbol's) - Substitutions containing these symbols will be ignored.

4.18.17 Hypergeometric Function Expansion

hyperexpand

diofant.simplify.hyperexpand.hyperexpand(f, allow_hyper=False, rewrite='default', place $=$ None)
Expand hypergeometric functions. If allow_hyper is True, allow partial simplification (that is a result different from input, but still containing hypergeometric functions).
If a G-function has expansions both at zero and at infinity, place can be set to 0 or zoo to indicate the preferred choice.

Examples

```
>>> hyperexpand(hyper([], [], z))
E**z
```

Non-hyperegeometric parts of the expression and hypergeometric expressions that are not recognised are left unchanged:

```
>>> hyperexpand(1 + hyper([1, 1, 1], [], z))
hyper((1, 1, 1), (), z) + 1
```


4.18.18 Traversal Tools

use
diofant.simplify.traversaltools.use(expr, func, level $=0, \operatorname{args}=(), \operatorname{kwargs}=\{ \}$)
Use func to transform expr at the given level.

Examples

```
>>> f = (x + y)**2*x + 1
```

```
>>> use(f, expand, level=2)
x*(x**2 + 2*x*y + y**2) + 1
>>> expand(f)
x**3 + 2*x**2*y + x*y**2 + 1
```


4.18.19 EPath Tools

EPath class
class diofant.simplify.epathtools.EPath(path)
Manipulate expressions using paths.
EPath grammar in EBNF notation:

```
literal ::= /[A-Za-z_][A-Za-z_0-9]*/
number ::= /-?\d+/
type ::= literal
attribute ::= literal "?"
all ::= "*"
slice ::= "[" number? (":" number? (":" number?)?)? "]"
range ::= all | slice
query ::= (type | attribute) ("|" (type | attribute))*
selector ::= range | query range?
path ::= "/" selector ("/" selector)*
```


See also:

epath (page 704)
apply (expr, func, args=None, $k w a r g s=$ None $)$
Modify parts of an expression selected by a path.

Examples

```
>>> path = EPath('/*/[0]/Symbol')
>>> expr = [((x, 1), 2), ((3, y), z)]
```

>>> path.apply(expr, lambda expr: expr**2)
$\left[\left(\left(x^{* *} 2,1\right), 2\right),((3, y * * 2), z)\right]$

```
>>> path = EPath('/*/*/Symbol')
>>> expr = t + sin(x + 1) + cos(x + y + E)
```

```
>>> path.apply(expr, lambda expr: 2*expr)
t + sin(2*x + 1) + cos(2*x + 2*y + E)
```

select (expr)

Retrieve parts of an expression selected by a path.

Examples

```
>>> path = EPath('/*/[0]/Symbol')
>>> expr = [((x, 1), 2), ((3, y), z)]
```

```
>>> path.select(expr)
[x, y]
```

```
>>> path = EPath('/*/*/Symbol')
>> expr = t + sin (x+1) + cos(x + y + E)
```

```
>>> path.select(expr)
[x, x, y]
```

epath
diofant.simplify.epathtools.epath (path, expr=None, func=None, args=None, kwargs=None)
Manipulate parts of an expression selected by a path.
This function allows to manipulate large nested expressions in single line of code, utilizing techniques to those applied in XML processing standards (e.g. XPath).
If func is None, epath() (page 704) retrieves elements selected by the path. Otherwise it applies func to each matching element.
Note that it is more efficient to create an EPath object and use the select and apply methods of that object, since this will compile the path string only once. This function should only be used as a convenient shortcut for interactive use.
This is the supported syntax:

- select all: /* Equivalent of for arg in args:.
- select slice: /[0] or /[1:5] or /[1:5:2] Supports standard Python's slice syntax.
- select by type: /list or /list|tuple Emulates isinstance.
- select by attribute: /__iter__? Emulates hasattr.

Parameters

- path (str | EPath) - A path as a string or a compiled EPath.
- expr (Basic |iterable) - An expression or a container of expressions.
- func (callable (optional)) - A callable that will be applied to matching parts.
- args (tuple (optional)) - Additional positional arguments to func.
- kwargs (dict (optional)) - Additional keyword arguments to func.

Examples

```
>>> path = '/*/[0]/Symbol'
>>> expr = [((x, 1), 2), ((3, y), z)]
```

```
>>> epath(path, expr)
[x, y]
>>> epath(path, expr, lambda expr: expr**2)
[((x**2, 1), 2), ((3, y**2), z)]
```

```
>>> path = '/*/*/Symbol'
>>> expr = t + sin(x + 1) + cos(x + y + E)
```

```
>>> epath(path, expr)
[x, x, y]
>>> epath(path, expr, lambda expr: 2*expr)
t + sin(2*x + 1) + cos(2*x + 2*y + E)
```


4.19 Stats

Diofant statistics module
Introduces a random variable type into the Diofant language.
Random variables may be declared using prebuilt functions such as Normal, Exponential, Coin, Die, etc... or built with functions like FiniteRV.
Queries on random expressions can be made using the functions

Expression	Meaning
P(condition)	Probability
E(expression)	Expected value
variance(expression)	Variance
density(expression)	Probability Density Function
sample(expression)	Produce a realization
where(condition)	Where the condition is true

Examples

```
>>> from diofant.stats import P, E, variance, Die, Normal
>>> X, Y = Die('X', 6), Die('Y', 6) # Define two six sided dice
>>> Z = Normal('Z', 0, 1) # Declare a Normal random variable with mean 0, std 1
>>> P(X > 3) # Probability X is greater than 3
1/2
>>> E(X + Y) # Expectation of the sum of two dice
7
>>> variance(X + Y) # Variance of the sum of two dice
35/6
>>> simplify(P(Z > 1)) # Probability of Z being greater than 1
-erf(sqrt(2)/2)/2 + 1/2
```


4.19.1 Random Variable Types

Finite Types

diofant.stats.DiscreteUniform(name, items)
Create a Finite Random Variable representing a uniform distribution over the input set.
Returns a RandomSymbol.

Examples

```
>>> from diofant.stats import density
```

```
>>> X = DiscreteUniform('X', (a, b, c)) # equally likely over a, b, c
>> density(X).dict
{a: 1/3, b: 1/3, c: 1/3}
```

```
>>> Y = DiscreteUniform('Y', list(range(5))) # distribution over a range
>>> density(Y).dict
{0: 1/5, 1: 1/5, 2: 1/5, 3: 1/5, 4: 1/5}
```

diofant.stats.Die(name, sides=6)
Create a Finite Random Variable representing a fair die.
Returns a RandomSymbol.

```
>>> from diofant.stats import density
```

```
>>> D6 = Die('D6', 6) # Six sided Die
>>> density(D6).dict
{1: 1/6, 2: 1/6, 3: 1/6, 4: 1/6, 5: 1/6, 6: 1/6}
```

```
>>> D4 = Die('D4', 4) # Four sided Die
>>> density(D4).dict
{1: 1/4, 2: 1/4, 3: 1/4, 4: 1/4}
```

diofant.stats.Bernoulli(name, p, succ=1, fail=0)
Create a Finite Random Variable representing a Bernoulli process.
Returns a RandomSymbol

```
>>> from diofant.stats import density
```

```
>>> X = Bernoulli('X', Rational(3, 4)) # 1-0 Bernoulli variable, probability = 3/
>>> density(X).dict
{0: 1/4, 1: 3/4}
```

```
>>> X = Bernoulli('X', Rational(1, 2), 'Heads', 'Tails') # A fair coin toss
>>> density(X).dict
{Heads: 1/2, Tails: 1/2}
```

diofant.stats.Coin(name, $p=$ Rational(1,2))
Create a Finite Random Variable representing a Coin toss.
Probability p is the chance of getting "Heads." Half by default
Returns a RandomSymbol.
>>> from diofant.stats import density
>>> H, T = Symbol('H'), Symbol('T')

```
>>> C = Coin('C') # A fair coin toss
>>> density(C).dict
{H: 1/2, T: 1/2}
```

```
>>> C2 = Coin('C2', Rational(3, 5)) # An unfair coin
>>> density(C2).dict
{H: 3/5, T: 2/5}
```

diofant.stats.Binomial(name, n, $p, s u c c=1, f a i l=0$)
Create a Finite Random Variable representing a binomial distribution.
Returns a RandomSymbol.

Examples

```
>>> from diofant.stats import density
```

```
>>> X = Binomial('X', 4, Rational(1, 2)) # Four "coin flips"
>>> density(X).dict
{0: 1/16, 1: 1/4, 2: 3/8, 3: 1/4, 4: 1/16}
```

diofant.stats.Hypergeometric (name, N, m, n)
Create a Finite Random Variable representing a hypergeometric distribution.
Returns a RandomSymbol.

Examples

>>> from diofant.stats import density

```
>>> X = Hypergeometric('X', 10, 5, 3) # 10 marbles, 5 white (success), 3 draws
>>> density(X).dict
{0: 1/12, 1: 5/12, 2: 5/12, 3: 1/12}
```

diofant.stats.FiniteRV(name, density)
Create a Finite Random Variable given a dict representing the density.
Returns a RandomSymbol.

```
>>> from diofant.stats import P, E
```

```
>>> density = {0: .1, 1: .2, 2: .3, 3: .4}
```

>>> X = FiniteRV('X', density)

```
>> E(X)
2.00000000000000
>>> P(X >= 2)
0.700000000000000
```


Discrete Types

diofant.stats.Geometric (name, p)
Create a discrete random variable with a Geometric distribution.
The density of the Geometric distribution is given by

$$
f(k):=p(1-p)^{k-1}
$$

Parameters \mathbf{p} (A probability between 0 and 1)
Returns A RandomSymbol.

Diofant Documentation, Release 0.13.0

Examples
>>> from diofant.stats import density, E, variance
>>> p = Rational $(1,5)$
>>> X = Geometric('x', p)

```
>>> density(X)(z)
```

(4/5)**(z-1)/5

```
>>> E(X)
```

5

```
>>> variance(X)
```

20

References

[1] https://en.wikipedia.org/wiki/Geometric_distribution [2] https://mathworld.wolfram. com/GeometricDistribution.html
diofant.stats.Poisson (name, lamda)
Create a discrete random variable with a Poisson distribution.
The density of the Poisson distribution is given by

$$
f(k):=\frac{\lambda^{k} e^{-\lambda}}{k!}
$$

Parameters lamda (Positive number, a rate)
Returns A RandomSymbol.

Examples

```
>>> from diofant.stats import density, E, variance
>>> rate = Symbol('lambda', positive=True)
>>> X = Poisson('x', rate)
>>> density(X)(z)
E**(-lambda)*lambda**z/factorial(z)
>>> E(X)
lambda
```

```
>>> simplify(variance(X))
```

>>> simplify(variance(X))
lambda

```

\section*{References}
[1] https://en.wikipedia.org/wiki/Poisson_distribution [2] https://mathworld.wolfram. com/PoissonDistribution.html

\section*{Continuous Types}
diofant.stats.Arcsin (name, \(a=0, b=1\) )
Create a Continuous Random Variable with an arcsin distribution.
The density of the arcsin distribution is given by
\[
f(x):=\frac{1}{\pi \sqrt{(x-a)(b-x)}}
\]
with \(x \in[a, b]\). It must hold that \(-\infty<a<b<\infty\).

\section*{Parameters}
- a (Real number, the left interval boundary)
- b (Real number, the right interval boundary)

Returns A RandomSymbol.

\section*{Examples}
```

>>> from diofant.stats import density

```
>>> a, b = symbols('a b', real=True)
```

>>> X = Arcsin('x', a, b)
>>> density(X)(z)
1/(pi*sqrt((-a + z)*(b - z)))

```

\section*{References}
- https://en.wikipedia.org/wiki/Arcsine_distribution
diofant.stats.Benini(name, alpha, beta, sigma)
Create a Continuous Random Variable with a Benini distribution.
The density of the Benini distribution is given by
\[
f(x):=e^{-\alpha \log \frac{x}{\sigma}-\beta \log ^{2}\left[\frac{x}{\sigma}\right]}\left(\frac{\alpha}{x}+\frac{2 \beta \log \frac{x}{\sigma}}{x}\right)
\]

This is a heavy-tailed distribution and is also known as the log-Rayleigh distribution.

\section*{Parameters}
- alpha (Real number, \(\alpha>0\), a shape)
- beta (Real number, \(\beta>0\), a shape)
- sigma (Real number, \(\sigma>0\), a scale)

Returns A RandomSymbol.

\section*{Examples}
>>> from diofant.stats import density
```

>>> alpha = Symbol('alpha', positive=True)
>>> beta = Symbol('beta', positive=True)
>>> sigma = Symbol('sigma', positive=True)

```
>>> X = Benini('x', alpha, beta, sigma)
>>> D = density (X) (z)
>>> pprint(D, use_unicode=False)


\section*{References}
- https://en.wikipedia.org/wiki/Benini_distribution
- https://reference.wolfram.com/legacy/v8/ref/BeniniDistribution.html
diofant.stats.Beta(name, alpha, beta)
Create a Continuous Random Variable with a Beta distribution.
The density of the Beta distribution is given by
\[
f(x):=\frac{x^{\alpha-1}(1-x)^{\beta-1}}{\mathrm{~B}(\alpha, \beta)}
\]
with \(x \in[0,1]\).

\section*{Parameters}
- alpha (Real number, \(\alpha>0\), a shape)
- beta (Real number, \(\beta>0\), a shape)

Returns A RandomSymbol.

\section*{Examples}
```

>>> from diofant.stats import density, E

```
```

>>> alpha = Symbol('alpha', positive=True)

```
>>> beta = Symbol('beta', positive=True)
```

>>> X = Beta('x', alpha, beta)

```
```

>>> D = density(X)(z)
>>> pprint(D, use_unicode=False)
z *(-z + 1)
beta(alpha, beta)

```
```

>>> expand_func(simplify(E(X, meijerg=True)))
alpha/(alp\overline{ha + beta)}

```

\section*{References}
- https://en.wikipedia.org/wiki/Beta_distribution
- https://mathworld.wolfram.com/BetaDistribution.html
diofant.stats.BetaPrime (name, alpha, beta)
Create a continuous random variable with a Beta prime distribution.
The density of the Beta prime distribution is given by
\[
f(x):=\frac{x^{\alpha-1}(1+x)^{-\alpha-\beta}}{B(\alpha, \beta)}
\]
with \(x>0\).

\section*{Parameters}
- alpha (Real number, \(\alpha>0\), a shape)
- beta (Real number, \(\beta>0\), a shape)

\section*{Returns A RandomSymbol.}

\section*{Examples}
>>> from diofant.stats import density
```

>>> alpha = Symbol('alpha', positive=True)

```
>>> beta \(=\) Symbol('beta', positive=True)
>>> X = BetaPrime('x', alpha, beta)
```

>>> D = density(X)(z)
>>> pprint(D, use_unicode=False)
z *(z + 1)
beta(alpha, beta)

```

\section*{References}
- https://en.wikipedia.org/wiki/Beta_prime_distribution
- https://mathworld.wolfram.com/BetaPrimeDistribution.html
diofant.stats. Cauchy (name, x0, gamma)
Create a continuous random variable with a Cauchy distribution.
The density of the Cauchy distribution is given by
\[
f(x):=\frac{1}{\pi} \arctan \left(\frac{x-x_{0}}{\gamma}\right)+\frac{1}{2}
\]

\section*{Parameters}
- x0 (Real number, the location)
- gamma (Real number, \(\gamma>0\), the scale)

Returns A RandomSymbol.

\section*{Examples}
```

>>> from diofant.stats import density
>>> x0 = Symbol('x0')
>>> gamma = Symbol('gamma', positive=True)

```
>>> X = Cauchy('x', x0, gamma)
>>> density(X)(z)
1/(pi*gamma*(1 + (-x0 + z)**2/gamma**2))

\section*{References}
- https://en.wikipedia.org/wiki/Cauchy_distribution
- https://mathworld.wolfram.com/CauchyDistribution.html
diofant.stats.Chi (name, k)
Create a continuous random variable with a Chi distribution.
The density of the Chi distribution is given by
\[
f(x):=\frac{2^{1-k / 2} x^{k-1} e^{-x^{2} / 2}}{\Gamma(k / 2)}
\]
with \(x \geq 0\).
Parameters \(\mathbf{k}\) (A positive Integer, \(k>0\), the number of degrees of freedom)
Returns A RandomSymbol.

\section*{Examples}
```

>>> from diofant.stats import density, Chi

```
>>> X = Chi('x', k)
```

>>> density(X)(z)
2**(-k/2 + 1)*E**(-z**2/2)*z**(k - 1)/gamma(k/2)

```

\section*{References}
- https://en.wikipedia.org/wiki/Chi_distribution
- https://mathworld.wolfram.com/ChiDistribution.html
diofant.stats.ChiNoncentral(name, \(k, l\) )
Create a continuous random variable with a non-central Chi distribution.
The density of the non-central Chi distribution is given by
\[
f(x):=\frac{e^{-\left(x^{2}+\lambda^{2}\right) / 2} x^{k} \lambda}{(\lambda x)^{k / 2}} I_{k / 2-1}(\lambda x)
\]
with \(x \geq 0\). Here, \(I_{\nu}(x)\) is the modified Bessel function of the first kind (page 363).

\section*{Parameters}
- \(\mathbf{k}\) (A positive Integer, \(k>0\), the number of degrees of freedom)
- \(\mathbf{1}\) (Shift parameter)

Returns A RandomSymbol.

\section*{Examples}
>>> from diofant.stats import density
>>> l = Symbol('l')
>>> X = ChiNoncentral('x', k, l)
```

>>> density(X)(z)

```


\section*{References}
- https://en.wikipedia.org/wiki/Noncentral_chi_distribution
diofant.stats.ChiSquared (name, \(k\) )
Create a continuous random variable with a Chi-squared distribution.
The density of the Chi-squared distribution is given by
\[
f(x):=\frac{1}{2^{\frac{k}{2}} \Gamma\left(\frac{k}{2}\right)} x^{\frac{k}{2}-1} e^{-\frac{x}{2}}
\]
with \(x \geq 0\).
Parameters \(\mathbf{k}\) (A positive Integer, \(k>0\), the number of degrees of freedom)
Returns A RandomSymbol.

\section*{Diofant Documentation, Release 0.13.0}

Examples
>>> from diofant.stats import density, E, variance
>>> k = Symbol('k', integer=True, positive=True)
>>> X = ChiSquared('x', k)
>>> density (X) (z)
\(2 * *(-\mathrm{k} / 2) * \mathrm{E} * *(-\mathrm{z} / 2) * \mathrm{z}^{* *}(\mathrm{k} / 2-1) /\) gamma \((\mathrm{k} / 2)\)
```

>>> combsimp(E(X))

```
k
```

>>> simplify(expand_func(variance(X)))
2*k

```

\section*{References}
- https://en.wikipedia.org/wiki/Chi_squared_distribution
- https://mathworld.wolfram.com/Chi-SquaredDistribution.html
diofant.stats.Dagum(name, \(p, a, b\) )
Create a continuous random variable with a Dagum distribution.
The density of the Dagum distribution is given by
\[
f(x):=\frac{a p}{x}\left(\frac{\left(\frac{x}{b}\right)^{a p}}{\left(\left(\frac{x}{b}\right)^{a}+1\right)^{p+1}}\right)
\]
with \(x>0\).

\section*{Parameters}
- p (Real number, \(p>0\), a shape)
- a (Real number, \(a>0\), a shape)
- b (Real number, \(b>0\), a scale)

Returns A RandomSymbol.

Examples
```

>>> from diofant.stats import density
>>> p = Symbol('p', positive=True)
>>> b = Symbol('b', positive=True)
>>> a = Symbol('a', positive=True)
>> X = Dagum('x', p, a, b)
>>> density(X)(z)
a*p*(z/b)**(a*p)*((z/b)**a + 1)**(-p - 1)/z

```

\section*{References}
- https://en.wikipedia.org/wiki/Dagum_distribution
diofant.stats.Erlang(name, \(k, l\) )
Create a continuous random variable with an Erlang distribution.
The density of the Erlang distribution is given by
\[
f(x):=\frac{\lambda^{k} x^{k-1} e^{-\lambda x}}{(k-1)!}
\]
with \(x \in[0, \infty]\).

\section*{Parameters}
- \(\mathbf{k}\) (Integer)
- \(\mathbf{1}\) (Real number, \(\lambda>0\), the rate)

\section*{Returns A RandomSymbol.}

\section*{Examples}
```

>>> from diofant.stats import density, cdf, E, variance

```
```

>>> k = Symbol('k', integer=True, positive=True)

```
>>> l = Symbol('l', positive=True)
```

>>> X = Erlang('x', k, l)

```
```

>>> D = density(X)(z)
>>> pprint(D, use_unicode=False)
-l*z k k - 1
E *l *z

gamma(k)

```
```

>>> C = cdf(X, meijerg=True)(z)
>>> pprint(C, use_unicode=False)
/ k*lowergamma(k, 0) k*lowergamma(k, l*z)
|- ---------------- + ------------------- for z >= 0
< gamma(k + 1) gamma(k + 1)
\ 0 otherwise

```
```

>>> simplify(E(X))
k/l

```
```

>>> simplify(variance(X))
k/l**2

```

\section*{Diofant Documentation, Release 0.13.0}

\section*{References}
- https://en.wikipedia.org/wiki/Erlang_distribution
- https://mathworld.wolfram.com/ErlangDistribution.html
diofant.stats.Exponential(name, rate)
Create a continuous random variable with an Exponential distribution.
The density of the exponential distribution is given by
\[
f(x):=\lambda \exp (-\lambda x)
\]
with \(x>0\). Note that the expected value is \(1 / \lambda\).
Parameters rate (A positive Real number, \(\lambda>0\), the rate (or inverse scale/inverse mean))
Returns A RandomSymbol.

\section*{Examples}
>>> from diofant.stats import density, cdf, E, variance, std, skewness
```

>>> l = Symbol('lambda', positive=True)

```
>>> X = Exponential('x', l)
>>> density(X)(z)
E**(-lambda*z)*lambda
```

>>> cdf(X)(z)
Piecewise((1 - E**(-lambda*z), z >= 0), (0, true))

```
```

>>> E(X)
1/lambda

```
```

>>> variance(X)
lambda**(-2)

```
```

>>> skewness(X)
2

```
>>> X = Exponential('x', 10)
```

>>> density(X)(z)

```
\(10 * \mathrm{E}^{* *}(-10 * \mathrm{z})\)
>>> \(E(X)\)
1/10
```

>>> std(X)
1/10

```

\section*{References}
- https://en.wikipedia.org/wiki/Exponential_distribution
- https://mathworld.wolfram.com/ExponentialDistribution.html
diofant.stats.FDistribution(name, d1, d2)
Create a continuous random variable with a F distribution.
The density of the F distribution is given by
\[
f(x):=\frac{\sqrt{\frac{\left(d_{1} x\right)^{d_{1}} d_{2}^{d_{2}}}{\left(d_{1} x+d_{2}\right)^{d_{1}+d_{2}}}}}{x \mathrm{~B}\left(\frac{d_{1}}{2}, \frac{d_{2}}{2}\right)}
\]
with \(x>0\).

\section*{Parameters}
- d1 ( \(d_{1}>0\) a parameter)
- d2 ( \(d_{2}>0\) a parameter)

Returns A RandomSymbol.

Examples
>>> from diofant.stats import density
```

>>> d1 = Symbol('d1', positive=True)

```
>>> d2 = Symbol('d2', positive=True)
>>> \(\mathrm{X}=\) FDistribution(' X ', d1, d2)
>>> D = density (X) (z)
>>> pprint(D, use_unicode=False)
    d2
    \(2 /\) d1 -d1 - d2
d 2 * \(/(\mathrm{d} 1 * \mathrm{z}) \quad *(\mathrm{~d} 1 * \mathrm{z}+\mathrm{d} 2)\)
----------------------------------------
    \(\begin{array}{cc}/ d 1 & d 2 \backslash \\ \text { z*beta|--, } & --\mid \\ \backslash 2 & 2 /\end{array}\)

\section*{References}
- https://en.wikipedia.org/wiki/F-distribution
- https://mathworld.wolfram.com/F-Distribution.html
diofant.stats.FisherZ(name, d1, d2)
Create a Continuous Random Variable with an Fisher's Z distribution.
The density of the Fisher's Z distribution is given by
\[
f(x):=\frac{2 d_{1}^{d_{1} / 2} d_{2}^{d_{2} / 2}}{\mathrm{~B}\left(d_{1} / 2, d_{2} / 2\right)} \frac{e^{d_{1} z}}{\left(d_{1} e^{2 z}+d_{2}\right)^{\left(d_{1}+d_{2}\right) / 2}}
\]

\section*{Parameters}
- d1 ( \(d_{1}>0\), degree of freedom)
- d2 ( \(d_{2}>0\), degree of freedom)

Returns A RandomSymbol.

\section*{Examples}
```

>>> from diofant.stats import density

```
>>> d1 = Symbol('d1', positive=True)
>>> d2 = Symbol('d2', positive=True)
>>> X = FisherZ('x', d1, d2)
>>> \(D\) = density \((X)(z)\)
>>> pprint(D, use_unicode=False)
    \(\begin{array}{llll}\text { d1 } & \text { d2 } & -\)\begin{tabular}{c}
\text { d1 } \\
-- \\
-- \\
\hline
\end{tabular} & \(-d^{-} \\
2 & 2\end{array}\)
\(2 * \mathrm{E}^{\mathrm{d} 1 * \mathrm{z}}{ }_{\mathrm{d} 1}{ }^{2} * \mathrm{~d} 2{ }^{2} * \backslash \mathrm{E}^{2 *} \mathrm{z}_{\mathrm{d} 1}+\mathrm{d} 2 /\)

    beta|--, \(\begin{array}{ll}/ \mathrm{d} 1 & \mathrm{~d} 2 \backslash \\ \backslash 2 & 2\end{array}\)

\section*{References}
- https://en.wikipedia.org/wiki/Fisher\%27s_z-distribution
- https://mathworld.wolfram.com/Fishersz-Distribution.html
diofant.stats.Frechet (name, \(a, s=1, m=0\) )
Create a continuous random variable with a Frechet distribution.
The density of the Frechet distribution is given by
\[
f(x):=\frac{\alpha}{s}\left(\frac{x-m}{s}\right)^{-1-\alpha} e^{-\left(\frac{x-m}{s}\right)^{-\alpha}}
\]
with \(x \geq m\).

\section*{Parameters}
- a (Real number, \(a \in(0, \infty)\) the shape)
- \(\mathbf{s}\) (Real number, \(s \in(0, \infty)\) the scale)
- m (Real number, \(m \in(-\infty, \infty)\) the minimum)

Returns A RandomSymbol.

\section*{Examples}
>>> from diofant.stats import density
```

>>> a, s = symbols('a s', positive=True)

```
>>> m = Symbol('m', real=True)
>>> X = Frechet('x', a, s, m)
>>> density (X) (z)
\(E^{* *}(-((-m+z) / s) * *(-a)) * a *((-m+z) / s) * *(-a-1) / s\)

\section*{References}
- https://en.wikipedia.org/wiki/Fr\%C3\%A9chet_distribution

\section*{diofant.stats. Gamma(name, \(k\), theta)}

Create a continuous random variable with a Gamma distribution.
The density of the Gamma distribution is given by
\[
f(x):=\frac{1}{\Gamma(k) \theta^{k}} x^{k-1} e^{-\frac{x}{\theta}}
\]
with \(x \in[0,1]\).

\section*{Parameters}
- \(\mathbf{k}\) (Real number, \(k>0\), a shape)
- theta (Real number, \(\theta>0\), a scale)

Returns A RandomSymbol.

\section*{Examples}
```

>>> from diofant.stats import density, cdf, E, variance

```
>>> k = Symbol('k', positive=True)
>>> theta = Symbol('theta', positive=True)
```

>>> X = Gamma('x', k, theta)

```
```

>>> D = density(X)(z)
>>> pprint(D, use_unicode=False)
-z

E theta *theta *** k - 1

gamma(k)

```
```

>>> C = cdf(X, meijerg=True)(z)
>>> pprint(C, use_unicode=False)
| k*lowergamma(k, 0) k*lowergamma|k, %---l|
<- ---------------- + ----------------------- for z >= 0
gamma(k + 1) gamma(k + 1)
0 otherwise

```
```

>>> E(X)
theta*gamma(k + 1)/gamma(k)

```
```

>>> V = simplify(variance(X))
>>> pprint(V, use_unicode=False)
2
k*theta

```

\section*{References}
- https://en.wikipedia.org/wiki/Gamma_distribution
- https://mathworld.wolfram.com/GammaDistribution.html

\section*{diofant.stats.GammaInverse(name, \(a, b\) )}

Create a continuous random variable with an inverse Gamma distribution.
The density of the inverse Gamma distribution is given by
\[
f(x):=\frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{-\alpha-1} \exp \left(\frac{-\beta}{x}\right)
\]
with \(x>0\).

\section*{Parameters}
- a (Real number, \(a>0\) a shape)
- b (Real number, \(b>0\) a scale)

Returns A RandomSymbol.

Examples
```

>>> from diofant.stats import density

```
```

>>> a = Symbol('a', positive=True)
>>> b = Symbol('b', positive=True)

```
>>> X = GammaInverse('x', a, b)
```

>>> D = density(X)(z)
>>> pprint(D, use_unicode=False)
-b
z a -a - 1

```
(continues on next page)
(continued from previous page)
```

E *b *z

gamma(a)

```

\section*{References}
- https://en.wikipedia.org/wiki/Inverse-gamma_distribution
diofant.stats.Kumaraswamy (name, \(a, b\) )
Create a Continuous Random Variable with a Kumaraswamy distribution.
The density of the Kumaraswamy distribution is given by
\[
f(x):=a b x^{a-1}\left(1-x^{a}\right)^{b-1}
\]
with \(x \in[0,1]\).

\section*{Parameters}
- a (Real number, \(a>0\) a shape)
- b (Real number, \(b>0\) a shape)

Returns A RandomSymbol.

\section*{Examples}
>>> from diofant.stats import density
```

>>> a = Symbol('a', positive=True)

```
>>> b = Symbol('b', positive=True)
```

>>> X = Kumaraswamy('x', a, b)

```
```

>>> D = density(X)(z)
>>> pprint(D, use_unicode=False)
a - 1 / a \
a*b*z *\- z + 1/

```

\section*{References}
- https://en.wikipedia.org/wiki/Kumaraswamy_distribution
diofant.stats.Laplace (name, mu, b)
Create a continuous random variable with a Laplace distribution.
The density of the Laplace distribution is given by
\[
f(x):=\frac{1}{2 b} \exp \left(-\frac{|x-\mu|}{b}\right)
\]

\section*{Parameters}
- mu (Real number, the location (mean))
- b (Real number, \(b>0\), a scale)

Returns A RandomSymbol.

\section*{Examples}
```

>>> from diofant.stats import density

```
>>> mu = Symbol('mu')
\(\ggg b=\) Symbol('b', positive=True)
>>> X = Laplace('x', mu, b)
>>> density (X) (z)
\(E^{* *}(-\operatorname{Abs}(\mathrm{mu}-\mathrm{z}) / \mathrm{b}) /(2 * \mathrm{~b})\)

\section*{References}
- https://en.wikipedia.org/wiki/Laplace_distribution
- https://mathworld.wolfram.com/LaplaceDistribution.html
diofant.stats.Logistic (name, \(m u, s\) )
Create a continuous random variable with a logistic distribution.
The density of the logistic distribution is given by
\[
f(x):=\frac{e^{-(x-\mu) / s}}{s\left(1+e^{-(x-\mu) / s}\right)^{2}}
\]

\section*{Parameters}
- mu (Real number, the location (mean))
- s (Real number, \(s>0\) a scale)

Returns A RandomSymbol.

\section*{Examples}
```

>>> from diofant.stats import density

```
>>> mu = Symbol('mu', real=True)
>>> s = Symbol('s', positive=True)
```

>>> X = Logistic('X', mu, s)

```
```

>>> density(X)(z)
E**((mu - z)/s)/(s*(E**((mu - z)/s) + 1)**2)

```

\section*{References}
- https://en.wikipedia.org/wiki/Logistic_distribution
- https://mathworld.wolfram.com/LogisticDistribution.html
diofant.stats.LogNormal(name, mean, std)
Create a continuous random variable with a log-normal distribution.
The density of the log-normal distribution is given by
\[
f(x):=\frac{1}{x \sqrt{2 \pi \sigma^{2}}} e^{-\frac{(\ln x-\mu)^{2}}{2 \sigma^{2}}}
\]
with \(x \geq 0\).

\section*{Parameters}
- mu (Real number, the log-scale)
- sigma (Real number, \(\sigma^{2}>0\) a shape)

Returns A RandomSymbol.

\section*{Examples}
>>> from diofant.stats import density
```

>>> mu = Symbol('mu', real=True)
>>> sigma = Symbol('sigma', positive=True)

```
>>> X = LogNormal('x', mu, sigma)
>>> D = density (X) (z)
>>> pprint(D, use_unicode=False)
    \(-(-m u+\log (z))\)
    ----------------
        2*sigma
\/2 \(* E\)
-----------------------
    2* \(/ / \overline{\text { pi }}^{*}\) sigma*z
>> X = LogNormal('x', 0, 1) \# Mean 0, standard deviation 1
```

>>> density(X)(z)
sqrt(2)*E**(-log(z)**2/2)/(2*sqrt(pi)*z)

```

\section*{Diofant Documentation, Release 0.13.0}

\section*{References}
- https://en.wikipedia.org/wiki/Lognormal
- https://mathworld.wolfram.com/LogNormalDistribution.html
diofant.stats.Maxwell (name, a)
Create a continuous random variable with a Maxwell distribution.
The density of the Maxwell distribution is given by
\[
f(x):=\sqrt{\frac{2}{\pi}} \frac{x^{2} e^{-x^{2} /\left(2 a^{2}\right)}}{a^{3}}
\]
with \(x \geq 0\).
Parameters a (Real number, \(a>0\) )
Returns A RandomSymbol.

\section*{Examples}
>>> from diofant.stats import density, E, variance
>>> a = Symbol('a', positive=True)
>>> X = Maxwell('x', a)
```

>>> density(X)(z)

```
\(\operatorname{sqrt}(2) * \mathrm{E}^{* *}\left(-\mathrm{z}^{* *} 2 /(2 * a * * 2)\right) * \mathrm{z}^{* *} 2 /(\operatorname{sqrt}(\mathrm{pi}) * a * * 3)\)
```

>>> E(X)
2*sqrt(2)*a/sqrt(pi)

```
>>> simplify(variance(X))
a**2*(-8 + 3*pi)/pi

\section*{References}
- https://en.wikipedia.org/wiki/Maxwell_distribution
- https://mathworld.wolfram.com/MaxwellDistribution.html
diofant.stats.Nakagami(name, mu, omega)
Create a continuous random variable with a Nakagami distribution.
The density of the Nakagami distribution is given by
\[
f(x):=\frac{2 \mu^{\mu}}{\Gamma(\mu) \omega^{\mu}} x^{2 \mu-1} \exp \left(-\frac{\mu}{\omega} x^{2}\right)
\]
with \(x>0\).

\section*{Parameters}
- mu (Real number, \(\mu \geq \frac{1}{2}\) a shape)
- omega (Real number, \(\omega>0\), the spread)

Returns A RandomSymbol.

\section*{Examples}
```

>>> from diofant.stats import density, E, variance

```
```

>>> mu = Symbol('mu', positive=True)
>>> omega = Symbol('omega', positive=True)

```
>>> X = Nakagami('x', mu, omega)
>>> D = density(X)(z)
>>> pprint(D, use_unicode=False)
    2
    -mu*z
    omega \({ }_{* \mathrm{mu}}^{\mathrm{mu}} *\) omega \(^{-\mathrm{mu}} * z 2 *_{\mathrm{mu}}-1\)
-----------------------------------
            gamma(mu)
```

>>> simplify(E(X, meijerg=True))
sqrt(mu)*sqrt(omega)*gamma(mu + 1/2)/gamma(mu + 1)

```
>>> V = simplify(variance(X, meijerg=True))
>>> pprint(V, use_unicode=False)
    omega*gamma (mu + 1/2)
omega -
    gamma(mu)*gamma(mu + 1)

\section*{References}
- https://en.wikipedia.org/wiki/Nakagami_distribution
diofant.stats.Normal (name, mean, std)
Create a continuous random variable with a Normal distribution.
The density of the Normal distribution is given by
\[
f(x):=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}
\]

\section*{Parameters}
- mu (Real number, the mean)
- sigma (Real number, \(\sigma^{2}>0\) the variance)

Returns A RandomSymbol.

Examples
>>> from diofant.stats import density, E, std, cdf, skewness
>>> mu = Symbol('mu')
>>> sigma = Symbol('sigma', positive=True)
```

>>> X = Normal('x', mu, sigma)

```
```

>>> density(X)(z)
sqrt(2)*E**(-(-mu + z)**2/(2*sigma**2))/(2*sqrt(pi)*sigma)

```
```

>>> C = simplify(cdf(X))(z) \# it needs a little more help...
>>> pprint(C, use_unicode=False)
\prime|/\2*(mu - z)!
erf(------------/ / 1

- ---------------- + -
2 2

```
```

>>> simplify(skewness(X))
0

```
```

>>> X = Normal('x', 0, 1) \# Mean 0, standard deviation 1
>>> density(X)(z)
sqrt(2)*E**(-2**2/2)/(2*sqrt(pi))

```
>>> E(2*X + 1)
1
>>> simplify(std(2*X + 1))
2

\section*{References}
- https://en.wikipedia.org/wiki/Normal_distribution
- https://mathworld.wolfram.com/NormalDistributionFunction.html
diofant.stats.Pareto (name, xm, alpha)
Create a continuous random variable with the Pareto distribution.
The density of the Pareto distribution is given by
\[
f(x):=\frac{\alpha x_{m}^{\alpha}}{x^{\alpha+1}}
\]
with \(x \in\left[x_{m}, \infty\right]\).

\section*{Parameters}
- xm (Real number, \(x_{m}>0\), a scale)
- alpha (Real number, \(\alpha>0\), a shape)

Returns A RandomSymbol.

\section*{Examples}
```

>>> from diofant.stats import density

```
>>> xm = Symbol('xm', positive=True)
>>> beta \(=\) Symbol('beta', positive=True)
```

>>> X = Pareto('x', xm, beta)

```
>>> density (X) (z)
beta*xm**beta*z**(-beta - 1)

\section*{References}
- https://en.wikipedia.org/wiki/Pareto_distribution
- https://mathworld.wolfram.com/ParetoDistribution.html
diofant.stats.QuadraticU(name, \(a, b\) )
Create a Continuous Random Variable with a U-quadratic distribution.
The density of the U-quadratic distribution is given by
\[
f(x):=\alpha(x-\beta)^{2}
\]
with \(x \in[a, b]\).

\section*{Parameters}
- a (Real number)
- b (Real number, \(a<b\) )

Returns A RandomSymbol.

\section*{Examples}
```

>>> from diofant.stats import density
>>> a, b = symbols('a b', real=True)
>>> X = QuadraticU('x', a, b)
>>> D = density(X)(z)
>>> pprint(D, use_unicode=False)
/ \overline{2}
|12*|
<--------------- for And(a <= z, z <= b)
| 3
(-a + b)
0
otherwise

```

\section*{References}
- https://en.wikipedia.org/wiki/U-quadratic_distribution
diofant.stats.RaisedCosine (name, mu, s)
Create a Continuous Random Variable with a raised cosine distribution.
The density of the raised cosine distribution is given by
\[
f(x):=\frac{1}{2 s}\left(1+\cos \left(\frac{x-\mu}{s} \pi\right)\right)
\]
with \(x \in[\mu-s, \mu+s]\).

\section*{Parameters}
- mu (Real number)
- \(\mathbf{s}\) (Real number, \(s>0\) )

Returns A RandomSymbol.

\section*{Examples}
>>> from diofant.stats import density
>>> mu = Symbol('mu', real=True)
>>> s = Symbol('s', positive=True)
>>> X = RaisedCosine('x', mu, s)
```

>>> D = density(X)(z)
>>> pprint(D, use_unicode=False)
/ /pi*(-mu + z)\
|cos|------------ | | + 1
<----------------- for And(z <= mu + s, mu - s <= z)
|*s
0 otherwise

```

\section*{References}
- https://en.wikipedia.org/wiki/Raised_cosine_distribution
diofant.stats.Rayleigh(name, sigma)
Create a continuous random variable with a Rayleigh distribution.
The density of the Rayleigh distribution is given by
\[
f(x):=\frac{x}{\sigma^{2}} e^{-x^{2} / 2 \sigma^{2}}
\]
with \(x>0\).
Parameters sigma (Real number, \(\sigma>0\) )
Returns A RandomSymbol.

\section*{Examples}
```

>>> from diofant.stats import density, E, variance
>>> sigma = Symbol('sigma', positive=True)
>>> X = Rayleigh('x', sigma)
>>> density(X)(z)
E**(-z**2/(2*sigma**2))*z/sigma**2

```
```

>>> E(X)

```
>>> E(X)
sqrt(2)*sqrt(pi)*sigma/2
```

sqrt(2)*sqrt(pi)*sigma/2

```
```

>>> variance(X)
-pi*sigma**2/2 + 2*sigma**2

```

\section*{References}
- https://en.wikipedia.org/wiki/Rayleigh_distribution
- https://mathworld.wolfram.com/RayleighDistribution.html
diofant.stats.StudentT(name, nu)
Create a continuous random variable with a student's \(t\) distribution.
The density of the student's \(t\) distribution is given by
\[
f(x):=\frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\sqrt{\nu \pi} \Gamma\left(\frac{\nu}{2}\right)}\left(1+\frac{x^{2}}{\nu}\right)^{-\frac{\nu+1}{2}}
\]

Parameters nu (Real number, \(\nu>0\), the degrees of freedom)
Returns A RandomSymbol.

\section*{Examples}
>>> from diofant.stats import density
>>> nu = Symbol('nu', positive=True)
>>> \(X\) = StudentT('X', nu)
```

>>> D = density(X)(z)
>>> pprint(D, use_unicode=False)
nu \overline{1}
2

```

```

\/ nu*beta|l/2,

```

\section*{Diofant Documentation, Release 0.13.0}

\section*{References}
- https://en.wikipedia.org/wiki/Student_t-distribution
- https://mathworld.wolfram.com/Studentst-Distribution.html
diofant.stats.Triangular (name, \(a, b, c\) )
Create a continuous random variable with a triangular distribution.
The density of the triangular distribution is given by
\[
f(x):= \begin{cases}0 & \text { for } x<a, \\ \frac{2(x-a)}{(b-a)(c-a)} & \text { for } a \leq x<c, \\ \frac{2}{b-a} & \text { for } x=c, \\ \frac{2(b-x)}{(b-a)(b-c)} & \text { for } c<x \leq b, \\ 0 & \text { for } b<x .\end{cases}
\]

\section*{Parameters}
- a (Real number, \(a \in(-\infty, \infty)\) )
- b (Real number, \(a<b\) )
- c (Real number, \(a \leq c \leq b\) )

Returns A RandomSymbol.

\section*{Examples}
>>> from diofant.stats import density
```

>>> X = Triangular('x', a, b, c)

```
```

>>> pprint(density(X)(z), use_unicode=False)
/ -2*a + 2*z
|--------------- for And(a <= z, z < c)
(-a + b)*(-a + c)
2
------ for z = c
-a + b
2*b - 2*z
for And(z <= b, c < z)
(-a + b)*(b - c)
0 otherwise

```

\section*{References}
- https://en.wikipedia.org/wiki/Triangular_distribution
- https://mathworld.wolfram.com/TriangularDistribution.html
diofant.stats.Uniform(name, left, right)
Create a continuous random variable with a uniform distribution.
The density of the uniform distribution is given by
\[
f(x):= \begin{cases}\frac{1}{b-a} & \text { for } x \in[a, b] \\ 0 & \text { otherwise }\end{cases}
\]
with \(x \in[a, b]\).

\section*{Parameters}
- a (Real number, \(-\infty<a\) the left boundary)
- b (Real number, \(a<b<\infty\) the right boundary)

Returns A RandomSymbol.

\section*{Examples}
>>> from diofant.stats import density, cdf, E, variance
```

>>> a = Symbol('a', negative=True)
>>> b = Symbol('b', positive=True)

```
>>> X = Uniform('x', a, b)
>>> density (X) (z)
Piecewise((1/(-a + b), (a <= z) \& (z <= b)), (0, true))
```

>>> cdf(X)(z)
-a/(-a + b) + z/(-a + b)

```
```

>>> simplify(E(X))

```
\(\mathrm{a} / 2+\mathrm{b} / 2\)
```

>>> simplify(variance(X))

```
a**2/12 - a*b/6 + b**2/12

\section*{References}
- https://en.wikipedia.org/wiki/Uniform_distribution_\%28continuous\%29
- https://mathworld.wolfram.com/UniformDistribution.html
diofant.stats.UniformSum (name, \(n\) )
Create a continuous random variable with an Irwin-Hall distribution.
The probability distribution function depends on a single parameter \(n\) which is an integer.

\section*{Diofant Documentation, Release 0.13.0}

The density of the Irwin-Hall distribution is given by
\[
f(x):=\frac{1}{(n-1)!} \sum_{k=0}^{\lfloor x\rfloor}(-1)^{k}\binom{n}{k}(x-k)^{n-1}
\]

Parameters \(n\) (A positive Integer, \(n>0\) )
Returns A RandomSymbol.

\section*{Examples}
>>> from diofant.stats import density
>>> \(X\) = UniformSum('x', n)
```

>>> D = density(X)(z)
>>> pprint(D, use_unicode=False)
floor(z)

,
k = 0

(n - 1)!

```

\section*{References}
- https://en.wikipedia.org/wiki/Uniform_sum_distribution
- https://mathworld.wolfram.com/UniformSumDistribution.html
diofant.stats.VonMises(name, mu, \(k\) )
Create a Continuous Random Variable with a von Mises distribution.
The density of the von Mises distribution is given by
\[
f(x):=\frac{e^{\kappa \cos (x-\mu)}}{2 \pi I_{0}(\kappa)}
\]
with \(x \in[0,2 \pi]\).

\section*{Parameters}
- mu (Real number, measure of location)
- \(\mathbf{k}\) (Real number, measure of concentration)

Returns A RandomSymbol.

\section*{Examples}
```

>>> from diofant.stats import density

```
>>> mu = Symbol('mu')
>>> k = Symbol('k', positive=True)
```

>>> X = VonMises('x', mu, k)

```
```

>>> D = density(X)(z)
>>> pprint(D, use_unicode=False)
k*cos(mu - z)
E
2*pi*besseli(0, k)

```

\section*{References}
- https://en.wikipedia.org/wiki/Von_Mises_distribution
- https://mathworld.wolfram.com/vonMisesDistribution.html
diofant.stats.Weibull (name, alpha, beta)
Create a continuous random variable with a Weibull distribution.
The density of the Weibull distribution is given by
\[
f(x):= \begin{cases}\frac{k}{\lambda}\left(\frac{x}{\lambda}\right)^{k-1} e^{-(x / \lambda)^{k}} & x \geq 0 \\ 0 & x<0\end{cases}
\]

\section*{Parameters}
- lambda (Real number, \(\lambda>0\) a scale)
- \(\mathbf{k}\) (Real number, \(k>0\) a shape)

Returns A RandomSymbol.

\section*{Examples}
```

>>> from diofant.stats import density, E, variance

```
```

>>> l = Symbol('lambda', positive=True)
>>> k = Symbol('k', positive=True, real=True)

```
>>> X = Weibull('x', l, k)
```

>>> density(X)(z)
E**(-(z/lambda)**k)*k*(z/lambda)**(k - 1)/lambda

```
```

>>> simplify(E(X))
lambda*gamma(1 + 1/k)

```
>>> simplify(variance(X))
lambda**2*(-gamma(1 + 1/k)**2 + gamma(1 + 2/k))

\section*{References}
- https://en.wikipedia.org/wiki/Weibull_distribution
- https://mathworld.wolfram.com/WeibullDistribution.html
diofant.stats.WignerSemicircle(name, \(R\) )
Create a continuous random variable with a Wigner semicircle distribution.
The density of the Wigner semicircle distribution is given by
\[
f(x):=\frac{2}{\pi R^{2}} \sqrt{R^{2}-x^{2}}
\]
with \(x \in[-R, R]\).
Parameters \(\mathbf{R}\) (Real number, \(R>0\), the radius)
Returns A RandomSymbol.

\section*{Examples}
```

>>> from diofant.stats import density, E

```
\(\ggg\) R \(=\) Symbol('R', positive=True)
>>> X = WignerSemicircle('x', R)
>>> density (X) (z)
2*sqrt(R**2 - \(\left.z^{* *} 2\right) /\left(p i * R^{* *} 2\right)\)
```

>>> E(X)

```
0

\section*{References}
- https://en.wikipedia.org/wiki/Wigner_semicircle_distribution
- https://mathworld.wolfram.com/WignersSemicircleLaw.html
diofant.stats.ContinuousRV (symbol, density, set=Interval(- oo, oo, true, true))
Create a Continuous Random Variable given the following:
- a symbol - a probability density function - set on which the pdf is valid (defaults to entire real line)
Returns a RandomSymbol.
Many common continuous random variable types are already implemented. This function should be necessary only very rarely.

\section*{Examples}
```

>>> from diofant.stats import P, E

```
>>> pdf = sqrt(2)*exp(-x**2/2)/(2*sqrt(pi)) \# Normal distribution
>>> \(X\) = ContinuousRV(x, pdf)
```

>>> E(X)
0
>>> P(X > 0)
1/2

```

\subsection*{4.19.2 Interface}
diofant.stats.P(condition, given_condition=None, numsamples=None, evaluate=True, **kwargs)
Probability that a condition is true, optionally given a second condition

\section*{Parameters}
- condition (Combination of Relationals containing RandomSymbols) The condition of which you want to compute the probability
- given_condition (Combination of Relationals containing RandomSymbols) - A conditional expression. \(\mathrm{P}(\mathrm{X}>1, \mathrm{X}>0)\) is expectation of \(\mathrm{X}>1\) given \(\mathrm{X}>0\)
- numsamples (int) - Enables sampling and approximates the probability with this many samples
- evaluate (Bool (defaults to True)) - In case of continuous systems return unevaluated integral

\section*{Examples}
```

>>> from diofant.stats import P, Die
>>> X, Y = Die('X', 6), Die('Y', 6)
>>> P(X > 3)
1/2
>>> P(Eq(X, 5), X > 2) \# Probability that X == 5 given that X > 2
1/4
>> P(X > Y)
5/12

```
diofant.stats.E (expr, condition=None, numsamples=None, evaluate=True, **kwargs)
Returns the expected value of a random expression

\section*{Parameters}
- expr (Expr containing RandomSymbols) - The expression of which you want to compute the expectation value
- given (Expr containing RandomSymbols) - A conditional expression. \(\mathrm{E}(\mathrm{X}, \mathrm{X}>0)\) is expectation of X given \(\mathrm{X}>0\)
- numsamples (int) - Enables sampling and approximates the expectation with this many samples
- evalf (Bool (defaults to True)) - If sampling return a number rather than a complex expression
- evaluate (Bool (defaults to True)) - In case of continuous systems return unevaluated integral

\section*{Examples}
```

>>> from diofant.stats import E, Die
>>> X = Die('X', 6)
>>> E(X)
7/2
>>> E(2*X + 1)
8

```
>>> E(X, X > 3) \# Expectation of \(X\) given that it is above 3
5
diofant.stats.density (expr, condition=None, evaluate=True, numsamples=None, **kwargs)
Probability density of a random expression, optionally given a second condition.
This density will take on different forms for different types of probability spaces. Discrete variables produce Dicts. Continuous variables produce Lambdas.

\section*{Parameters}
- expr (Expr containing RandomSymbols) - The expression of which you want to compute the density value
- condition (Relational containing RandomSymbols) - A conditional expression. density \((\mathrm{X}>1, \mathrm{X}>0\) ) is density of \(\mathrm{X}>1\) given \(\mathrm{X}>0\)
- numsamples (int) - Enables sampling and approximates the density with this many samples

\section*{Examples}
```

>>> from diofant.stats import Die, Normal

```
```

>>> D = Die('D', 6)
>>> X = Normal(x, 0, 1)

```
```

>>> density(D).dict
{1: 1/6, 2: 1/6, 3: 1/6, 4: 1/6, 5: 1/6, 6: 1/6}
>>> density(2*D).dict
{2: 1/6, 4: 1/6, 6: 1/6, 8: 1/6, 10: 1/6, 12: 1/6}
>>> density(X)(x)
sqrt(2)*E**(-x**2/2)/(2*sqrt(pi))

```
diofant.stats.given(expr, condition=None, **kwargs)
Conditional Random Expression.
From a random expression and a condition on that expression creates a new probability space from the condition and returns the same expression on that conditional probability space.

\section*{Examples}
```

>>> from diofant.stats import Die
>> X = Die('X', 6)
>> Y = given(X, X > 3)
>>> density(Y).dict
{4: 1/3, 5: 1/3, 6: 1/3}

```

Following convention, if the condition is a random symbol then that symbol is considered fixed.
```

>>> from diofant.stats import Normal

```
```

>>> X = Normal('X', 0, 1)
>>> Y = Normal('Y', 0, 1)
>>> pprint(density(X + Y, Y)(z), use_unicode=False)
-(-Y + z)

2
\/2}*

2*\/ pi

```
diofant.stats.where(condition, given_condition=None, **kwargs)
Returns the domain where a condition is True.

\section*{Examples}
```

>>> from diofant.stats import Die, Normal

```
>>> D1, D2 = Die('a', 6), Die('b', 6)
>>> a, b = D1.symbol, D2.symbol
>> X = Normal('x', 0, 1)
>>> where \(\left(\mathrm{X}^{* *} 2<1\right)\)
Domain: \((-1<x) \&(x<1)\)
```

>>> where(X**2 < 1).set

```
(-1, 1)
>>> where(And(D1 <= D2, D2 < 3))
Domain: (Eq(a, 1) \& Eq(b, 1)) | (Eq(a, 1) \& Eq(b, 2)) | (Eq(a, 2) \& Eq(b, 2))
diofant.stats.variance ( \(X\), condition=None, **kwargs)
Variance of a random expression
Expectation of (X-E(X))**2

Examples
>>> from diofant.stats import Die, Bernoulli
```

>>> X = Die('X', 6)
>>> p = Symbol('p')
>>> B = Bernoulli('B', p, 1, 0)

```
>>> variance \((2 * X)\)
35/3
>>> simplify(variance(B))
p* (-p + 1)
diofant.stats.std (X, condition=None, **kwargs)
Standard Deviation of a random expression
Square root of the Expectation of (X-E(X))**2

\section*{Examples}
```

>>> from diofant.stats import Bernoulli

```
>>> \(\mathrm{p}=\) Symbol('p')
\(\gg B=\) Bernoulli('B', \(p, 1,0)\)
```

>>> simplify(std(B))
sqrt(p*(-p + 1))

```
diofant.stats.sample(expr, condition=None, **kwargs)
A realization of the random expression

\section*{Examples}
>>> from diofant.stats import Die
>> X, Y, Z = Die('X', 6), Die('Y', 6), Die('Z', 6)
>>> die_roll = sample( \(\mathrm{X}+\mathrm{Y}+\mathrm{Z}\) ) \# A random realization of three dice
diofant.stats.sample_iter(expr, condition=None, numsamples \(=00,{ }^{* *}\) kwargs)
Returns an iterator of realizations from the expression given a condition
expr: Random expression to be realized condition: A conditional expression (optional)
numsamples: Length of the iterator (defaults to infinity)

\section*{Examples}
```

>>> from diofant.stats import Normal
>>> X = Normal('X', 0, 1)
>>> expr = X*X + 3
>>> iterator = sample_iter(expr, numsamples=3)
>>> list(iterator)
[12, 4, 7]

```

\section*{See also:}
diofant.stats.sample (page 738), diofant.stats.rv.sampling_P (page 740), diofant.stats.rv.sampling_E (page 741)

\subsection*{4.19.3 Mechanics}

Diofant Stats employs a relatively complex class hierarchy.
RandomDomains are a mapping of variables to possible values. For example we might say that the symbol Symbol (' \(x\) ') can take on the values \(\{1,2,3,4,5,6\}\).
```

class diofant.stats.rv.RandomDomain

```

A PSpace, or Probability Space, combines a RandomDomain with a density to provide probabilistic information. For example the above domain could be enhanced by a finite density \(\{1: 1 / 6,2: 1 / 6,3: 1 / 6,4: 1 / 6,5: 1 / 6,6: 1 / 6\}\) to fully define the roll of a fair die named x.
class diofant.stats.rv.PSpace
A RandomSymbol represents the PSpace's symbol ' \(x\) ' inside of Diofant expressions.
class diofant.stats.rv.RandomSymbol
The RandomDomain and PSpace classes are almost never directly instantiated. Instead they are subclassed for a variety of situations.

RandomDomains and PSpaces must be sufficiently general to represent domains and spaces of several variables with arbitrarily complex densities. This generality is often unnecessary. Instead we often build SingleDomains and SinglePSpaces to represent single, univariate events and processes such as a single die or a single normal variable.
```

class diofant.stats.rv.SinglePSpace
class diofant.stats.rv.SingleDomain

```

Another common case is to collect together a set of such univariate random variables. A collection of independent SinglePSpaces or SingleDomains can be brought together to form a ProductDomain or ProductPSpace. These objects would be useful in representing three dice rolled together for example.
```

class diofant.stats.rv.ProductDomain

```
class diofant.stats.rv. ProductPSpace
The Conditional adjective is added whenever we add a global condition to a RandomDomain or PSpace. A common example would be three independent dice where we know their sum to be greater than 12 .
```

class diofant.stats.rv.ConditionalDomain

```

We specialize further into Finite and Continuous versions of these classes to represent finite (such as dice) and continuous (such as normals) random variables.
class diofant.stats.frv.FiniteDomain
class diofant.stats.frv.FinitePSpace
class diofant.stats.crv.ContinuousDomain
class diofant.stats.crv.ContinuousPSpace
Additionally there are a few specialized classes that implement certain common random variable types. There is for example a DiePSpace that implements SingleFinitePSpace and a NormalPSpace that implements SingleContinuousPSpace.
```

class diofant.stats.frv_types.DiePSpace
class diofant.stats.crv_types.NormalPSpace

```

RandomVariables can be extracted from these objects using the PSpace.values method.
As previously mentioned Diofant Stats employs a relatively complex class structure. Inheritance is widely used in the implementation of end-level classes. This tactic was chosen to balance between the need to allow Diofant to represent arbitrarily defined random variables and optimizing for common cases. This complicates the code but is structured to only be important to those working on extending Diofant Stats to other random variable types.
Users will not use this class structure. Instead these mechanics are exposed through variable creation functions Die, Coin, FiniteRV, Normal, Exponential, etc.... These build the appropriate SinglePSpaces and return the corresponding RandomVariable. Conditional and Product spaces are formed in the natural construction of Diofant expressions and the use of interface functions E, Given, Density, etc....
```

diofant.stats.Die()
diofant.stats.Normal()

```

There are some additional functions that may be useful. They are largely used internally.
```

diofant.stats.rv.random_symbols(expr)

```

Returns all RandomSymbols within a Diofant Expression.

\section*{diofant.stats.rv.pspace(expr)}

Returns the underlying Probability Space of a random expression.
For internal use.

\section*{Examples}
>>> from diofant.stats import Normal
>>> X = Normal('X', 0, 1)
>>> pspace \((2 * X+1)==X . p s p a c e\)
True
diofant.stats.rv.rs_swap \((a, b)\)
Build a dictionary to swap RandomSymbols based on their underlying symbol.
i.e. if \(X=(' x ', p s p a c e 1)\) and \(Y=(' x ', p s p a c e 2)\) then \(X\) and \(Y\) match and the key, value pair \(\{\mathrm{X}: \mathrm{Y}\}\) will appear in the result
Inputs: collections a and b of random variables which share common symbols Output: dict mapping RVs in a to RVs in \(b\)
diofant.stats.rv.sampling_P(condition, given_condition=None, numsamples=1, evalf=True, \({ }^{* *}\) kw̄̄args)
Sampling version of P

\section*{See also:}
diofant.stats.P (page 735), diofant.stats.rv.sampling E (page 741), diofant. stats.rv.sampling_density (page 741)
diofant.stats.rv.sampling_E (expr, given_condition=None, numsamples=1, evalf=True, **kwargs)
Sampling version of E

\section*{See also:}
diofant.stats.P (page 735), diofant.stats.rv.sampling_P (page 740), diofant. stats.rv.sampling_density (page 741)
diofant.stats.rv.sampling_density(expr, given_condition=None, numsamples=1, **kwargs)
Sampling version of density

\section*{See also:}
diofant.stats.density (page 736), diofant.stats.rv.sampling_P (page 740), diofant.stats.rv.sampling_E (page 741)
diofant.stats.rv.independent \((a, b)\)
Independence of two random expressions
Two expressions are independent if knowledge of one does not change computations on the other.

\section*{Examples}
>>> from diofant.stats import Normal
```

>>> X, Y = Normal('X', 0, 1), Normal('Y', 0, 1)
>>> independent(X, Y)
True
>>> independent(2*X + Y, -Y)
False
>>> X, Y = given(Tuple(X, Y), Eq(X + Y, 3))
>>> independent(X, Y)
False

```

\section*{See also:}
diofant.stats.rv.dependent (page 741)
diofant.stats.rv.dependent \((a, b)\)
Dependence of two random expressions
Two expressions are independent if knowledge of one does not change computations on the other.

\section*{Examples}
```

>>> from diofant.stats import Normal

```
```

>>> X, Y = Normal('X', 0, 1), Normal('Y', 0, 1)
>>> dependent(X, Y)
False
>>> dependent(2*X + Y, -Y)
True
>>> X, Y = given(Tuple(X, Y), Eq(X + Y, 3))
>>> dependent(X, Y)
True

```

\section*{See also:}
diofant.stats.rv.independent (page 741)

\subsection*{4.20 Solvers}

This module implements methods for solving equations and inequalities.

\subsection*{4.20.1 Algebraic equations}

This module contain solvers for all kinds of equations, algebraic or transcendental.
```

diofant.solvers.solvers.minsolve_linear_system(system, *symbols, **flags)

```

Find a particular solution to a linear system.
In particular, try to find a solution with the minimal possible number of non-zero variables. This is a very computationally hard problem.

\section*{Parameters}
- system (Matrix) - \(\mathrm{Nx}(\mathrm{M}+1)\) matrix, which means it has to be in augmented form.
- *symbols (list) - List of M Symbol's.
- **flags (dict) - A dictionary of following parameters:
quick [boolean, optional] If True, a heuristic is used. Otherwise (default) a naive algorithm with exponential complexity is used.
diofant.solvers.solvers.solve(f, *symbols, **flags)
Algebraically solves equation or system of equations.

\section*{Parameters}
- f (Expr, Equality or iterable of above) - All expressions are assumed to be equal to 0 .
- *symbols (tuple) - If none symbols given (empty tuple), free symbols of expressions will be used.
- **flags (dict) - A dictionary of following parameters:
check [bool, optional] If False, don't do any testing of solutions. Default is True, i.e. the solutions are checked and those that doesn't satisfy
given assumptions on symbols solved for or make any denominator zero - are automatically excluded.
warn [bool, optional] Show a warning if checksol() (page 832) could not conclude. Default is False.
simplify [bool, optional] Enable simplification (default) for all but polynomials of order 3 or greater before returning them and (if check is not False) use the general simplify function on the solutions and the expression obtained when they are substituted into the function which should be zero.
rational [bool or None, optional] If True, recast Floats as Rational. If None (default), Floats will be recast as rationals but the answer will be recast as Floats. If the flag is False then nothing will be done to the Floats.
cubics, quartics, quintics [bool, optional] Return explicit solutions (with radicals, which can be quite long) when, respectively, cubic, quartic or quintic expressions are encountered. Default is True. If False, Root0f (page 622) instances will be returned instead.

\section*{Examples}

Single equation:
```

>>> solve(x**2 - y**2)
[{x: -y}, {x: y}]
>>> solve(x**2 - 1)
[{x: -1}, {x: 1}]

```

We could restrict solutions by using assumptions:
```

>>> p = Symbol('p', positive=True)
>>> solve(p**2 - 1)
[{p: 1}]

```

Several equations:
```

>>> solve((x + 5*y - 2, -3*x + 6*y - 15))
[{x: -3, y: 1}]
>>> solve((x+5*y - 2, -3*x + 6*y - z))
[{x: -5*z/21 + 4/7, y: z/21 + 2/7}]

```

No solution:
```

>>> solve([x + 3, x - 3])

```
[]

\section*{Notes}

When an object other than a Symbol is given as a symbol, it is isolated algebraically and an implicit solution may be obtained. This is mostly provided as a convenience to save one from replacing the object with a Symbol and solving for that Symbol. It will only work if the specified object can be replaced with a Symbol using the subs method.
```

>>> solve(f(x) - x, f(x))
[{f(x): x}]
>>> solve(f(x).diff(x) - f(x) - x, f(x).diff(x))
[{Derivative(f(x), x): x + f(x)}]

```

\section*{See also:}
diofant. solvers. recurr. rsolve (page 821) solving recurrence equations
diofant.solvers.ode.dsolve (page 771) solving differential equations
diofant.solvers.inequalities.reduce_inequalities (page 746) solving inequalities
diofant.solvers.solvers.solve_linear ( \(f, x\) )
Solve equation \(f\) wrt variable \(x\).
Returns tuple - ( x , solution), if there is a linear solution, \((0,1)\) if f is independent of the symbol \(x,(0,0)\) if solution set any denominator of \(f\) to zero or (numerator, denominator) of \(f\), if it's a nonlinear expression wrt x.

\section*{Examples}
```

>>> solve linear(1/x - y**2, x)
(x, y**(-\overline{2}))
>>> solve_linear(x**2/y**2 - 3, x)
(x**2 - 3*y**2, y**2)
>>> solve_linear(y, x)
(0, 1)
>>> solve_linear(1/(1/x - 2), x)
(0, 0)

```

\section*{Systems of Polynomial Equations}

Solvers of systems of polynomial equations.
diofant.solvers.polysys.solve_linear_system(system, *symbols, **flags)
Solve system of linear equations.
Both under- and overdetermined systems are supported. The possible number of solutions is zero, one or infinite.

\section*{Parameters}
- system (Matrix) - \(\mathrm{Nx}(\mathrm{M}+1)\) matrix, which means it has to be in augmented form. This matrix will not be modified.
- *symbols (list) - List of M Symbol's

Returns solution (dict or None) - Respectively, this procedure will return None or a dictionary with solutions. In the case of underdetermined systems, all arbitrary parameters are skipped. This may cause a situation in which an empty dictionary is returned. In that case, all symbols can be assigned arbitrary values.

\section*{Examples}

Solve the following system:
```

r x + 4y == 2

```
>>> system = Matrix(((1, 4, 2), (-2, 1, 14)))
>>> solve_linear_system(system, \(x, y)\)
\{x: \(-6, y\) : 2\(\}\)

A degenerate system returns an empty dictionary.
```

>>> system = Matrix(((0, 0, 0), (0, 0, 0)))
>>> solve_linear_system(system, x, y)
{}

```

\section*{See also:}
diofant.matrices.matrices.MatrixBase.rref (page 547)
diofant.solvers.polysys.solve_poly_system(eqs, *gens, **args)
Solve a system of polynomial equations.
Polynomial system may have finite number of solutions or infinitely many (positivedimensional systems).

\section*{References}
- [CLOShea15], p. 98

\section*{Examples}
```

>>> solve_poly_system([x*y - 2*y, 2*y**2 - x**2], x, y)
[{x: 0, y: 0}, {x: 2, y: -sqrt(2)}, {x: 2, y: sqrt(2)}]

```
>>> solve_poly system([x*y], \(x, y)\)
[\{x: 0\}, \(\overline{\{y: ~ 0\}}]\)
diofant.solvers.polysys.solve_surd_system(eqs, *gens, **args)
Solve a system of algebraic equations.

\section*{Examples}
>>> solve_surd_system([x + sqrt(x + 1) - 2])
[\{x: -sqr̄(13)/2 + 5/2\}]

\subsection*{4.20.2 Inequality Solvers}

Tools for solving inequalities and systems of inequalities.
diofant.solvers.inequalities.reduce_inequalities(inequalities, symbols=[])
Reduces a system of inequalities or equations.

Examples
```

>>> reduce_inequalities(0 <= x + 3, [])
-3 <= x
>>> reduce_inequalities(0 <= x + y*2 - 1, [x])
-2*y + < <= x

```

\section*{See also:}
diofant.solvers.solvers.solve (page 742) solve algebraic equations

\subsection*{4.20.3 Diophantine}

\section*{Diophantine equations}

The word "Diophantine" comes with the name Diophantus, a mathematician lived in the great city of Alexandria sometime around 250 AD. Often referred to as the "father of Algebra", Diophantus in his famous work "Arithmetica" presented 150 problems that marked the early beginnings of number theory, the field of study about integers and their properties. Diophantine equations play a central and an important part in number theory.
We call a "Diophantine equation" to an equation of the form, \(f\left(x_{1}, x_{2}, \ldots x_{n}\right)=0\) where \(n \geq 2\) and \(x_{1}, x_{2}, \ldots x_{n}\) are integer variables. If we can find \(n\) integers \(a_{1}, a_{2}, \ldots a_{n}\) such that \(x_{1}=a_{1}, x_{2}=\) \(a_{2}, \ldots x_{n}=a_{n}\) satisfies the above equation, we say that the equation is solvable.
Currently, following five types of Diophantine equations can be solved using diophantine() (page 751) and other helper functions of the Diophantine module.
- Linear Diophantine equations: \(a_{1} x_{1}+a_{2} x_{2}+\ldots+a_{n} x_{n}=b\).
- General binary quadratic equation: \(a x^{2}+b x y+c y^{2}+d x+e y+f=0\)
- Homogeneous ternary quadratic equation: \(a x^{2}+b y^{2}+c z^{2}+d x y+e y z+f z x=0\)
- Extended Pythagorean equation: \(a_{1} x_{1}^{2}+a_{2} x_{2}^{2}+\ldots+a_{n} x_{n}^{2}=a_{n+1} x_{n+1}^{2}\)
- General sum of squares: \(x_{1}^{2}+x_{2}^{2}+\ldots+x_{n}^{2}=k\)

\section*{Module structure}

This module contains diophantine() (page 751) and helper functions that are needed to solve certain Diophantine equations. It's structured in the following manner.
- diophantine() (page 751)
- diop_solve() (page 753)
* classify_diop() (page 752)
* diop_linear() (page 754)
* diop_quadratic() (page 755)
* diop_ternary_quadratic() (page 759)
* diop_ternary_quadratic_normal() (page 767)
* diop_general_pythagorean() (page 760)
* diop_general_sum_of_squares() (page 761)
* diop_general_sum_of_even_powers() (page 761)
- merge_solution() (page 765)

When an equation is given to diophantine() (page 751), it factors the equation(if possible) and solves the equation given by each factor by calling diop_solve() (page 753) separately. Then all the results are combined using merge_solution() (page 765).
diop_solve() (page 753) internally uses classify_diop() (page 752) to find the type of the equation(and some other details) given to it and then calls the appropriate solver function based on the type returned. For example, if classify_diop() (page 752) returned "linear" as the type of the equation, then diop_solve() (page 753) calls diop_linear() (page 754) to solve the equation.
Each of the functions, diop_linear() (page 754), diop_quadratic() (page 755), diop_ternary_quadratic() (page 759), diop general_pythägorean() (page 760) and diop_general_sum_of_squares() (page 761) solves a specific type of equations and the type can be easily guessed by it's name.

Apart from these functions, there are a considerable number of other functions in the "Diophantine Module" and all of them are listed under User functions and Internal functions.

\section*{Tutorial}

First, let's import the highest API of the Diophantine module.
```

>>> from diofant.solvers.diophantine import diophantine

```

Before we start solving the equations, we need to define the variables.
```

>> x, y, z, t, p, q = symbols('x, y, z, t, p, q', integer=True)
>>> t1, t2, t3, t4, t5 = symbols('t1:6', integer=True)

```

Let's start by solving the easiest type of Diophantine equations, i.e. linear Diophantine equations. Let's solve \(2 x+3 y=5\). Note that although we write the equation in the above form, when we input the equation to any of the functions in Diophantine module, it needs to be in the form \(e q=0\).
```

>>> diophantine(2*x + 3*y - 5)
{(3*t_0 - 5, -2*t_0 + 5)}

```

Note that stepping one more level below the highest API, we can solve the very same equation by calling diop_solve() (page 753).
```

>>> from diofant.solvers.diophantine import diop_solve
>>> diop solve(2*x + 3*y - 5)
(3*t_0 - 5, -2*t_0 + 5)

```

Note that it returns a tuple rather than a set. diophantine() (page 751) always return a set of tuples. But diop_solve() (page 753) may return a single tuple or a set of tuples depending on the type of the equation given.
We can also solve this equation by calling diop_linear() (page 754), which is what diop_solve() (page 753) calls internally.
```

>>> from diofant.solvers.diophantine import diop_linear
>>> diop_linear(2*x + 3*y - 5)
(3*t_0 - 5, -2*t_0 + 5)

```

If the given equation has no solutions then the outputs will look like below.
```

>>> diophantine(2*x + 4*y - 3)
set()
>> diop_solve(2*x + 4*y - 3)
(None, Nōne)
>>> diop_linear(2*x + 4*y - 3)
(None, Nōne)

```

Note that except for the highest level API, in case of no solutions, a tuple of None are returned. Size of the tuple is the same as the number of variables. Also, one can specifically set the parameter to be used in the solutions by passing a customized parameter. Consider the following example:
```

>>> diop_solve(2*x + 3*y - 5, m)
(3*m_0 - 5, -2*m_0 + 5)

```

For linear Diophantine equations, the customized parameter is the prefix used for each free variable in the solution. Consider the following example:
```

>>> diop_solve(2*x + 3*y - 5*z + 7, m)
(m_0, m_0 + 5*m_1 - 14, m_0 + 3*m_1 - 7)

```

In the solution above, \(\mathrm{m}_{-} 0\) and \(\mathrm{m}_{-} 1\) are independent free variables.
Please note that for the moment, users can set the parameter only for linear Diophantine equations and binary quadratic equations.

Let's try solving a binary quadratic equation which is an equation with two variables and has a degree of two. Before trying to solve these equations, an idea about various cases associated with the equation would help a lot. Let us define \(\Delta=b^{2}-4 a c\) w.r.t. the binary quadratic \(a x^{2}+b x y+c y^{2}+d x+e y+f=0\).
When \(\Delta<0\), there are either no solutions or only a finite number of solutions.
```

>>> diophantine(x**2 - 4*x*y + 8*y**2 - 3*x + 7*y - 5)
{(2, 1), (5, 1)}

```

In the above equation \(\Delta=(-4)^{2}-4 * 1 * 8=-16\) and hence only a finite number of solutions exist.

When \(\Delta=0\) we might have either no solutions or parameterized solutions.
```

>>> diophantine(3*x**2 - 6*x*y + 3*y**2 - 3*x + 7*y - 5)
set()
>>> diophantine(x**2 - 4*x*y + 4*y**2 - 3*x + 7*y - 5)
{(-2*t**2 - 7*t + 10, -t**2 - 3*t + 5)}
>>> diophantine(x**2 + 2*x*y + y**2 - 3*x - 3*y)
{(t_0, -t_0), (t_0, -t_0 + 3)}

```

The most interesting case is when \(\Delta>0\) and it is not a perfect square. In this case, the equation has either no solutions or an infinite number of solutions. Consider the below cases where \(\Delta=8\).
```

>>> diophantine(x**2 - 4*x*y + 2*y**2 - 3*x + 7*y - 5)
set()
>>> s = diophantine(x**2 - 2*y**2 - 2*x - 4*y, n)
>>> x_1, y_1 = s.pop()
>> x_2, y_2 = s.pop()
>> x_n = (- (-2*sqrt(2) + 3)**n/2 + sqrt(2)*(-2*sqrt(2) + 3)**n/2 -
\#." sqrt(2)*(2*sqrt(2) + 3)**n/2 - (2*sqrt(2) + 3)**n/2 + 1)
>>> x_1 == x_n or x_2 == x_n
True
>>> y_n = (-sqrt(2)*(-2*sqrt(2) + 3)**n/4 + (-2*sqrt(2) + 3)**n/2 +
\#.. sqrt(2)*(2*sqrt(2) + 3)**n/4 + (2*sqrt(2) + 3)**n/2 - 1)
>>> y_1 == y_n or y_2 == y_n
True

```

Here \(n\) is an integer. Although \(x_{-} n\) and y_n may not look like integers, substituting in specific values for \(n\) (and simplifying) shows that they are. For example consider the following example where we set n equal to 9 .
```

>>> simplify(x_n.subs({n: 9}))
-9369318

```

Any binary quadratic of the form \(a x^{2}+b x y+c y^{2}+d x+e y+f=0\) can be transformed to an equivalent form \(X^{2}-D Y^{2}=N\).
```

>>> from diofant.solvers.diophantine import find_DN, diop_DN, transformation_to_DN
>>> find DN(x**2 - 3*x*y + y**2 - 7*x + 5*y - 3)
(5, 920)

```

So, the above equation is equivalent to the equation \(X^{2}-5 Y^{2}=920\) after a linear transformation. If we want to find the linear transformation, we can use transformation_to_DN() (page 757)
```

>>> A, B = transformation_to_DN(x**2 - 3*x*y + y**2 - 7*x + 5*y - 3)

```

Here \(A\) is a \(2 \times 2\) matrix and \(B\) is a \(2 \times 1\) matrix such that the transformation
\[
\left[\begin{array}{l}
X \\
Y
\end{array}\right]=A\left[\begin{array}{l}
x \\
y
\end{array}\right]+B
\]
gives the equation \(X^{2}-5 Y^{2}=920\). Values of \(A\) and \(B\) are as belows.
```

>>> A
Matrix([
[1/10, 3/10],
[0, 1/5]])
>> B
Matrix([
[1/5],
[-11/5]])

```

We can solve an equation of the form \(X^{2}-D Y^{2}=N\) by passing \(D\) and \(N\) to diop_DN() (page 755)
```

>>> diop_DN(5, 920)
[]

```

Unfortunately, our equation has no solution.
Now let's turn to homogeneous ternary quadratic equations. These equations are of the form \(a x^{2}+b y^{2}+c z^{2}+d x y+e y z+f z x=0\). These type of equations either have infinitely many solutions or no solutions (except the obvious solution ( \(0,0,0\) ))
```

>>> diophantine(3*x**2 + 4*y**2 - 5*z**2 + 4*x*y + 6*y*z + 7*z*x)
{(0, 0, 0)}
>>> diophantine(3*x**2 + 4*y**2 - 5*z**2 + 4*x*y - 7*y*z + 7*z*x
{(-16*p**2 + 28*p*q + 20*q**2, 3*p**2 + 38*p*q - 25*q**2, 4*p**2 - 24*p*q + 68*q**2)}

```

If you are only interested in a base solution rather than the parameterized general solution (to be more precise, one of the general solutions), you can use diop_ternary_quadratic() (page 759).
```

>>> from diofant.solvers.diophantine import diop_ternary_quadratic
>>> diop ternary_quadratic(3*x**2 + 4*y**2 - 5*z**2 + 4*x*y - 7*y*z + 7*z*x)
(-4, 5, \overline{1})

```
diop_ternary_quadratic() (page 759) first converts the given equation to an equivalent equation of the form \(w^{2}=A X^{2}+B Y^{2}\) and then it uses descent () (page 760) to solve the latter equation. You can refer to the docs of transformation_to_normal() (page 771) to find more on this. The equation \(w^{2}=A X^{2}+B Y^{2}\) can be solved more easily by using the Aforementioned descent() (page 760).
```

>>> from diofant.solvers.diophantine import descent
>>> descent(3, 1) \# solves the equation w**2 = 3*Y**2 + Z**2
(1, 0, 1)

```

Here the solution tuple is in the order ( \(\mathrm{w}, \mathrm{Y}, \mathrm{Z}\) )
The extended Pythagorean equation, \(a_{1} x_{1}^{2}+a_{2} x_{2}^{2}+\ldots+a_{n} x_{n}^{2}=a_{n+1} x_{n+1}^{2}\) and the general sum of squares equation, \(x_{1}^{2}+x_{2}^{2}+\ldots+x_{n}^{2}=k\) can also be solved using the Diophantine module.
```

>>> from diofant.abc import e, f
>>> diophantine(9*a**2 + 16*b**2 + c**2 + 49*d**2 + 4*e**2 - 25*f**2)
{(70*t1**2 + 70*t2**2 + 70*t3**2 + 70*t4**2 - 70*t5**2, 105*t1*t5, 420*t2*t5,4
\&60*t3*t5, 210*t4*t5, 42*t1**2 + 42*t2**2 + 42*t3**2 + 42*t4**2 + 42*t5**2)}

```
function diop_general_pythagorean() (page 760) can also be called directly to solve the same equation. Either you can call diop_general_pythagorean() (page 760) or use the high level API. For the general sum of squares, this is also true, but one advantage of calling diop_general_sum_of_squares() (page 761) is that you can control how many solutions are returned.
```

>>> from diofant.solvers.diophantine import diop_general_sum_of_squares
>>> eq = a**2 + b**2 + c**2 + d**2 - 18
>>> diophantine(eq)
{(0, 0, 3, 3), (0, 1, 1, 4), (1, 2, 2, 3)}
>>> diop_general_sum_of_squares(eq, 2)
{(0, 0, \overline{3},3), (\overline{1},2, 2, 3)}

```

The sum_of_squares() (page 765) routine will providean iterator that returns solutions and one may control whether the solutions contain zeros or not (and the solutions not containing zeros are returned first):
```

>>> from diofant.solvers.diophantine import sum_of_squares
>>> sos = sum_of_squares(18, 4, zeros=True)
>>> next(sos)
(1, 2, 2, 3)
>>> next(sos)
(0, 0, 3, 3)

```

Simple Eqyptian fractions can be found with the Diophantine module, too. For example, here are the ways that one might represent \(1 / 2\) as a sum of two unit fractions:
```

>>> diophantine(Eq(1/x + 1/y, Rational(1, 2)))
{(-2, 1), (1, -2), (3, 6), (4, 4), (6, 3)}

```

To get a more thorough understanding of the Diophantine module, please refer to the following blog.
https://thilinaatsympy.wordpress.com/

\section*{References}
- Andreescu, Titu. Andrica, Dorin. Cucurezeanu, Ion. An Introduction to Diophantine Equations
- Diophantine Equation, Wolfram Mathworld, [online]. Available: https://mathworld. wolfram.com/DiophantineEquation.html
- Methods to solve \(\mathrm{Ax}^{\wedge} 2+\mathrm{Bxy}+\mathrm{Cy}^{\wedge} 2+\mathrm{Dx}+\mathrm{Ey}+\mathrm{F}=0\),[online], Available: https:// web.archive.org/web/20181231080858/https://www.alpertron.com.ar/METHODS.HTM
- Solving the equation \(\mathrm{ax}^{\wedge} 2+\mathrm{bxy}+\mathrm{cy} \wedge 2+\mathrm{dx}+\mathrm{ey}+\mathrm{f}=0\), [online], Available: https: //web.archive.org/web/20180831180321/http://www.jpr2718.org/ax2p.pdf

\section*{User Functions}

This function is imported into the global namespace with from diofant import *:

\section*{diophantine}
diofant.solvers.diophantine.diophantine(eq, param=Symbol('t', integer=True), syms=None)
Simplify the solution procedure of diophantine equation eq by converting it into a product of terms which should equal zero.
\((x+y)(x-y)=0\) and \(x+y=0\) and \(x-y=0\) are solved independently and combined. Each term is solved by calling diop_solve().
Output of diophantine() is a set of tuples. The elements of the tuple are the solutions for each variable in the the equation and are arranged according to the alphabetic ordering of the variables. e.g. For an equation with two variables, \(a\) and \(b\), the first element of the tuple is the solution for \(a\) and the second for \(b\).

\section*{Parameters}
- eq (Relational or Expr) - an equation (to be solved)
- t (Symbol, optional) - the parameter to be used in the solution.
- syms (list of Symbol's, optional) - which determines the order of the elements in the returned tuple.

\section*{Examples}
```

>>> diophantine(x**2 - y**2)
{(t_0, -t_0), (t_0, t_0)}

```
```

>>> diophantine(x*(2*x + 3*y - z))
{(0, n1, n2), (t_0, t_1, 2*t_0 + 3*t_1)}
>>> diophantine(}\overline{x}**2 + 3*x*y- + 4*x
{(0, n1), (3*t_0 - 4, -t_0)}

```

\section*{See also:}
diofant.solvers.diophantine.diop_solve (page 753)
And this function is imported with from diofant.solvers.diophantine import *:

\section*{classify_diop}
diofant.solvers.diophantine.classify_diop(eq,_dict=True)
Helper routine used by diop_solve() to find the type of the eq etc.
Parameters eq (Expr) - an expression, which is assumed to be zero.

\section*{Examples}
```

>>> classify_diop(4*x + 6*y - 4)
([x, y], {1: -4, x: 4, y: 6}, 'linear')
>>> classify_diop(x + 3*y - 4*z + 5)
([x, y, z], {1: 5, x: 1, y: 3, z: -4}, 'linear')
>>> classify_diop(x**2 + y**2 - x*y + x + 5)
([x, y], {1:-5, x: 1, x**2: 1, y**2: 1, x*y: -1}, 'binary_quadratic')

```

\section*{Returns}
- Returns a tuple containing the type of the diophantine equation along with
- the variables(free symbols) and their coefficients. Variables are returned
- as a list and coefficients are returned as a dict with the key being the
- respective term and the constant term is keyed to Integer(1). The type
- is one of the following -
- binary_quadratic
- cubic_thue
- general_pythagorean
- general_sum_of_even_powers
- general_sum_of_squares
- homogeneous_general_quadratic
- homogeneous_ternary_quadratic
- homogeneous_ternary_quadratic_normal
- inhomogeneous_general_quadratic
- inhomogeneous_ternary_quadratic
- linear
- univariate

\section*{Internal Functions}

These functions are intended for internal use in the Diophantine module.

\section*{diop_solve}
diofant.solvers.diophantine.diop_solve(eq, param=Symbol('t', integer=True))
Solves the diophantine equation eq.
Unlike diophantine(), factoring of eq is not attempted. Uses classify_diop() to determine the type of the equation and calls the appropriate solver function.

\section*{Parameters}
- eq (Expr) - an expression, which is assumed to be zero.
- t (Symbol, optional) - a parameter, to be used in the solution.

\section*{Examples}
```

>>> from diofant.abc import w
>>> diop solve(2*x + 3*y - 5)
(3*t 0 - 5, -2*t 0 + 5)
>>> diop solve(4*x+3*y - 4*z + 5)
(t_0, 8*t_0 + 4*t_1 + 5, 7*t_0 + 3*t_1 + 5)
>>> diop_solve(x ` 3*y - 4*z`}+w w - 6)
(t 0, t\overline{0}+t 1, 6*t 0 + 5*t 1 + 4*t 2 - 6, 5*t 0 + 4*t 1 + 3*t 2 - 6)
>>> diop_solvé(x**2 ` y**2 - 5)
{(-2,-1), (-2, 1), (-1,-2), (-1, 2), (1, -2), (1, 2), (2, -1), (2, 1)}

```

\section*{See also:}
diofant.solvers.diophantine.diophantine (page 751)

\section*{diop_linear}
diofant.solvers.diophantine.diop_linear(eq, param=Symbol('t', integer=True))
Solves linear diophantine equations.
A linear diophantine equation is an equation of the form \(a_{1} x_{1}+a_{2} x_{2}+. .+a_{n} x_{n}=0\) where \(a_{1}, a_{2}, . . a_{n}\) are integer constants and \(x_{1}, x_{2}, \ldots x_{n}\) are integer variables.

\section*{Parameters}
- eq (Expr) - is a linear diophantine equation which is assumed to be zero.
- param (Symbol, optional) - is the parameter to be used in the solution.

\section*{Examples}
```

>>> diop_linear(2*x - 3*y - 5)
(3*t_0 - 5, 2*t_0 - 5)

```

Here \(\mathrm{x}=-3 * \mathrm{t}\) _ \(0-5\) and \(\mathrm{y}=-2 * \mathrm{t}\) _0-5
```

>>> diop_linear(2*x - 3*y - 4*z - 3)
(t_0, 2*\overline{t}_0 + 4*t_1 + 3, -t_0 - 3*t_1 - 3)

```

\section*{See also:}
diofant.solvers.diophantine.diop_quadratic (page 755), diofant.solvers. diophantine.diop_ternary_quadratic (page 759), diofant.solvers.diophantine. diop_general_pythagorean (page 760), diofant.solvers.diophantine. diop_general_sum_of_squares (page 761)

\section*{base_solution_linear}
diofant.solvers.diophantine.base_solution_linear( \(c, a, b, t=N o n e\) )
Return the base solution for the linear equation, \(a x+b y=c\).
Used by diop_linear() to find the base solution of a linear Diophantine equation. If \(t\) is given then the parametrized solution is returned.
base_solution_linear( \(\mathbf{c}, \mathrm{a}, \mathrm{b}, \mathrm{t}\) ): \(\mathrm{a}, \mathrm{b}, \mathrm{c}\) are coefficients in \(a x+b y=c\) and t is the parameter to be used in the solution.

\section*{Examples}
```

>>> base_solution_linear(5, 2, 3) \# equation 2*x + 3*y = 5
(-5, 5)
>>> base_solution_linear(0, 5, 7) \# equation 5*x + 7*y = 0
(0, 0)
>> base_solution_linear(5, 2, 3, t) \# equation 2*x + 3*y = 5
(3*t - 5, -2*t + \overline{5})
>> base_solution_linear(0, 5, 7, t) \# equation 5*x + 7*y = 0
(7*t, - 5* t)

```

\section*{diop_quadratic}
diofant.solvers.diophantine.diop_quadratic(eq, param=Symbol('t', integer=True))
Solves quadratic diophantine equations.
i.e. equations of the form \(A x^{2}+B x y+C y^{2}+D x+E y+F=0\). Returns a set containing the tuples \((x, y)\) which contains the solutions. If there are no solutions then (None, None) is returned.

\section*{Parameters}
- eq (Expr) - should be a quadratic bivariate expression which is assumed to be zero.
- param (Symbol, optional) - is a parameter to be used in the solution.

\section*{Examples}
```

>>> diop quadratic(x**2 + y**2 + 2*x + 2*y + 2, t)

```
\(\{(-1,-1)\}\)

\section*{References}
- Methods to solve \(\mathrm{Ax}^{\wedge} 2+\mathrm{Bxy}+\mathrm{Cy}^{\wedge} 2+\mathrm{Dx}+\mathrm{Ey}+\mathrm{F}=0\), [online], Available: https://web.archive.org/web/20181231080858/https://www.alpertron.com.ar/ METHODS.HTM
- Solving the equation \(\mathrm{ax}^{\wedge} 2+\mathrm{bxy}+\mathrm{cy}\) ^2 \(+\mathrm{dx}+\mathrm{ey}+\mathrm{f}=0\), [online], Available: https: //web.archive.org/web/20180831180321/http://www.jpr2718.org/ax2p.pdf

\section*{See also:}
diofant.solvers.diophantine.diop_linear (page 754), diofant.solvers. diophantine.diop_ternary_quadratic (page 759), diofant.solvers.diophantine. diop_general_sum_of_squares (page 761), diofant.solvers.diophantine. diop_general_pythagōrean (page 760)
```

diop_DN

```
diofant.solvers.diophantine.diop_DN(D, \(N, t=\) Symbol('t', integer=True))
    Solves the equation \(x^{2}-D y^{2}=N\).

Mainly concerned with the case \(D>0, D\) is not a perfect square, which is the same as the generalized Pell equation. The LMM algorithm is used to solve this equation.

\section*{Returns}
- A tuple of pairs, \((x, y)\), for each class of the solutions.
- Other solutions of the class can be constructed according to the
- values of D and N .

\section*{Parameters}
- D, \(\mathbf{N}\) (Integer) - correspond to D and N in the equation.
- t (Symbol, optional) - is the parameter to be used in the solutions.

\section*{Examples}
```

>>> diop_DN(13, -4) \# Solves equation x**2 - 13*y**2 = -4
[(3, 1), (393, 109), (36, 10)]

```

The output can be interpreted as follows: There are three fundamental solutions to the equation \(x^{2}-13 y^{2}=-4\) given by \((3,1),(393,109)\) and \((36,10)\). Each tuple is in the form ( \(\mathrm{x}, \mathrm{y}\) ), i.e. solution \((3,1)\) means that \(x=3\) and \(y=1\).
```

>>> diop_DN(986, 1) \# Solves equation x**2 - 986*y**2 = 1
[(49299, 1570)]

```

\section*{See also:}
diofant.solvers.diophantine.find_DN (page 759), diofant.solvers.diophantine. diop_bf_DN (page 757)

\section*{References}
- Solving the generalized Pell equation \(\mathrm{x}^{* * 2}-\mathrm{D}^{*} \mathrm{y}^{* *} 2=\mathrm{N}\), John P. Robertson, July 31, 2004, Pages 16-17. [online], Available: https://web.archive.org/web/ 20180831180333/http://www.jpr2718.org/pell.pdf

\section*{cornacchia}
diofant.solvers.diophantine.cornacchia( \(a, b, m\) )
Solves \(a x^{2}+b y^{2}=m\) where \(\operatorname{gcd}(a, b)=1=\operatorname{gcd}(a, m)\) and \(a, b>0\).
Uses the algorithm due to Cornacchia. The method only finds primitive solutions, i.e. ones with \(\operatorname{gcd}(x, y)=1\). So this method can't be used to find the solutions of \(x^{2}+y^{2}=20\) since the only solution to former is \((x, y)=(4,2)\) and it is not primitive. When \(a=b\), only the solutions with \(x \leq y\) are found. For more details, see the References.

\section*{Examples}
```

>>> cornacchia(2, 3, 35)
{(2, 3), (4, 1)}
>>> cornacchia(1, 1, 25)
{(4, 3)}

```

\section*{References}
- A. Nitaj, "L'algorithme de Cornacchia"
- Solving the diophantine equation \(a x^{* *} 2+b y * * 2=m\) by Cornacchia's method, [online], Available: http://www.numbertheory.org/php/cornacchia.html

\section*{See also:}
diofant.utilities.iterables.signed_permutations (page 898)

\section*{diop_bf_DN}
diofant.solvers.diophantine.diop_bf_DN( \(D, N, t=\) Symbol('t', integer=True))
Uses brute force to solve the equation, \(x^{2}-D y^{2}=N\).
Mainly concerned with the generalized Pell equation which is the case when \(D>0, D\) is not a perfect square. Let \((t, u)\) be the minimal positive solution of the equation \(x^{2}-D y^{2}=1\). Then this method requires \(\sqrt{\frac{|N|(t \pm 1)}{2 D}}\) to be small.

\section*{Parameters}
- D, \(\mathbf{N}\) (Integer) - correspond to D and N in the equation.
- t (Symbol, optional) - is the parameter to be used in the solutions.

\section*{Examples}
```

>>> diop_bf_DN(13, -4)
[(3, 1),- (-\overline{3}, 1), (36, 10)]
>>> diop_bf DN(986, 1)
[(49299, 1570)]

```

\section*{See also:}
diofant.solvers.diophantine.diop_DN (page 755)

\section*{References}
- Solving the generalized Pell equation \(\mathrm{x}^{* * 2}-\mathrm{D}^{*} \mathrm{y}^{* *} 2=\mathrm{N}\), John P. Robertson, July 31, 2004, Page 15. https://web.archive.org/web/20180831180333/http://www.jpr2718. org/pell.pdf

\section*{transformation_to_DN}
diofant.solvers.diophantine.transformation_to_DN(eq)
This function transforms general quadratic, \(\bar{a} x^{2}+b x y+c y^{2}+d x+e y+f=0\) to more easy to deal with \(X^{2}-D Y^{2}=N\) form.
This is used to solve the general quadratic equation by transforming it to the latter form. This function returns a tuple ( \(\mathrm{A}, \mathrm{B}\) ) where A is a 2 X 2 matrix and B is a 2 X 1 matrix such that,
\(\operatorname{Transpose}([\mathrm{x} y])=\mathrm{A} * \operatorname{Transpose}([\mathrm{X} \mathrm{Y}])+\mathrm{B}\)

Parameters eq (Expr) - the quadratic expression to be transformed.

\section*{Examples}
```

>>> A, B = transformation_to_DN(x**2 - 3*x*y - y**2 - 2*y + 1)
>> A
Matrix([
[1/26, 3/26],
[[0, 1/13]])
>>> B
Matrix([
[-6/13],
[-4/13]])

```

A, B returned are such that Transpose((x y)) = A * Transpose((X Y)) + B. Substituting these values for \(x\) and \(y\) and a bit of simplifying work will give an equation of the form \(x^{2}-D y^{2}=N\).
```

>>> from diofant.abc import X, Y
>>> u = (A*Matrix([X, Y]) + B)[0] \# Transformation for x
>>> u
X/26 + 3*Y/26 - 6/13
>>> v = (A*Matrix([X, Y]) + B)[1] \# Transformation for y
>>> v
Y/13 - 4/13

```

Next we will substitute these formulas for \(x\) and \(y\) and do simplify().
```

>>> eq = simplify((x**2 - 3*x*y - y**2 - 2*y + 1).subs({x: u, y: v}))
>> eq
X**2/676 - Y**2/52 + 17/13

```

By multiplying the denominator appropriately, we can get a Pell equation in the standard form.
```

>>> eq * 676
X**2 - 13*Y**2 + 884

```

If only the final equation is needed, find_DN() can be used.

\section*{See also:}
diofant.solvers.diophantine.find_DN (page 759)

\section*{References}
- Solving the equation \(\mathrm{ax}^{\wedge} 2+\mathrm{bxy}+\mathrm{cy}^{\wedge} 2+\mathrm{dx}+\mathrm{ey}+\mathrm{f}=0\), John P.Robertson, May 8, 2003, Page 7-11. https://web.archive.org/web/20180831180321/http://www. jpr2718.org/ax2p.pdf

\section*{find_DN}
diofant.solvers.diophantine.find_DN(eq)
This function returns a tuple, \((D, N)\) of the simplified form, \(x^{2}-D y^{2}=N\), corresponding to the general quadratic, \(a x^{2}+b x y+c y^{2}+d x+e y+f=0\).
Solving the general quadratic is then equivalent to solving the equation \(X^{2}-D Y^{2}=N\) and transforming the solutions by using the transformation matrices returned by transformation_to_DN().

Parameters eq (Expr) - is the quadratic expression to be transformed.

\section*{Examples}
```

>>> find DN(x**2 - 3*x*y - y**2 - 2*y + 1)
(13, -88\overline{4})

```

Interpretation of the output is that we get \(X^{2}-13 Y^{2}=-884\) after transforming \(x^{2}-3 x y-\) \(y^{2}-2 y+1\) using the transformation returned by transformation_to_DN().

\section*{See also:}
diofant.solvers.diophantine.transformation to DN (page 757)

\section*{References}
- Solving the equation \(\mathrm{ax}^{\wedge} 2+\mathrm{bxy}+\mathrm{cy}^{\wedge} 2+\mathrm{dx}+\mathrm{ey}+\mathrm{f}=0\), John P.Robertson, May 8, 2003, Page 7-11. https://web.archive.org/web/20180831180321/http://www. jpr2718.org/ax2p.pdf
diop_ternary_quadratic
diofant.solvers.diophantine.diop_ternary_quadratic (eq)
Solves the general quadratic ternary form, \(a x^{2}+b y^{2}+c z^{2}+f x y+g y z+h x z=0\).
Returns tuple - which is a base solution for the above equation. If there are no solutions, (None, None, None) is returned.
Parameters eq (Expr) - should be an homogeneous expression of degree two in three variables and it is assumed to be zero.

\section*{Examples}
```

>>> diop_ternary_quadratic(x**2 + 3*y**2 - z**2)
(1, 0, 1)
>>> diop ternary quadratic(4*x**2 + 5*y**2 - z**2)
(1, 0, 2)
>>> diop_ternary_quadratic(45*x**2 - 7*y**2 - 8*x*y - z**2)
(28, 45,'105)
>>> diop_ternary_quadratic(x**2 - 49*y**2 - z**2 + 13*z*y - 8*x*y)
(9, 1, 5)

```

\section*{descent}
```

diofant.solvers.diophantine.descent(A,B)

```

Returns a non-trivial solution, ( \(\mathrm{x}, \mathrm{y}, \mathrm{z}\) ), to \(x^{2}=A y^{2}+B z^{2}\) using Lagrange's descent method with lattice-reduction. \(A\) and \(B\) are assumed to be valid for such a solution to exist.

This is faster than the normal Lagrange's descent algorithm because the Gaussian reduction is used.

\section*{Examples}
```

>>> descent(3, 1) \# x**2 = 3*y**2 + z**2
(1, 0, 1)

```
\((x, y, z)=(1,0,1)\) is a solution to the above equation.
```

>>> descent(41, -113)
(-16, -3, 1)

```

\section*{References}
- Efficient Solution of Rational Conices, J. E. Cremona and D. Rusin, Mathematics of Computation, Volume 00, Number 0.

\section*{diop_general_pythagorean}
diofant.solvers.diophantine.diop_general_pythagorean(eq, param=Symbol('m', integer=True))
Solves the general pythagorean equation, \(a_{1}^{2} x_{1}^{2}+a_{2}^{2} x_{2}^{2}+\ldots+a_{n}^{2} x_{n}^{2}-a_{n+1}^{2} x_{n+1}^{2}=0\).
Returns a tuple which contains a parametrized solution to the equation, sorted in the same order as the input variables.

\section*{Parameters}
- eq (Expr) - is a general pythagorean equation which is assumed to be zero
- param (Symbol, optional) - is the base parameter used to construct other parameters by subscripting.

\section*{Examples}
```

>>> from diofant.abc import e
>>> diop_general_pythagorean(a**2 + b**2 + c**2 - d**2)
(m1**2 + m2**2 - m3**2, 2*m1*m3, 2*m2*m3, m1**2 + m2**2 + m3**2)
>> diop_general_pythagorean(9*a**2 - 4*b**2 + 16*c**2 + 25*d**2 + e**2)

```

```

->15*m4**2, 15*m1*m4, 12*m2*m4, 60*m3*m4)

```

\section*{diop_general_sum_of_squares}
diofant.solvers.diophantine.diop_general_sum_of_squares(eq, limit=1)
Solves the equation \(x_{1}^{2}+x_{2}^{2}+\ldots+x_{n}^{2}-k=0\).
Returns at most limit number of solutions.

\section*{Parameters}
- eq (Expr) - is an expression which is assumed to be zero. Also, eq should be in the form, \(x_{1}^{2}+x_{2}^{2}+\ldots+x_{n}^{2}-k=0\).
- limit (int, optional) - upper limit (the default is 1 ) for number of solutions returned.

\section*{Notes}

When \(n=3\) if \(k=4^{a}(8 m+7)\) for some \(a, m \in Z\) then there will be no solutions.

\section*{Examples}
```

>>> from diofant.abc import e
>> diop_general_sum_of_squares(a**2 + b**2 + c**2 + d**2 + e**2 - 2345)
{(15, 22, 22, 24, 24)}

```

\section*{References}
- Representing an integer as a sum of three squares, [online], Available: https: //proofwiki.org/wiki/Integer_as_Sum_of_Three_Squares

\section*{diop_general_sum_of_even_powers}
diofant.solvers.diophantine.diop_general_sum_of_even_powers(eq, limit=1)
Solves the equation \(x_{1}^{e}+x_{2}^{e}+\ldots+x_{n}^{e}-k=0\) where \(e\) is an even, integer power.
Returns at most limit number of solutions.

\section*{Parameters}
- eq (Expr) - An expression which is assumed to be zero. Also, eq should be in the form, \(x_{1}^{e}+x_{2}^{e}+\ldots+x_{n}^{e}-k=0\).
- limit (Expr, optional) - Limit number of returned solutions. Default is 1.

\section*{Examples}
>>> diop_general_sum_of_even_powers(a**4 + b**4 - (2**4 + 3**4))
\(\{(2,3)\}\)

\section*{See also:}
diofant.solvers.diophantine.power_representation (page 764)

\section*{partition}
diofant.solvers.diophantine. partition ( \(n, k=\) None, zeros=False)
Returns a generator that can be used to generate partitions of an integer \(n\).
A partition of \(n\) is a set of positive integers which add up to \(n\). For example, partitions of 3 are \(3,1+2,1+1+1\). A partition is returned as a tuple. If \(k\) equals None, then all possible partitions are returned irrespective of their size, otherwise only the partitions of size \(k\) are returned. If the zero parameter is set to True then a suitable number of zeros are added at the end of every partition of size less than \(k\).

\section*{Parameters}
- \(\mathbf{n}\) (int) - is a positive integer
- \(\mathbf{k}\) (int, optional) - is the size of the partition which is also positive integer. The default is None.
- zeros (boolean, optional) - parameter is considered only if \(k\) is not None. When the partitions are over, the last next() call throws the StopIteration exception, so this function should always be used inside a try except block.

\section*{Examples}
```

>>> f = partition(5)
>>> next(f)
(1, 1, 1, 1, 1)
>>> next(f)
(1, 1, 1, 2)
>>> g = partition(5, 3)
>>> next(g)
(1, 1, 3)
>>> next(g)
(1, 2, 2)
>>> g = partition(5, 3, zeros=True)
>>> next(g)
(0, 0, 5)

```

\section*{sum_of_three_squares}
diofant.solvers.diophantine.sum_of_three_squares ( \(n\) )
Returns a 3-tuple ( \(a, b, c\) ) such that \(a^{2}+b^{2}+c^{2}=n\) and \(a, b, c \geq 0\).
Returns None if \(n=4^{a}(8 m+7)\) for some \(a, m \in Z\).
Parameters \(\mathbf{n}\) (int) - a non-negative integer.

\section*{Examples}
```

>>> sum_of_three_squares(44542)
(18, 37, 2\overline{0}7)

```

\section*{References}
- Representing a number as a sum of three squares, [online], Available: https://schorn. ch/lagrange.html

\section*{See also:}
diofant.solvers.diophantine.sum_of_squares (page 765)
```

sum_of_four_squares

```
diofant.solvers.diophantine.sum_of_four_squares( \(n\) )
    Returns a 4-tuple ( \(a, b, c, d\) ) such that \(a^{2}+b^{2}+c^{2}+d^{2}=n\).
    Here \(a, b, c, d \geq 0\).

Parameters \(\mathbf{n}\) (int) - is a non-negative integer.

\section*{Examples}
```

>>> sum_of_four_squares(3456)
(8, 8, 32, 48)
>>> sum_of_four_squares(1294585930293)
(0, 1234, 2161, 1137796)

```

\section*{References}
- Representing a number as a sum of four squares, [online], Available: https://schorn. ch/lagrange.html

\section*{See also:}
diofant.solvers.diophantine.sum_of_squares (page 765)

\section*{power_representation}
diofant.solvers.diophantine. power_representation( \(n, p, k, z e r o s=\) False \()\)
Returns a generator for finding k-tuples of integers, ( \(n_{1}, n_{2}, \ldots n_{k}\) ), such that \(n=n_{1}^{p}+n_{2}^{p}+\) \(\ldots . n_{k}^{p}\).

\section*{Parameters}
- n (int) - a non-negative integer
- \(\mathbf{k}, \mathbf{p}\) (int) - parameters to control representation n as a sum of \(\mathrm{k}, \mathrm{p}\)-th powers.
- zeros (boolean, optional) - if True (the default is False), then the solutions will contain zeros.

\section*{Examples}

Represent 1729 as a sum of two cubes:
```

>>> f = power_representation(1729, 3, 2)
>>> next(f)
(9, 10)
>>> next(f)
(1, 12)

```

If the flag zeros is True, the solution may contain tuples with zeros; any such solutions will be generated after the solutions without zeros:
```

>>> list(power_representation(125, 2, 3, zeros=True))
[(5, 6, 8), (3, 4, 10), (0, 5, 10), (0, 2, 11)]

```

For even \(p\) the permutesign function can be used to get all signed values:
```

>>> from diofant.utilities.iterables import permute_signs
>>> list(permute_signs((1, 12)))
[(1, 12), (-1, 1\overline{2}), (1, -12), (-1, -12)]

```

All possible signed permutations can also be obtained:
```

>>> from diofant.utilities.iterables import signed_permutations
>>> list(signed_permutations((1, 12)))
[(1, 12), (-1, \overline{12), (1, -12), (-1, -12), (12, 1), (-12, 1),}
(12, -1), (-12, -1)]
diofant.solvers.diophantine.sum_of_powers()
alias of power_representation() (page 764)

```

\section*{sum_of_squares}
diofant.solvers.diophantine.sum_of_squares ( \(n, k\), zeros \(=\) False )
Return a generator that yields the k-tuples of nonnegative values, the squares of which sum to \(n\). If zeros is False (default) then the solution will not contain zeros. The nonnegative elements of a tuple are sorted.
- If \(\mathrm{k}==1\) and n is square, \((\mathrm{n}\),\() is returned.\)
- If \(\mathrm{k}==2\) then n can only be written as a sum of squares if every prime in the factorization of \(n\) that has the form \(4 * k+3\) has an even multiplicity. If \(n\) is prime then it can only be written as a sum of two squares if it is in the form \(4 * \mathrm{k}+1\).
- if \(\mathrm{k}==3\) then n can be written as a sum of squares if it does not have the form \(4^{* *} \mathrm{~m}^{*}\left(8^{*} \mathrm{k}+7\right)\).
- all integers can be written as the sum of 4 squares.
- if \(\mathrm{k}>4\) then n can be partitioned and each partition can be written as a sum of 4 squares; if n is not evenly divisible by 4 then n can be written as a sum of squares only if the an additional partition can be written as as sum of squares. For example, if \(\mathrm{k}=6\) then n is partitioned into two parts, the first being written as a sum of 4 squares and the second being written as a sum of 2 squares - which can only be done if the contition above for \(\mathrm{k}=2\) can be met, so this will automatically reject certain partitions of \(n\).

\section*{Examples}
```

>>> list(sum_of_squares(25, 2))
[(3, 4)]
>>> list(sum_of squares(25, 2, True))
[(3, 4), (0,-5)]
>>> list(sum_of_squares(25, 4))
[(1, 2, 2, 4)}

```

\section*{See also:}
diofant.utilities.iterables.signed_permutations (page 898)

\section*{merge_solution}
diofant.solvers.diophantine.merge_solution(var, var_t, solution)
This is used to construct the full solution from the solutions of sub equations.
For example when solving the equation \((x-y)\left(x^{2}+y^{2}-z^{2}\right)=0\), solutions for each of the equations \(x-y=0\) and \(x^{2}+y^{2}-z^{2}\) are found independently. Solutions for \(x-y=0\) are \((x, y)=(t, t)\). But we should introduce a value for z when we output the solution for the original equation. This function converts \((t, t)\) into \(\left(t, t, n_{1}\right)\) where \(n_{1}\) is an integer parameter.

\section*{divisible}
diofant.solvers.diophantine.divisible( \(a, b\) )
Returns True if a is divisible by b and False otherwise.

\section*{PQa}
diofant.solvers.diophantine. PQa( \(P \_0, Q \_0, D\) )
Returns useful information needed to solve the Pell equation.
There are six sequences of integers defined related to the continued fraction representation of \(\frac{P+\sqrt{D}}{Q}\), namely \(\left\{P_{i}\right\},\left\{Q_{i}\right\},\left\{a_{i}\right\},\left\{A_{i}\right\},\left\{B_{i}\right\},\left\{G_{i}\right\}\). PQa() Returns these values as a 6-tuple in the same order as mentioned above.

Parameters P_0, Q_0, D (Integer) - integers corresponding to \(P_{0}, Q_{0}\) and \(D\) in the continued fraction \(\frac{P_{0}+\sqrt{D}}{Q_{0}}\). Also it's assumed that \(P_{0}^{2}==\operatorname{Dmod}\left(\left|Q_{0}\right|\right)\) and \(D\) is square free.

\section*{Examples}
```

>>> pqa = PQa(13, 4, 5) \# (13 + sqrt(5))/4
>>> next(pqa) \# (P_0, Q_0, a_0, A_0, B_0, G_0)
(13, 4, 3, 3, 1, -1)
>>> next(pqa) \# (P_1, Q_1, a_1, A_1, B_1, G_1)
(-1, 1, 1, 4, 1, 3)

```

\section*{References}
- Solving the generalized Pell equation \(\mathrm{x}^{\wedge} 2-\mathrm{Dy}^{\wedge} 2=\mathrm{N}\), John P. Robertson, July 31, 2004, Pages 4-8. https://web.archive.org/web/20180831180333/http://www. jpr2718.org/pell.pdf

\section*{equivalent}
diofant.solvers.diophantine.equivalent ( \(u, v, r, s, D, N\) )
Returns True if two solutions \((u, v)\) and \((r, s)\) of \(x^{2}-D y^{2}=N\) belongs to the same equivalence class and False otherwise.
Two solutions \((u, v)\) and \((r, s)\) to the above equation fall to the same equivalence class iff both ( \(u r-D v s\) ) and (us - vr) are divisible by \(N\). No test is performed to test whether ( \(u, v\) ) and \((r, s)\) are actually solutions to the equation. User should take care of this.

\section*{Parameters u, v, r, s, D, N (Integer)}

\section*{Examples}
```

>>> equivalent(18, 5, -18, -5, 13, -1)
True
>>> equivalent(3, 1, -18, 393, 109, -4)
False

```

\section*{References}
- Solving the generalized Pell equation \(\mathrm{x}^{* * 2}-\mathrm{D}^{*} \mathrm{y}^{* *} 2=\mathrm{N}\), John P. Robertson, July 31, 2004, Page 12. https://web.archive.org/web/20180831180333/http://www.jpr2718. org/pell.pdf

\section*{parametrize_ternary_quadratic}
diofant.solvers.diophantine.parametrize_ternary_quadratic (eq)
Returns the parametrized general solution for the ternary quadratic equation eq which has the form \(a x^{2}+b y^{2}+c z^{2}+f x y+g y z+h x z=0\).

\section*{Examples}
```

>>> parametrize_ternary_quadratic(x**2 + y**2 - z**2)
(2*p*q, p**2 - \overline{q**2, p***2 + q**2)}

```

Here \(p\) and \(q\) are two co-prime integers.
```

>>> parametrize_ternary_quadratic(3*x**2 + 2*y**2 - z**2 - 2*x*y + 5*y*z - 7*y*z)
(2*p**2 - 2*p*q- q**2, 2*p**2 + 2*p*q - q**2, 2*p**2 - 2*p*q + 3*q**2)
>>> parametrize ternary quadratic(124*x**2 - 30*y**2 - 7729*z**2)
(-1410*p**2 - 363263*q**2, 2700*p**2 + 30916*p*q - 695610*q**2, -60*p**2 + + +
\hookrightarrow5400*p*q + 15458*q**2)

```

\section*{References}
- The algorithmic resolution of Diophantine equations, Nigel P. Smart, London Mathematical Society Student Texts 41, Cambridge University Press, Cambridge, 1998.
diop_ternary_quadratic_normal
diofant.solvers.diophantine.diop_ternary_quadratic_normal(eq)
Solves the quadratic ternary diophantine equation, \(a x^{2}+b y^{2}+c z^{2}=0\).
Here the coefficients \(a, b\), and \(c\) should be non zero. Otherwise the equation will be a quadratic binary or univariate equation. If solvable, returns a tuple \((x, y, z)\) that satisifes the given equation. If the equation does not have integer solutions, (None, None, None) is returned.

\section*{Examples}
```

>>> diop_ternary_quadratic_normal(x**2 + 3*y**2 - z**2)
(1, 0, 1)
>>> diop_ternary_quadratic_normal(4*x**2 + 5*y**2 - z**2)
(1, 0, 2)
>>> diop_ternary_quadratic_normal(34*x**2 - 3*y**2 - 301*z**2)
(4, 9, 1)

```

\section*{Idescent}
diofant.solvers.diophantine. ldescent \((A, B)\)
Return a non-trivial solution to \(w^{2}=A x^{2}+B y^{2}\) using Lagrange's method; return None if there is no such solution.

Here, \(A \neq 0\) and \(B \neq 0\) and \(A\) and \(B\) are square free. Output a tuple ( \(w_{0}, x_{0}, y_{0}\) ) which is a solution to the above equation.

\section*{Examples}
```

>>> ldescent(1, 1) \# w^2 = x^2 + y^2
(1, 1, 0)
>>> ldescent(4, -7) \# w^2 = 4x^2 - 7y^2
(2, -1, 0)

```

This means that \(x=-1, y=0\) and \(w=2\) is a solution to the equation \(w^{2}=4 x^{2}-7 y^{2}\)
```

>>> ldescent(5, -1) \# w^2 = 5x^2 - y^2
(2, 1, -1)

```

\section*{References}
- The algorithmic resolution of Diophantine equations, Nigel P. Smart, London Mathematical Society Student Texts 41, Cambridge University Press, Cambridge, 1998.
- Efficient Solution of Rational Conices, J. E. Cremona and D. Rusin, Mathematics of Computation, Volume 00, Number 0, http://eprints.nottingham.ac.uk/60/1/kvxefz87. pdf

\section*{gaussian_reduce}
diofant.solvers.diophantine.gaussian_reduce \((w, a, b)\)
Returns a reduced solution \((x, z)\) to the congruence \(X^{2}-a Z^{2} \equiv 0(\bmod b)\) so that \(x^{2}+|a| z^{2}\) is minimal.

Here w is a solution of the congruence \(x^{2} \equiv a(\bmod b)\)

\section*{References}
- Efficient Solution of Rational Conices, J. E. Cremona and D. Rusin, Mathematics of Computation, Volume 00, Number 0.
holzer
diofant.solvers.diophantine.holzer ( \(x, y, z, a, b, c\) )
Simplify the solution ( \(x, y, z\) ) of the equation \(a x^{2}+b y^{2}=c z^{2}\) with \(a, b, c>0\) and \(z^{2} \geq|a b|\) to a new reduced solution \(\left(x^{\prime}, y^{\prime}, z^{\prime}\right)\) such that \(z^{\prime 2} \leq|a b|\).
The algorithm is an interpretation of Mordell's reduction as described on page 8 of Cremona and Rusin's paper and the work of Mordell.

\section*{References}
- Efficient Solution of Rational Conices, J. E. Cremona and D. Rusin, Mathematics of Computation, Volume 00, Number 0.
- Diophantine Equations, L. J. Mordell, page 48.
prime_as_sum_of_two_squares
diofant.solvers.diophantine.prime_as_sum_of_two_squares ( \(p\) )
Represent a prime \(p\) as a unique sum of two squares; this can only be done if the prime is congruent to \(1 \bmod 4\).

\section*{Examples}
```

>>> prime_as_sum_of_two_squares(7) \# can't be done
>>> prime_as_sum_of_two_squares(5)
(1, 2)

```

\section*{References}
- Representing a number as a sum of four squares, [online], Available: https://schorn. ch/lagrange.html

\section*{See also:}
diofant.solvers.diophantine.sum_of_squares (page 765)

\section*{square_factor}
diofant.solvers.diophantine.square_factor(a)
Returns an integer \(c\) s.t. \(a=c^{2} k, c, k \in Z\). Here \(k\) is square free. \(a\) can be given as an integer or a dictionary of factors.

\section*{Examples}
```

>>> square_factor(24)
2
>>> square_factor(-36*3)
6
>>> square_factor(1)
1
>>> square_factor({3: 2, 2: 1, -1: 1})
3

```

\section*{See also:}
diofant.solvers.diophantine. reconstruct (page 771), diofant.ntheory.factor_. core (page 242)

\section*{sqf_normal}
diofant.solvers.diophantine.sqf_normal ( \(a, b, c\), steps=False)
Return \(a^{\prime}, b^{\prime}, c^{\prime}\), the coefficients of the square-free normal form of \(a x^{2}+b y^{2}+c z^{2}=0\), where \(a^{\prime}, b^{\prime}, c^{\prime}\) are pairwise prime. If steps is True then also return three tuples: sq, sqf, and \(\left(a^{\prime}, b^{\prime}, c^{\prime}\right)\) where \(s q\) contains the square factors of \(a, b\) and \(c\) after removing the \(\operatorname{gcd}(a, b, c)\); \(s q f\) contains the values of \(a, b\) and \(c\) after removing both the \(\operatorname{gcd}(a, b, c)\) and the square factors.
The solutions for \(a x^{2}+b y^{2}+c z^{2}=0\) can be recovered from the solutions of \(a^{\prime} x^{2}+b^{\prime} y^{2}+c^{\prime} z^{2}=\) 0.

\section*{Examples}
```

>>> sqf_normal(2 * 3**2 * 5, 2 * 5 * 11, 2 * 7**2 * 11)
(11, 1, 5)
>>> sqf_normal(2 * 3**2 * 5, 2 * 5 * 11, 2 * 7**2 * 11, True)
((3, 1, - 7), (5, 55, 11), (11, 1, 5))

```

\section*{References}
- Legendre's Theorem, Legrange’s Descent, https://public.csusm.edu/aitken_html/ notes/legendre.pdf

\section*{See also:}
diofant.solvers.diophantine.reconstruct (page 771)

\section*{reconstruct}
diofant.solvers.diophantine. reconstruct \((A, B, z)\)
Reconstruct the \(z\) value of an equivalent solution of \(a x^{2}+b y^{2}+c z^{2}\) from the \(z\) value of a solution of the square-free normal form of the equation, \(a^{\prime} * x^{2}+b^{\prime} * y^{2}+c^{\prime} * z^{2}\), where \(a^{\prime}\), \(b^{\prime}\) and \(c^{\prime}\) are square free and \(\operatorname{gcd}\left(a^{\prime}, b^{\prime}, c^{\prime}\right)==1\).

\section*{transformation_to_normal}
```

diofant.solvers.diophantine.transformation_to_normal(eq)

```

Returns the transformation Matrix that converts a general ternary quadratic equation eq \(\left(a x^{2}+b y^{2}+c z^{2}+d x y+e y z+f x z\right)\) to a form without cross terms: \(a x^{2}+b y^{2}+c z^{2}=0\). This is not used in solving ternary quadratics; it is only implemented for the sake of completeness.

\subsection*{4.20.4 ODE}

\section*{User Functions}

These are functions that are imported into the global namespace with from diofant import *. These functions (unlike Hint Functions (page 779), below) are intended for use by ordinary users of Diofant.

\section*{dsolve}
diofant.solvers.ode.dsolve(eq, func=None, hint='default', simplify=True, init=None, \(x i=\) None, eta=None, \(x 0=0, n=6, * * k w a r g s\) )
Solves any (supported) kind of ordinary differential equation and system of ordinary differential equations.

\section*{For single ordinary differential equation}

It is classified under this when number of equation in eq is one.

\section*{Usage}
dsolve(eq, \(f(x)\), hint) -> Solve ordinary differential equation eq for function \(f(x)\), using method hint.

\section*{Details}
eq can be any supported ordinary differential equation (see the ode (page 817) docstring for supported methods). This can either be an Equality (page 111), or an expression, which is assumed to be equal to 0 .
\(f(x)\) is a function of one variable whose derivatives in that variable make up the ordinary differential equation eq. In many cases it is not necessary to provide this; it will be autodetected (and an error raised if it couldn't be detected).

\section*{hint is the solving method that you want dsolve to use. Use}
classify_ode(eq, \(f(x))\) to get all of the possible hints for an ODE. The default hint, default, will use whatever hint is returned first by classify_ode() (page 774). See Hints below for more options that you can use for hint.
simplify enables simplification by odesimp() (page 779). See its docstring for more information. Turn this off, for example, to disable solving of solutions for func or simplification of arbitrary constants. It will still integrate with this hint. Note that the solution may contain more arbitrary constants than the order of the ODE with this option enabled.
xi and eta are the infinitesimal functions of an ordinary differential equation. They are the infinitesimals of the Lie group of point transformations for which the differential equation is invariant. The user can specify values for the infinitesimals. If nothing is specified, xi and eta are calculated using infinitesimals() (page 777) with the help of various heuristics.
init is the set of initial/boundary conditions for the differential equation. It should be given in the form of \(\{f(x 0)\) : \(x 1, f(x)\). \(\operatorname{diff(x)}\). subs (\{x: \(x 2\}): x 3\}\) and so on. For power series solutions, if no initial conditions are specified \(f(0)\) is assumed to be C0 and the power series solution is calculated about 0 .
\(x 0\) is the point about which the power series solution of a differential equation is to be evaluated.
n gives the exponent of the dependent variable up to which the power series solution of a differential equation is to be evaluated.

\section*{Hints}

Aside from the various solving methods, there are also some meta-hints that you can pass to dsolve() (page 771):
default: This uses whatever hint is returned first by classify_ode() (page 774). This is the default argument to dsolve() (page 771).
all: To make dsolve() (page 771) apply all relevant classification hints, use dsolve(ODE, func, hint="all"). This will return a dictionary of hint: solution terms. If a hint causes dsolve to raise the NotImplementedError, value of that hint's key will be the exception object raised. The dictionary will also include some special keys:
- order: The order of the ODE. See also ode_order() (page 833) in deutils.py.
- best: The simplest hint; what would be returned by best below.
- best_hint: The hint that would produce the solution given by best. If more than one hint produces the best solution, the first one in the tuple returned by classify_ode() (page 774) is chosen.
- default: The solution that would be returned by default. This is the one produced by the hint that appears first in the tuple returned by classify_ode() (page 774).
all_Integral: This is the same as all, except if a hint also has a corresponding _Integral hint, it only returns the _Integral hint. This is useful if all causes \(d\) solve() (page 771) to hang because of a difficult or impossible integral. This meta-hint will also be much faster than all, because integrate() (page 70) is an expensive routine.
best: To have dsolve() (page 771) try all methods and return the simplest one. This takes into account whether the solution is solvable in the function,
whether it contains any Integral classes (i.e. unevaluatable integrals), and which one is the shortest in size.
See also the classify_ode() (page 774) docstring for more info on hints, and the ode (page 817) docstring for a list of all supported hints.

\section*{Tips}
- See test_ode.py for many tests, which serves also as a set of examples for how to use dsolve() (page 771).
- dsolve() (page 771) always returns an Equality (page 111) class (except for the case when the hint is all or all_Integral). If possible, it solves the solution explicitly for the function being solved for. Otherwise, it returns an implicit solution.
- Arbitrary constants are symbols named C1, C2, and so on.
- Because all solutions should be mathematically equivalent, some hints may return the exact same result for an ODE. Often, though, two different hints will return the same solution formatted differently. The two should be equivalent. Also note that sometimes the values of the arbitrary constants in two different solutions may not be the same, because one constant may have "absorbed" other constants into it.
- Do help(ode.ode_<hintname>) to get help more information on a specific hint, where <hintname> is the name of a hint without _Integral.

For system of ordinary differential equations

\section*{Usage}
dsolve(eq, func) -> Solve a system of ordinary differential equations eq for func being list of functions including \(x(t), y(t), z(t)\) where number of functions in the list depends upon the number of equations provided in eq.

\section*{Details}
eq can be any supported system of ordinary differential equations This can either be an Equality (page 111), or an expression, which is assumed to be equal to 0 .
func holds \(x(t)\) and \(y(t)\) being functions of one variable which together with some of their derivatives make up the system of ordinary differential equation eq. It is not necessary to provide this; it will be autodetected (and an error raised if it couldn't be detected).

\section*{Hints}

The hints are formed by parameters returned by classify_sysode, combining them give hints name used later for forming method name.

\section*{Examples}
```

>>> dsolve(Derivative(f(x), x, x) + 9*f(x), f(x))
Eq(f(x), C1*sin(3*x) + C2*cos(3*x))

```
```

>>> eq = sin(x)*\operatorname{cos(f(x)) + cos(x)*sin(f(x))*f(x).diff(x)}
>>> dsolve(eq, hint='lst exact')
[Eq(f(x), -acos(C1/cos(x)) + 2*pi), Eq(f(x), acos(C1/cos(x)))]
>>> dsolve(eq, hint='almost linear')
[Eq(f(x), -acos(C1/sqrt(-cos}(x)**2)) + 2*pi), Eq(f(x), acos(C1/sqrt(-cos(x)**2)))]

```
(continues on next page)
(continued from previous page)
```

>>> eq = (Eq(Derivative(f(t), t), 12*t*f(t) + 8*g(t)),
Eq(Derivative(g(t), t), 21*f(t) + 7*t*g(t)))
>>> dsolve(eq)
[Eq(f(t), C1*x0(t) + C2*x0(t)*Integral(8*E**Integral(7*t, t)*E**Integral(12*t, t)/
Eq(g0(t)**2, t) Ci*y0(t) + C2*(E**Integral(7*t, t)*E**Integral(12*t, t)/x0(t) +
y0(t)*Integral(8*E**Integral(7*t, t)*E**Integral(12*t, t)/x0(t)**2, t)))]
>>> eq = (Eq(Derivative(f(t), t), f(t)*g(t)*sin(t)),
... Eq(Derivative(g(t), t),g(t)**2*sin(t)))
>>> dsolve(eq)
{Eq(f(t), -E**C1/(E**C1*C2 - cos(t))), Eq(g(t), -1/(C1 - cos(t)))}

```

\section*{classify_ode}
diofant.solvers.ode.classify_ode(eq, func=None, dict=False, init=None, **kwargs) Returns a tuple of possible dsolve() (page 771) classifications for an ODE.
The tuple is ordered so that first item is the classification that dsolve() (page 771) uses to solve the ODE by default. In general, classifications at the near the beginning of the list will produce better solutions faster than those near the end, thought there are always exceptions. To make dsolve() (page 771) use a different classification, use dsolve(ODE, func, hint=<classification>). See also the dsolve() (page 771) docstring for different meta-hints you can use.
If dict is true, classify_ode() (page 774) will return a dictionary of hint: match expression terms. This is intended for internal use by dsolve() (page 771). Note that because dictionaries are ordered arbitrarily, this will most likely not be in the same order as the tuple.
You can get help on different hints by executing help(ode.ode_hintname), where hintname is the name of the hint without _Integral.
See allhints (page 779) or the ode (page 817) docstring for a list of all supported hints that can be returned from classify_ode() (page 774).

\section*{Notes}

These are remarks on hint names.
_Integral
If a classification has _Integral at the end, it will return the expression with an unevaluated Integral (page 481) class in it. Note that a hint may do this anyway if integrate() (page 475) cannot do the integral, though just using an _Integral will do so much faster. Indeed, an _Integral hint will always be faster than its corresponding hint without_Integral because integrate() (page 475) is an expensive routine. If dsolve( \((\) ) (page 771) hangs, it is probably because integrate() (page 70) is hanging on a tough or impossible integral. Try using an _Integral hint or all_Integral to get it return something.
Note that some hints do not have _Integral counterparts. This is because integrate() (page 475) is not used in solving the ODE for those method. For example, \(n\)th order linear homogeneous ODEs with constant coefficients do not require integration to solve, so there is no nth_linear_homogeneous_constant_coeff_Integrate hint. You can easily
evaluate any unevaluated Integral (page 481)s in an expression by doing expr. doit().
Ordinals
Some hints contain an ordinal such as 1st_linear. This is to help differentiate them from other hints, as well as from other methods that may not be implemented yet. If a hint has nth in it, such as the nth_linear hints, this means that the method used to applies to ODEs of any order.
indep and dep
Some hints contain the words indep or dep. These reference the independent variable and the dependent function, respectively. For example, if an ODE is in terms of \(f(x)\), then indep will refer to \(x\) and dep will refer to \(f\).
subs
If a hints has the word subs in it, it means the the ODE is solved by substituting the expression given after the word subs for a single dummy variable. This is usually in terms of indep and dep as above. The substituted expression will be written only in characters allowed for names of Python objects, meaning operators will be spelled out. For example, indep/dep will be written as indep_div_dep.
coeff
The word coeff in a hint refers to the coefficients of something in the ODE, usually of the derivative terms. See the docstring for the individual methods for more info (help(ode)). This is contrast to coefficients, as in undetermined_coefficients, which refers to the common name of a method.
_best
Methods that have more than one fundamental way to solve will have a hint for each sub-method and a _best meta-classification. This will evaluate all hints and return the best, using the same considerations as the normal best metahint.

\section*{Examples}
```

>>> classify_ode(Eq(f(x).diff(x), 0), f(x))
('separable',' '1st_linear', '1st_homogeneous_coeff_best',
'1st_homogeneous_cōeff_subs_inde\overline{p}div_dep',
'1st_homogeneous_coeff_subs_dep_div_iñdep',
'1st_power_series', 'l\overline{i}e_grōup',
'nth_linear_constant_coeff_homogeneous',
'sepārable_\overline{Integral'- '1st_linear_Integral',}
'1st homogēneous coeff subs̄ indep_div_dep_Integral',
'1st_homogeneous_coeff_subs_dep_div_indep_Integral')
>>> \overline{classify_ode(f(x).\overline{diff}(\overline{(x, }\overline{2})) \overline{+}3*f(\overline{x}).diff(x) + 2*f(x) - 4)}
('nth_linear_constant_coeff_undetermined_coefficients',
'nth_\}inear_\overline{constant__<oeff_variation_of_\overline{parameters',}
'nth_linear_constant_coeff_variation_of_parameters_Integral')

```

\section*{checkodesol}
diofant.solvers.ode.checkodesol (ode, sol, func \(=\) None, order='auto',
solve for func=True)

Substitutes sol into ode and checks that the result is 0 .
This only works when func is one function, like \(f(x)\). sol can be a single solution or a list of solutions. Each solution may be an Equality (page 111) that the solution satisfies, e.g. Eq(f(x), C1), Eq(f(x) +C1, 0); or simply an Expr (page 57), e.g. f(x) C1. In most cases it will not be necessary to explicitly identify the function, but if the function cannot be inferred from the original equation it can be supplied through the func argument.
If a sequence of solutions is passed, the same sort of container will be used to return the result for each solution.

It tries the following methods, in order, until it finds zero equivalence:
1. Substitute the solution for \(f\) in the original equation. This only works if ode is solved for \(f\). It will attempt to solve it first unless solve_for_func == False.
2. Take \(n\) derivatives of the solution, where \(n\) is the order of ode, and check to see if that is equal to the solution. This only works on exact ODEs.
3. Take the 1 st, 2 nd, \(\ldots, n\)th derivatives of the solution, each time solving for the derivative of \(f\) of that order (this will always be possible because \(f\) is a linear operator). Then back substitute each derivative into ode in reverse order.

This function returns a tuple. The first item in the tuple is True if the substitution results in 0 , and False otherwise. The second item in the tuple is what the substitution results in. It should always be 0 if the first item is True. Note that sometimes this function will False, but with an expression that is identically equal to 0 , instead of returning True. This is because simplify() (page 678) cannot reduce the expression to 0. If an expression returned by this function vanishes identically, then sol really is a solution to ode.

If this function seems to hang, it is probably because of a hard simplification.
To use this function to test, test the first item of the tuple.

\section*{Examples}
```

>>> C1 = symbols('C1')
>>> checkodesol(f(x).diff(x), Eq(f(x), C1))
(True, 0)
>>> checkodesol(f(x).diff(x), C1)
(True, 0)
>>> checkodesol(f(x).diff(x), x)
(False, 1)
>>> checkodesol(f(x).diff((x, 2)), x**2)
(False, 2)

```

\section*{homogeneous_order}

\section*{diofant.solvers.ode.homogeneous_order (eq, *symbols)}

Returns the order \(n\) if \(g\) is homogeneous and None if it is not homogeneous.
Determines if a function is homogeneous and if so of what order. A function \(f(x, y, \cdots)\) is homogeneous of order \(n\) if \(f(t x, t y, \cdots)=t^{n} f(x, y, \cdots)\).

If the function is of two variables, \(F(x, y)\), then \(f\) being homogeneous of any order is equivalent to being able to rewrite \(F(x, y)\) as \(G(x / y)\) or \(H(y / x)\). This fact is used to solve 1st order ordinary differential equations whose coefficients are homogeneous of the same order (see the docstrings of ode_1st_homogeneous_coeff_subs_dep_div_indep() (page 785) and ode_1st_homogeneous_coeff_subs_indep_div_dep() (page 786)).
Symbols can be functions, but every argument of the function must be a symbol, and the arguments of the function that appear in the expression must match those given in the list of symbols. If a declared function appears with different arguments than given in the list of symbols, None is returned.

\section*{Examples}
```

>>> homogeneous_order(f(x), f(x)) is None
True
>>> homogeneous_order(f(x, y), f(y, x), x, y) is None
True
>>> homogeneous_order(f(x), f(x), x)
1
>>> homogeneous_order(x**2*f(x)/sqrt(x**2+f(x)**2), x, f(x))
2
>>> homogeneous_order(x**2+f(x), x, f(x)) is None
True

```

\section*{infinitesimals}
```

diofant.solvers.ode.infinitesimals(eq, func=None, order=None, hint='default',
match=None)

```

The infinitesimal functions of an ordinary differential equation, \(\xi(x, y)\) and \(\eta(x, y)\), are the infinitesimals of the Lie group of point transformations for which the differential equation is invariant. So, the ODE \(y^{\prime}=f(x, y)\) would admit a Lie group \(x^{*}=X(x, y ; \varepsilon)=x+\varepsilon \xi(x, y)\), \(y^{*}=Y(x, y ; \varepsilon)=y+\varepsilon \eta(x, y)\) such that \(\left(y^{*}\right)^{\prime}=f\left(x^{*}, y^{*}\right)\). A change of coordinates, to \(r(x, y)\) and \(s(x, y)\), can be performed so this Lie group becomes the translation group, \(r^{*}=r\) and \(s^{*}=s+\varepsilon\). They are tangents to the coordinate curves of the new system.
Consider the transformation \((x, y) \rightarrow(X, Y)\) such that the differential equation remains invariant. \(\xi\) and \(\eta\) are the tangents to the transformed coordinates \(X\) and \(Y\), at \(\varepsilon=0\).
\[
\left.\left(\frac{\partial X(x, y ; \varepsilon)}{\partial \varepsilon}\right)\right|_{\varepsilon=0}=\xi,\left.\left(\frac{\partial Y(x, y ; \varepsilon)}{\partial \varepsilon}\right)\right|_{\varepsilon=0}=\eta,
\]

The infinitesimals can be found by solving the following PDE:
```

>>> xi, eta = map(Function, ['xi', 'eta'])
>> h = h(x, y) \# dy/dx = h
>> eta = eta(x, y)
>>> xi = xi(x, y)

```
```

>>> genform = Eq(eta.diff(x) + (eta.diff(y) - xi.diff(x))*h -
(xi.diff(y))*h**2 - xi*(h.diff(x)) - eta*(h.diff(y)), 0)
>>> pprint(genform, use_unicode=False)

```

```

xi(x,y))| | - xi(x, y)}\underset{~--(h(x,y))}{dx}+\frac{d}{d

```

Solving the above mentioned PDE is not trivial, and can be solved only by making intelligent assumptions for \(\xi\) and \(\eta\) (heuristics). Once an infinitesimal is found, the attempt to find more heuristics stops. This is done to optimise the speed of solving the differential equation. If a list of all the infinitesimals is needed, hint should be flagged as all, which gives the complete list of infinitesimals. If the infinitesimals for a particular heuristic needs to be found, it can be passed as a flag to hint.

\section*{Examples}
```

>>> eta = Function('eta')
>>> xi = Function('xi')
>> eq = f(x).diff(x) - x**2*f(x)
>>> infinitesimals(eq)
[{eta(x, f(x)): E**(x**3/3), xi(x, f(x)): 0}]

```

\section*{References}
- Solving differential equations by Symmetry Groups, John Starrett, pp. 1 - pp. 14

\section*{checkinfsol}
diofant.solvers.ode.checkinfsol (eq, infinitesimals, func=None, order=None)
This function is used to check if the given infinitesimals are the actual infinitesimals of the given first order differential equation. This method is specific to the Lie Group Solver of ODEs.
As of now, it simply checks, by substituting the infinitesimals in the partial differential equation.
\[
\frac{\partial \eta}{\partial x}+\left(\frac{\partial \eta}{\partial y}-\frac{\partial \xi}{\partial x}\right) * h-\frac{\partial \xi}{\partial y} * h^{2}-\xi \frac{\partial h}{\partial x}-\eta \frac{\partial h}{\partial y}=0
\]
where \(\eta\), and \(\xi\) are the infinitesimals and \(h(x, y)=\frac{d y}{d x}\)
The infinitesimals should be given in the form of a list of dicts [ \(\{x i(x, y)\) : inf, eta \((x\), \(y)\) : inf\}], corresponding to the output of the function infinitesimals. It returns a list of values of the form [(True/False, sol)] where sol is the value obtained after substituting the infinitesimals in the PDE. If it is True, then sol would be 0.

\section*{Hint Functions}

These functions are intended for internal use by dsolve() (page 771) and others. Unlike User Functions (page 771), above, these are not intended for every-day use by ordinary Diofant users. Instead, functions such as dsolve() (page 771) should be used. Nonetheless, these functions contain useful information in their docstrings on the various ODE solving methods. For this reason, they are documented here.

\section*{allhints}
diofant.solvers.ode.allhints = ('separable', '1st_exact', '1st_linear',
'Bernoulli', 'Riccati_special_minus2', '1st_homogeneous_coeff_best',
'1st_homogeneous_coeff_subs_indep_div_dep',
'1st_homogeneous_coeff_subs_dep_dīv_indep', 'almost_linear',
'linear_coefficients', 'separable_reduced', '1st_power_series', 'lie_group',
'nth_linear_constant_coeff_homogeneous', 'nth_linear_euler_eq_homogeneous',
'nth_linear_constant_coeff_undetermined_coefficients',
'nth_linear_euler_eq_nonhomogeneous_undetermined_coefficients',
'nth_linear_constant_coeff_variation_of_parameters',
'nth_linear_euler_eq_nonhomogeneous_variation_of_parameters', 'Liouville',
'2nd_power_series_ordinary', '2nd_power_series_regular', 'separable_Integral',
'1st_exact_Integral', '1st_linear_Integral', 'Bernoulli_Integral',
'1st_homogeneous_coeff_subs_indep_div_dep_Integral',
'1st_homogeneous_coeff_subs_dep_dīv_indep_Integral', 'almost_linear_Integral',
'linear_coefficients_Integral', 'separable_reduced_Integral',
'nth_linear_constant_coeff_variation_of_parameters_Integral',
'nth_linear_euler_eq_nonhomogeneous_variation_of_parameters_Integral',
'Liouville_Integral')
This is a list of hints in the order that they should be preferred by classify_ode() (page 774). In general, hints earlier in the list should produce simpler solutions than those later in the list (for ODEs that fit both). For now, the order of this list is based on empirical observations by the developers of Diofant.
The hint used by dsolve() (page 771) for a specific ODE can be overridden (see the docstring).
In general, _Integral hints are grouped at the end of the list, unless there is a method that returns an unevaluable integral most of the time (which go near the end of the list anyway). default, all, best, and all_Integral meta-hints should not be included in this list, but _best and _Integral hints should be included.
odesimp
diofant.solvers.ode.odesimp(eq, func, order, constants, hint)
Simplifies ODEs, including trying to solve for func and running constantsimp() (page 781).
It may use knowledge of the type of solution that the hint returns to apply additional simplifications.
It also attempts to integrate any Integral (page 481)s in the expression, if the hint is not an _Integral hint.

This function should have no effect on expressions returned by dsolve() (page 771), as dsolve() (page 771) already calls odesimp() (page 779), but the individual hint functions do not call odesimp() (page 779) (because the dsolve() (page 771) wrapper does). Therefore, this function is designed for mainly internal use.

Examples
>>> C1 = symbols('C1')
```

>>> eq = dsolve(x*f(x).diff(x) - f(x) - x*sin(f(x)/x), f(x),
\#. hint='1st_homogeneous_coeff_subs_indep_div_dep_Integral',
\#. simplify=False)
>>> pprint(eq, wrap_line=False, use_unicode=False)
x

f(x)
/
|
log(f(x)) = log(C1)+{
2
u2

```
>>> pprint(odesimp(eq, f(x), 1, \{C1\},
... hint='1st_homogeneous_coeff_subs_indep_div_dep'),
\(f^{\prime \prime}(x) \quad\) use_unicode=False)
\(f(x)=2 * x * \tan (C 1 * x)\)

\section*{constant_renumber}
diofant.solvers.ode.constant_renumber (expr, symbolname, startnumber, endnumber) Renumber arbitrary constants in expr to have numbers 1 through \(N\) where \(N\) is endnumber - startnumber + 1 at most. In the process, this reorders expression terms in a standard way.
This is a simple function that goes through and renumbers any Symbol (page 82) with a name in the form symbolname + num where num is in the range from startnumber to endnumber.
Symbols are renumbered based on . sort_key (), so they should be numbered roughly in the order that they appear in the final, \(\overline{\mathrm{p}}\) rinted expression. Note that this ordering is based in part on hashes, so it can produce different results on different machines.
The structure of this function is very similar to that of constantsimp() (page 781).

\section*{Examples}
```

>>> C0, C1, C2, C3, C4 = symbols('C:5')

```

Only constants in the given range (inclusive) are renumbered; the renumbering always starts from 1:
```

>>> constant_renumber(C1 + C3 + C4, 'C', 1, 3)
C1 + C2 + C4
>>> constant_renumber(C0 + C1 + C3 + C4, 'C', 2, 4)
C0 + 2*C1 + \overline{C}2
>>> constant_renumber(C0 + 2*C1 + C2, 'C', 0, 1)
C1 + 3*C2
>>> pprint(C2 + C1*x + C3*x**2, use_unicode=False)
C1*x + C2 + C3*x
>>> pprint(constant_renumber(C2 + C1*x + C3*x**2, 'C', 1, 3), use_unicode=False)
2
C1 + C2*x + C3*x

```

\section*{constantsimp}
diofant.solvers.ode.constantsimp (expr, constants)
Simplifies an expression with arbitrary constants in it.
This function is written specifically to work with dsolve() (page 771), and is not intended for general use.
Simplification is done by "absorbing" the arbitrary constants into other arbitrary constants, numbers, and symbols that they are not independent of.
The symbols must all have the same name with numbers after it, for example, C1, C2, C3. The symbolname here would be ' \(C\) ', the startnumber would be 1 , and the endnumber would be 3. If the arbitrary constants are independent of the variable \(x\), then the independent symbol would be \(x\). There is no need to specify the dependent function, such as \(f(x)\), because it already has the independent symbol, \(x\), in it.
Because terms are "absorbed" into arbitrary constants and because constants are renumbered after simplifying, the arbitrary constants in expr are not necessarily equal to the ones of the same name in the returned result.
If two or more arbitrary constants are added, multiplied, or raised to the power of each other, they are first absorbed together into a single arbitrary constant. Then the new constant is combined into other terms if necessary.

Absorption of constants is done with limited assistance:
1. terms of \(\operatorname{Add}\) (page 106)s are collected to try join constants so \(e^{x}\left(C_{1} \cos (x)+C_{2} \cos (x)\right)\) will simplify to \(e^{x} C_{1} \cos (x)\);
2. powers with exponents that are Add (page 106)s are expanded so \(e^{C_{1}+x}\) will be simplified to \(C_{1} e^{x}\).
Use constant_renumber() (page 780) to renumber constants after simplification or else arbitrary numbers on constants may appear, e.g. \(C_{1}+C_{3} x\).
In rare cases, a single constant can be "simplified" into two constants. Every differential equation solution should have as many arbitrary constants as the order of the differential equation. The result here will be technically correct, but it may, for example, have \(C_{1}\)
and \(C_{2}\) in an expression, when \(C_{1}\) is actually equal to \(C_{2}\). Use your discretion in such situations, and also take advantage of the ability to use hints in dsolve() (page 771).

\section*{Examples}
```

>>> C1, C2, C3 = symbols('C1, C2, C3')
>>> constantsimp(2*C1*x, {C1, C2, C3})
C1*x
>>> constantsimp(C1 + 2 + x, {C1, C2, C3})
C1 + x
>>> constantsimp(C1*C2 + 2 + C2 + C3*x, {C1, C2, C3})
C1 + C3*x

```

\section*{sol_simplicity}
diofant.solvers.ode.ode_sol_simplicity(sol, func, trysolving=True)
Returns an extended integer representing how simple a solution to an ODE is.
The following things are considered, in order from most simple to least:
- sol is solved for func.
- sol is not solved for func, but can be if passed to solve (e.g., a solution returned by dsolve(ode, func, simplify=False).
- If sol is not solved for func, then base the result on the length of sol, as computed by len(str(sol)).
- If sol has any unevaluated Integral (page 481)s, this will automatically be considered less simple than any of the above.
This function returns an integer such that if solution \(A\) is simpler than solution \(B\) by above metric, then ode_sol_simplicity(sola, func) < ode_sol_simplicity(solb, func).
Currently, the following are the numbers returned, but if the heuristic is ever improved, this may change. Only the ordering is guaranteed.
\begin{tabular}{|l|l|}
\hline Simplicity & Return \\
\hline sol solved for func & -2 \\
\hline sol not solved for func but can be & -1 \\
\hline sol is not solved nor solvable for func & len(str(sol)) \\
\hline sol contains an Integral (page 481) & oo \\
\hline
\end{tabular}
oo here means the Diofant infinity, which should compare greater than any integer.
If you already know solve() (page 742) cannot solve sol, you can use trysolving=False to skip that step, which is the only potentially slow step. For example, dsolve() (page 771) with the simplify=False flag should do this.
If sol is a list of solutions, if the worst solution in the list returns oo it returns that, otherwise it returns len(str(sol)), that is, the length of the string representation of the whole list.

\section*{Examples}

This function is designed to be passed to min as the key argument, such as min(listofsolutions, key=lambda i: ode_sol_simplicity(i, f(x))).
>>> C1, C2 = symbols('C1, C2')
```

>>> ode_sol_simplicity(Eq(f(x), C1*x**2), f(x))
-2
>>> ode_sol_simplicity(Eq(x**2 + f(x), C1), f(x))
-1
>>> ode_sol_simplicity(Eq(f(x), C1*Integral(2*x, x)), f(x))
00
>>> eq1 = Eq(f(x)/tan(f(x)/(2*x)), C1)
>>> eq2 = Eq(f(x)/tan(f(x)/(2*x) + f(x)), C2)
>>> [ode_sol_simplicity(eq, f(x)) for eq in [eq1, eq2]]
[28, 35]
>> min([eq1, eq2], key=lambda i: ode_sol_simplicity(i, f(x)))
Eq(f(x)/tan(f(x)/(2*x)), C1)

```

\section*{1st_exact}
diofant.solvers.ode.ode_1st_exact(eq, func, order, match)
Solves 1st order exact ordinary differential equations.
A 1st order differential equation is called exact if it is the total differential of a function. That is, the differential equation
\[
P(x, y) \partial x+Q(x, y) \partial y=0
\]
is exact if there is some function \(F(x, y)\) such that \(P(x, y)=\partial F / \partial x\) and \(Q(x, y)=\partial F / \partial y\). It can be shown that a necessary and sufficient condition for a first order ODE to be exact is that \(\partial P / \partial y=\partial Q / \partial x\). Then, the solution will be as given below:
```

>>> x0, y0, C1 = symbols('x0 y0 C1')
>> P, Q, F = map(Function, ['P', 'Q', 'F'])
>>> pprint(Eq(Eq(F(x, y), Integral(P(t, y), (t, x0, x)) +
\#.. Integral(Q(x0, t), (t, y0, y))), C1), use_unicode=False)
F(x,y)=\mp@subsup{|}{x0}{<}

```

Where the first partials of \(P\) and \(Q\) exist and are continuous in a simply connected region.
A note: Diofant currently has no way to represent inert substitution on an expression, so the hint 1st_exact_Integral will return an integral with \(d y\). This is supposed to represent the function that you are solving for.

\section*{Examples}
```

>>> dsolve(cos(f(x)) - (x*sin(f(x)) - f(x)**2)*f(x).diff(x),
... f(x), hint='1st_exact')
Eq(x*\operatorname{cos}(f(x))+f(x)**3/3, C1)

```

\section*{References}
- https://en.wikipedia.org/wiki/Exact_differential_equation
- [TP63], pp. 73.

\section*{1st_homogeneous_coeff_best}
diofant.solvers.ode.ode_1st_homogeneous_coeff_best(eq, func, order, match )
Returns the best solution to an ODE from the two hints
1st_homogeneous_coeff_subs_dep_div_indep and 1st_homogeneous_coeff_subs_indep_div_dep.
This is as determined by ode_sol_simplicity() (page 782).
See the ode_1st_homogeneous_coeff_subs_indep_div_dep() (page 786) and ode_1st_homogèneous_coeff_subs_dep_div_indep() (page 785) docstrings for more information on these hints. Note that there is no ode_1st_homogeneous_coeff_best_Integral hint.

Examples
```

>>> pprint(dsolve(2*x*f(x) + (x**2 + f(x)**2)*f(x).diff(x), f(x),
hint='1st_homogeneous_coeff_best', simplify=False),
... use_unicode=Falsē}

```

```

log(f(x)) = log(C1)
3

```

\section*{References}
- https://en.wikipedia.org/wiki/Homogeneous_differential_equation
- [TP63], pp. 59.

\section*{1st_homogeneous_coeff_subs_dep_div_indep}
diofant.solvers.ode.ode_1st_homogeneous_coeff_subs_dep_div_indep(eq, func, order, match)
Solves a 1st order differential equation with homogeneous coefficients using the substitution \(u_{1}=\frac{\text { <dependent variable> }}{\text { <independent variable> }}\).
This is a differential equation
\[
P(x, y)+Q(x, y) d y / d x=0
\]
such that \(P\) and \(Q\) are homogeneous and of the same order. A function \(F(x, y)\) is homogeneous of order \(n\) if \(F(x t, y t)=t^{n} F(x, y)\). Equivalently, \(F(x, y)\) can be rewritten as \(G(y / x)\) or \(H(x / y)\). See also the docstring of homogeneous_order() (page 777).
If the coefficients \(P\) and \(Q\) in the differential equation above are homogeneous functions of the same order, then it can be shown that the substitution \(y=u_{1} x\) (i.e. \(u_{1}=y / x\) ) will turn the differential equation into an equation separable in the variables \(x\) and \(u\). If \(h\left(u_{1}\right)\) is the function that results from making the substitution \(u_{1}=f(x) / x\) on \(P(x, f(x))\) and \(g\left(u_{2}\right)\) is the function that results from the substitution on \(Q(x, f(x))\) in the differential equation \(P(x, f(x))+Q(x, f(x)) f^{\prime}(x)=0\), then the general solution is:
```

>>> genform = g(f(x)/x) + h(f(x)/x)*f(x).diff(x)
>>> pprint(genform, use_unicode=False)
/f(x)\ /f(x)\d
g|----| + h|----|*--(f(x))
\x / \x / dx
>>> pprint(dsolve(genform, f(x),
.". hint='1st_homogeneous_coeff_subs_dep_div_indep_Integral'),
\#. use_unicode=False\overline{e}
log

```

Where \(u_{1} h\left(u_{1}\right)+g\left(u_{1}\right) \neq 0\) and \(x \neq 0\).

\section*{See also:}
diofant.solvers.ode.ode_1st_homogeneous_coeff_best (page 784), diofant. solvers.ode.ode_1st_homōgenēous_coeff_sūbs_indep_div_dep (page 786)

\section*{Examples}
```

>>> pprint(dsolve(2*x*f(x) + (x**2 + f(x)**2)*f(x).diff(x), f(x),
\#." hint='1st_homogeneous_coeff_subs_dep_div_indep',
\#. simplify=\overline{False), use_unicod\overline{e}=Fal\overline{se)}}\mathbf{=}\mathrm{)}
/ 3 \
|\mp@code{3*f(x) f f (x) |}
log(x) = log(C1)-------------------

```

\section*{References}
- https://en.wikipedia.org/wiki/Homogeneous_differential_equation
- [TP63], pp. 59.

\section*{1st_homogeneous_coeff_subs_indep_div_dep}
diofant.solvers.ode.ode_1st_homogeneous_coeff_subs_indep_div_dep(eq, func, order, match)
Solves a 1st order differential equation with homogeneous coefficients using the substitution \(u_{2}=\frac{\text { <independent variable> }}{<\text { dependent variable> }}\).
This is a differential equation
\[
P(x, y)+Q(x, y) d y / d x=0
\]
such that \(P\) and \(Q\) are homogeneous and of the same order. A function \(F(x, y)\) is homogeneous of order \(n\) if \(F(x t, y t)=t^{n} F(x, y)\). Equivalently, \(F(x, y)\) can be rewritten as \(G(y / x)\) or \(H(x / y)\). See also the docstring of homogeneous_order() (page 777).

If the coefficients \(P\) and \(Q\) in the differential equation above are homogeneous functions of the same order, then it can be shown that the substitution \(x=u_{2} y\) (i.e. \(u_{2}=x / y\) ) will turn the differential equation into an equation separable in the variables \(y\) and \(u_{2}\). If \(h\left(u_{2}\right)\) is the function that results from making the substitution \(u_{2}=x / f(x)\) on \(P(x, f(x))\) and \(g\left(u_{2}\right)\) is the function that results from the substitution on \(Q(x, f(x))\) in the differential equation \(P(x, f(x))+Q(x, f(x)) f^{\prime}(x)=0\), then the general solution is:
```

>>> genform = g(x/f(x)) + h(x/f(x))*f(x).diff(x)
>>> pprint(genform, use_unicode=False)
/ x \ / x \ d
g|----| + h|----|*--(f(x))
\f(x)/ \f(x)/ dx
>>> pprint(dsolve(genform, f(x),
... hint='1st_homogeneous_coeff_subs_indep_div_dep_Integral'),
... use_unicode=False)
x
f(x)
/
-g(u2)
----------------d(u2)
u2*g(u2) + h(u2)
/
f(x) = E *C1

```

Where \(u_{2} g\left(u_{2}\right)+h\left(u_{2}\right) \neq 0\) and \(f(x) \neq 0\).

\section*{See also:}
diofant.solvers.ode.ode_1st_homogeneous_coeff_best (page 784), diofant. solvers.ode.ode_1st_homógenēous_coeff_sūbs_dep_div_indep (page 785)

\section*{Examples}
```

>>> pprint(dsolve(2*x*f(x) + (x**2 + f(x)**2)*f(x).diff(x), f(x),
." hint='1st_homogeneous_coeff_subs_indep_div_dep',

```

```

 log| |-- | (
 log(f(x)) = log(C1) - -------------
3

```

\section*{References}
- https://en.wikipedia.org/wiki/Homogeneous_differential_equation
- [TP63], pp. 59.

\section*{1st_linear}
diofant.solvers.ode.ode_1st_linear(eq, func, order, match)
Solves 1st order linear differential equations.
These are differential equations of the form
\[
d y / d x+P(x) y=Q(x)
\]

These kinds of differential equations can be solved in a general way. The integrating factor \(e^{\int P(x) d x}\) will turn the equation into a separable equation. The general solution is:
```

>>> P, Q = map(Function, ['P', 'Q'])
>>> genform = Eq(f(x).diff(x) + P(x)*f(x), Q(x))
>>> pprint(genform, use_unicode=False)
P(x)*f(x)+\underset{dx}{--(f(x))=Q(x)}\=\mp@code{d}
>>> pprint(dsolve(genform, f(x), hint='1st_linear_Integral'), use_unicode=False)
f(x)= E / P/P(x) dx |

```

\section*{Examples}
```

>>> pprint(dsolve(Eq(x*diff(f(x), x) - f(x), x**2*sin(x)),
f(x), 'lst_linear'), use_unicode=False)
f(x) = x*(C1 - cos(x))

```

\section*{References}
- https://en.wikipedia.org/wiki/Linear_differential_equation\#First-order_equation_ with_variable_coefficients
- [TP63], pp. 92.

\section*{Bernoulli}
diofant.solvers.ode.ode_Bernoulli(eq, func, order, match)
Solves Bernoulli differential equations.
These are equations of the form
\[
d y / d x+P(x) y=Q(x) y^{n}, n \neq 1^{\prime} .
\]

The substitution \(w=1 / y^{1-n}\) will transform an equation of this form into one that is linear (see the docstring of ode_1st_linear() (page 787)). The general solution is:
```

>>> P, Q = map(Function, ['P', 'Q'])
>>> genform = Eq(f(x).diff(x) + P(x)*f(x), Q(x)*f(x)**n)
>>> pprint(genform, use_unicode=False)
P(x)*f(x)+ -- (f(x))=Q(x)*f(x)
>>> pprint(dsolve(genform, f(x), hint='Bernoulli_Integral'),
\#. use_unicode=False, wrap_line=False)
G--

```

Note that the equation is separable when \(n=1\) (see the docstring of ode_separable() (page 794)).
```

>>> pprint(dsolve(Eq(f(x).diff(x) + P(x)*f(x), Q(x)*f(x)), f(x),
"."(x) hint='separable_Integral'), use_unicode=False)
f(x)
/
1
|/

```


Examples
```

>>> pprint(dsolve(Eq(x*f(x).diff(x) + f(x), log(x)*f(x)**2),
\#. f(x), hint='Bernoulli'), use_unicode=False)
f(x) =
x*|C1 + - - (x) +-

```

\section*{References}
- https://en.wikipedia.org/wiki/Bernoulli_differential_equation
- [TP63], pp. 95.

\section*{Liouville}
diofant.solvers.ode.ode_Liouville(eq, func, order, match)
Solves 2nd order Liouville differential equations.
The general form of a Liouville ODE is
\[
\frac{d^{2} y}{d x^{2}}+g(y)\left(\frac{d y}{d x}\right)^{2}+h(x) \frac{d y}{d x}
\]

The general solution is:
```

>>> genform = Eq(diff(f(x), x, x) + g(f(x))*diff(f(x), x)**2 +
\#.. h(x)*diff(f(x), x), 0)
>>> pprint(genform, use_unicode=False)
g(f(x))*|--(f(x))\mp@subsup{|}{}{/d}+h(x)*--(f(x))+
dx
>>> pprint(dsolve(genform, f(x), hint='Liouville_Integral'), use_unicode=False)
C1 +C2*

```

\section*{Examples}
```

>>> pprint(dsolve(diff(f(x), x, x) + diff(f(x), x)**2/f(x) +
... diff(f(x), x)/x, f(x), hint='Liouville'),
\#. use_unicode=False)
[f(x) = -\/ C1+C2*log(x)},f(x)=\/\C1+C2*\operatorname{log}(x)

```

\section*{References}
- [GB73], pp. 98.
- https://www.maplesoft.com/support/help/Maple/view.aspx?path=odeadvisor/ Liouville

\section*{Riccati_special_minus2}
diofant.solvers.ode.ode_Riccati_special_minus2(eq, func, order, match)
The general Riccati equation has the form
\[
d y / d x=f(x) y^{2}+g(x) y+h(x) .
\]

While it does not have a general solution [1], the "special" form, \(d y / d x=a y^{2}-b x^{c}\), does have solutions in many cases [2]. This routine returns a solution for \(a(d y / d x)=b y^{2}+c y / x+\) \(d / x^{2}\) that is obtained by using a suitable change of variables to reduce it to the special form and is valid when neither \(a\) nor \(b\) are zero and either \(c\) or \(d\) is zero.
```

>>> genform = a*f(x).diff(x) - (b*f(x)**2 + c*f(x)/x + d/x**2)
>>> sol = dsolve(genform, f(x))
>>> pprint(sol, wrap_line=False, use_unicode=False)

```

```

f(x) = ---

```

\section*{References}
1. https://www.maplesoft.com/support/help/Maple/view.aspx?path=odeadvisor/ Riccati
2. http://eqworld.ipmnet.ru/en/solutions/ode/ode0106.pdf - http://eqworld.ipmnet.ru/ en/solutions/ode/ode0123.pdf

\section*{nth_linear_constant_coeff_homogeneous}

\section*{diofant.solvers.ode.ode_nth_linear_constant_coeff_homogeneous(eq, func, order, match, returns='sol')}

Solves an \(n\)th order linear homogeneous differential equation with constant coefficients. This is an equation of the form
\[
a_{n} f^{(n)}(x)+a_{n-1} f^{(n-1)}(x)+\cdots+a_{1} f^{\prime}(x)+a_{0} f(x)=0 .
\]

These equations can be solved in a general manner, by taking the roots of the characteristic equation \(a_{n} m^{n}+a_{n-1} m^{n-1}+\cdots+a_{1} m+a_{0}=0\). The solution will then be the sum of \(C_{n} x^{i} e^{r x}\) terms, for each where \(C_{n}\) is an arbitrary constant, \(r\) is a root of the characteristic equation and \(i\) is one of each from 0 to the multiplicity of the root -1 (for example, a root 3 of multiplicity 2 would create the terms \(C_{1} e^{3 x}+C_{2} x e^{3 x}\) ). The exponential is usually expanded for complex roots using Euler's equation \(e^{I x}=\cos (x)+I \sin (x)\). Complex roots always come in conjugate pairs in polynomials with real coefficients, so the two roots will be represented (after simplifying the constants) as \(e^{a x}\left(C_{1} \cos (b x)+C_{2} \sin (b x)\right)\).
If Diofant cannot find exact roots to the characteristic equation, a Root0f (page 622) instance will be return instead.
```

>>> dsolve(f(x).diff((x, 5)) + 10*f(x).diff(x) - 2*f(x), f(x),
\#.. hint='nth_linear_constant_coeff_homogeneous')
Eq(f(x), E**(x*Root0f(x**5 + 10* x - 2, 0))*C1 +
E**(x*RootOf(x**5 + 1\overline{0}* x - 2, 1))*C2 +
E**(x*RootOf(_x**5 + 10*_x - 2, 2))*C3 +
E**(x*RootOf(_x**5 + 10*_x - 2, 3))*C4 +
E**(x*RootOf(_x**5 + 10*_

```

Note that because this method does not involve integration, there is no nth_linear_constant_coeff_homogeneous_Integral hint.

The following is for internal use:
- returns = 'sol' returns the solution to the ODE.
- returns = 'list' returns a list of linearly independent solutions, for use with non homogeneous solution methods like variation of parameters and undetermined coefficients. Note that, though the solutions should be linearly independent, this function does not explicitly check that. You can do assert simplify(wronskian(sollist)) != 0 to check for linear independence. Also, assert len(sollist) == order will need to pass.
- returns = 'both', return a dictionary \{'sol': <solution to ODE>, 'list': <list of linearly independent solutions>\}.

\section*{Examples}
```

>>> pprint(dsolve(f(x).diff((x, 4)) + 2*f(x).diff((x, 3)) -
... 2*f(x).diff((x, 2)) - 6*f(x).diff(x) + 5*f(x), f(x),
\#. hint='nth_linear_constant_coeff_homogeneous'),
... use_unicode=False)

```

\section*{References}
- https://en.wikipedia.org/wiki/Linear_differential_equation section: Nonhomogeneous_equation_with_constant_coefficients
- [TP63], pp. 211.

\section*{nth_linear_constant_coeff_undetermined_coefficients}
```

diofant.solvers.ode.ode_nth_linear_constant_coeff_undetermined_coefficients(eq,

``` func,
or-
der, match)
Solves an \(n\)th order linear differential equation with constant coefficients using the method of undetermined coefficients.
This method works on differential equations of the form
\[
a_{n} f^{(n)}(x)+a_{n-1} f^{(n-1)}(x)+\cdots+a_{1} f^{\prime}(x)+a_{0} f(x)=P(x),
\]
where \(P(x)\) is a function that has a finite number of linearly independent derivatives.
Functions that fit this requirement are finite sums functions of the form \(a x^{i} e^{b x} \sin (c x+d)\) or \(a x^{i} e^{b x} \cos (c x+d)\), where \(i\) is a non-negative integer and \(a, b, c\), and \(d\) are constants. For example any polynomial in \(x\), functions like \(x^{2} e^{2 x}, x \sin (x)\), and \(e^{x} \cos (x)\) can all be used. Products of sin's and cos's have a finite number of derivatives, because they can be expanded into \(\sin (a x)\) and \(\cos (b x)\) terms. However, Diofant currently cannot do that expansion, so you will need to manually rewrite the expression in terms of the above to use this method. So, for example, you will need to manually convert \(\sin ^{2}(x)\) into \((1+\) \(\cos (2 x)) / 2\) to properly apply the method of undetermined coefficients on it.
This method works by creating a trial function from the expression and all of its linear independent derivatives and substituting them into the original ODE. The coefficients for each term will be a system of linear equations, which are be solved for and substituted, giving the solution. If any of the trial functions are linearly dependent on the solution to the homogeneous equation, they are multiplied by sufficient \(x\) to make them linearly independent.

\section*{Examples}
```

>>> pprint(dsolve(f(x).diff((x, 2)) + 2*f(x).diff(x) + f(x) -
\#. 4*exp(-x)*x**2 + cos(2*x),f(x),
\#. hint='nth_linear_constant_coeff_undetermined_coefficients'),
\becauseu use_unicode=False\overline{e}
f(x)=- 4*\operatorname{sin}(2*x)

```

\section*{References}
- https://en.wikipedia.org/wiki/Method_of_undetermined_coefficients
- [TP63], pp. 221.
nth_linear_constant_coeff_variation_of_parameters
diofant.solvers.ode.ode_nth_linear_constant_coeff_variation_of_parameters(eq, func,
or-
der, match)
Solves an \(n\)th order linear differential equation with constant coefficients using the method of variation of parameters.

This method works on any differential equations of the form
\[
f^{(n)}(x)+a_{n-1} f^{(n-1)}(x)+\cdots+a_{1} f^{\prime}(x)+a_{0} f(x)=P(x) .
\]

This method works by assuming that the particular solution takes the form
\[
\sum_{x=1}^{n} c_{i}(x) y_{i}(x),
\]
where \(y_{i}\) is the \(i\) th solution to the homogeneous equation. The solution is then solved using Wronskian's and Cramer's Rule. The particular solution is given by
\[
\sum_{x=1}^{n}\left(\int \frac{W_{i}(x)}{W(x)} d x\right) y_{i}(x)
\]
where \(W(x)\) is the Wronskian of the fundamental system (the system of \(n\) linearly independent solutions to the homogeneous equation), and \(W_{i}(x)\) is the Wronskian of the fundamental system with the \(i\) th column replaced with \([0,0, \cdots, 0, P(x)]\).
This method is general enough to solve any \(n\)th order inhomogeneous linear differential equation with constant coefficients, but sometimes Diofant cannot simplify the Wronskian well enough to integrate it. If this method hangs, try using the nth_linear_constant_coeff_variation_of_parameters_Integral hint and simplifying the integrals mānually. - Also, prefer using nth_linear_constant_coeff_undetermined_coefficients when it applies, because it doesn't use integration, making it faster and more reliable.

Warning, using simplify=False with 'nth_linear_constant_coeff_variation_of_parameters' in dsolve() (page 771) may cause it to hang, because it will not attempt to simplify the Wronskian before integrating. It is recommended that you only use simplify=False with 'nth_linear_constant_coeff_variation_of_parameters_Integral' for this method, especially if the solution to the homogeneous equation has trigonometric functions in it.

\section*{Examples}
```

>> pprint(dsolve(f(x).diff((x, 3)) - 3*f(x).diff((x, 2)) +
\#.. 3*f(x).diff(x) - f(x) - exp(x)*log(x), f(x),
... hint='nth_linear_constant_coeff_variation_of_parameters'),
... use_unicode=Falsé)

```


\section*{References}
- https://en.wikipedia.org/wiki/Variation_of_parameters
- [TP63], pp. 233.

\section*{separable}
diofant.solvers.ode.ode_separable(eq, func, order, match)
Solves separable 1st order differential equations.
This is any differential equation that can be written as \(P(y) \frac{d y}{d x}=Q(x)\). The solution can then just be found by rearranging terms and integrating: \(\int P(y) d y=\int Q(x) d x\). This hint uses diofant.simplify.simplify.separatevars() (page 680) as its back end, so if a separable equation is not caught by this solver, it is most likely the fault of that function. separatevars() (page 680) is smart enough to do most expansion and factoring necessary to convert a separable equation \(F(x, y)\) into the proper form \(P(x) \cdot Q(y)\). The general solution is:
```

>>> a, b, c, d = map(Function, ['a', 'b', 'c', 'd'])
>> genform = Eq(a(x)*b(f(x))*f(x).diff(x), c(x)*d(f(x)))
>>> pprint(genform, use_unicode=False)
a(x)*b(f(x))*_--(f(x)) = c(x)*d(f(x))
>>> pprint(dsolve(genform, f(x),
"." hint='separable_Integral'), use_unicode=False)
f(x)
|

```

\section*{Examples}
```

>>> pprint(dsolve(Eq(f(x)*f(x).diff(x) + x, 3*x*f(x)**2), f(x),
*. hint='separable', simplify=False), use_unicode=False)
/ 2 \ 2
log\3*f (x) - 1/ x
--------------- = C1 + --
6 2

```

\section*{References}
- [TP63], pp. 52.

\section*{almost_linear}
diofant.solvers.ode.ode_almost_linear (eq, func, order, match)
Solves an almost-linear differential equation.
The general form of an almost linear differential equation is
\[
f(x) g(y) y+k(x) l(y)+m(x)=0 \text { where } l^{\prime}(y)=g(y) .
\]

This can be solved by substituting \(l(y)=u(y)\). Making the given substitution reduces it to a linear differential equation of the form \(u^{\prime}+P(x) u+Q(x)=0\).
The general solution is
```

>>> k, l = map(Function, ['k', 'l'])
>>> genform = Eq(f(x)*(l(y).diff(y)) + k(x)*l(y) + g(x), 0)
>>> pprint(genform, use_unicode=False)
f(x)*--(l(y)) + g(x) + k(x)*l(y) = 0
dy
>>> pprint(dsolve(genform, hint='almost_linear'), use_unicode=False)
l(y)= E f(x)

```

\section*{See also:}
diofant.solvers.ode.ode_1st_linear() (page 787)

\section*{Examples}
```

>>> d = f(x).diff(x)
>>> eq = x*d + x*f(x) + 1
>> dsolve(eq, f(x), hint='almost_linear')
Eq(f(x), E**(-x)*(C1 - Ei(x)))
>>> pprint(dsolve(eq, f(x), hint='almost_linear'), use_unicode=False)
f(x) = E *x}*(C1 - Ei(x)

```

\section*{References}
- Joel Moses, "Symbolic Integration - The Stormy Decade", Communications of the ACM, Volume 14, Number 8, August 1971, pp. 558

\section*{linear_coefficients}
diofant.solvers.ode.ode_linear_coefficients(eq, func, order, match)
Solves a differential equation with linear coefficients.
The general form of a differential equation with linear coefficients is
\[
y^{\prime}+F\left(\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}\right)=0,
\]
where \(a_{1}, b_{1}, c_{1}, a_{2}, b_{2}, c_{2}\) are constants and \(a_{1} b_{2}-a_{2} b_{1} \neq 0\).
This can be solved by substituting:
\[
\begin{aligned}
& x=x^{\prime}+\frac{b_{2} c_{1}-b_{1} c_{2}}{a_{2} b_{1}-a_{1} b_{2}} \\
& y=y^{\prime}+\frac{a_{1} c_{2}-a_{2} c_{1}}{a_{2} b_{1}-a_{1} b_{2}}
\end{aligned}
\]

This substitution reduces the equation to a homogeneous differential equation.

\section*{See also:}
```

diofant.solvers.ode.ode_1st_homogeneous_coeff_best() (page 784), diofant.

```
solvers.ode.ode_1st_homogeneous_coeff_subs_indep_div_dep() (page 786),
diofant.solvers.ode.ode_1st_homogeneous_coeff_subs_dep_div_indep()
(page 785)

\section*{Examples}
```

>>> eq = (x + f(x) + 1)*f(x).diff(x) + (f(x) - 6*x + 1)
>>> dsolve(eq, hint='linear_coefficients')
[Eq(f(x), -x - sqrt(C1 + 7*x**2) - 1), Eq(f(x), -x + sqrt(C1 + 7*x**2) - 1)]
>>> pprint(dsolve(eq, hint='linear coefficients'), use unicode=False)
[f(x) = -x - \// C1 +7*\mp@subsup{x}{}{2}-1,f(x) = -x +\// C1 +7*\mp@subsup{x}{}{2}-1]

```

\section*{References}
- Joel Moses, "Symbolic Integration - The Stormy Decade", Communications of the ACM, Volume 14, Number 8, August 1971, pp. 558

\section*{separable_reduced}
diofant.solvers.ode.ode_separable_reduced (eq, func, order, match)
Solves a differential equation that can be reduced to the separable form.
The general form of this equation is
\[
y^{\prime}+(y / x) H\left(x^{n} y\right)=0 .
\]

This can be solved by substituting \(u(y)=x^{n} y\). The equation then reduces to the separable form \(\frac{u^{\prime}}{u(\text { power- } H(u))}-\frac{1}{x}=0\).
The general solution is:
```

>>> genform = f(x).diff(x) + (f(x)/x)*g(x**n*f(x))
>>> pprint(genform, use_unicode=False)
d f(x)*g\x *f(x)/
--(f(x)) + --------------
dx x
>>> pprint(dsolve(genform, hint='separable_reduced'), use_unicode=False)
n
x *f(x)
/
1
----------- dy = C1 + log(x)
y*(n - g(y))
/

```

\section*{See also:}
diofant.solvers.ode.ode_separable() (page 794)

\section*{Examples}
```

>>> eq = (x - x**2*f(x))*f(x).diff(x) - f(x)
>>> dsolve(eq, hint='separable_reduced')
[Eq(f(x), (-sqrt(C1*x**2 + 1) + 1)/x), Eq(f(x), (sqrt(C1*x**2 + 1) + 1)/x)]
>>> pprint(dsolve(eq, hint='separable_reduced'), use_unicode=False)
// C1*x
[f(x) = -----------------, f(x) = ----------------------
X X

```

\section*{References}
- Joel Moses, "Symbolic Integration - The Stormy Decade", Communications of the ACM, Volume 14, Number 8, August 1971, pp. 558

\section*{lie_group}
diofant.solvers.ode.ode_lie_group(eq, func, order, match)
This hint implements the Lie group method of solving first order differential equations. The aim is to convert the given differential equation from the given coordinate given system into another coordinate system where it becomes invariant under the one-parameter Lie group of translations. The converted ODE is quadrature and can be solved easily. It makes use of the diofant. solvers.ode.infinitesimals() (page 777) function which returns the infinitesimals of the transformation.

The coordinates \(r\) and \(s\) can be found by solving the following Partial Differential Equations.
\[
\begin{aligned}
& \xi \frac{\partial r}{\partial x}+\eta \frac{\partial r}{\partial y}=0 \\
& \xi \frac{\partial s}{\partial x}+\eta \frac{\partial s}{\partial y}=1
\end{aligned}
\]

The differential equation becomes separable in the new coordinate system
\[
\frac{d s}{d r}=\frac{\frac{\partial s}{\partial x}+h(x, y) \frac{\partial s}{\partial y}}{\frac{\partial r}{\partial x}+h(x, y) \frac{\partial r}{\partial y}}
\]

After finding the solution by integration, it is then converted back to the original coordinate system by subsituting \(r\) and \(s\) in terms of \(x\) and \(y\) again.

Examples
```

>>> pprint(dsolve(f(x).diff(x) + 2***f(x) - x*exp(-x**2), f(x),
... hint='lie_group'), use_unicode=False)

```


\section*{References}
- Solving differential equations by Symmetry Groups, John Starrett, pp. 1-14.

\section*{1st_power_series}
diofant.solvers.ode.ode_1st_power_series(eq, func, order, match)
The power series solution is a method which gives the Taylor series expansion to the solution of a differential equation.
For a first order differential equation \(\frac{d y}{d x}=h(x, y)\), a power series solution exists at a point \(x=x_{0}\) if \(h(x, y)\) is analytic at \(x_{0}\). The solution is given by
\[
y(x)=y\left(x_{0}\right)+\sum_{n=1}^{\infty} \frac{F_{n}\left(x_{0}, b\right)\left(x-x_{0}\right)^{n}}{n!}
\]
where \(y\left(x_{0}\right)=b\) is the value of y at the initial value of \(x_{0}\). To compute the values of the \(F_{n}\left(x_{0}, b\right)\) the following algorithm is followed, until the required number of terms are generated.
1. \(F_{1}=h\left(x_{0}, b\right)\)
2. \(F_{n+1}=\frac{\partial F_{n}}{\partial x}+\frac{\partial F_{n}}{\partial y} F_{1}\)

\section*{Examples}
```

>>> eq = exp(x)*(f(x).diff(x)) - f(x)
>>> pprint(dsolve(eq, hint='1st_power_series'), use_unicode=False)

```

```

f(x) = C1 + C1*x - ---- + ---- + ----- + 0\x/
6 24 60

```

\section*{References}
- Travis W. Walker, Analytic power series technique for solving first-order differential equations, pp 17, 18

\section*{2nd_power_series_ordinary}
diofant.solvers.ode.ode_2nd_power_series_ordinary(eq, func, order, match)
Gives a power series solution to a second order homogeneous differential equation with polynomial coefficients at an ordinary point. A homogenous differential equation is of the form
\[
P(x) \frac{d^{2} y}{d x^{2}}+Q(x) \frac{d y}{d x}+R(x)=0
\]

For simplicity it is assumed that \(P(x), Q(x)\) and \(R(x)\) are polynomials, it is sufficient that \(\frac{Q(x)}{P(x)}\) and \(\frac{R(x)}{P(x)}\) exists at \(x_{0}\). A recurrence relation is obtained by substituting \(y\) as \(\sum_{n=0}^{\infty} a_{n} x^{n}\), in the differential equation, and equating the nth term. Using this relation various terms can be generated.

\section*{Examples}
>>> eq \(=f(x) \cdot \operatorname{diff}((x, 2))+f(x)\)
>>> pprint(dsolve(eq, hint='2nd_power_series_ordinary'), use_unicode=False)
\(\left.f(x)=C 2 *\left|\begin{array}{ll}\mid x^{4} & x^{2} \\ \mid-24 & - \\ 2\end{array}\right|+1\left|+C 1 * x^{*}\right| \begin{aligned} & x^{2} \\ & x^{2} \\ & -- \\ & 6\end{aligned} \right\rvert\,+0 \backslash x /\)

\section*{References}
- http://tutorial.math.lamar.edu/Classes/DE/SeriesSolutions.aspx
- [Sim16], pp 176-184.

\section*{2nd_power_series_regular}
diofant.solvers.ode.ode_2nd_power_series_regular(eq, func, order, match)
Gives a power series solution to a second order homogeneous differential equation with polynomial coefficients at a regular point. A second order homogenous differential equation is of the form
\[
P(x) \frac{d^{2} y}{d x^{2}}+Q(x) \frac{d y}{d x}+R(x)=0
\]

A point is said to regular singular at \(x 0\) if \(x-x 0 \frac{Q(x)}{P(x)}\) and \((x-x 0)^{2} \frac{R(x)}{P(x)}\) are analytic at \(x 0\). For simplicity \(P(x), Q(x)\) and \(R(x)\) are assumed to be polynomials. The algorithm for finding the power series solutions is:
1. Try expressing \((x-x 0) P(x)\) and \(\left((x-x 0)^{2}\right) Q(x)\) as power series solutions about x 0 . Find \(p 0\) and \(q 0\) which are the constants of the power series expansions.
2. Solve the indicial equation \(f(m)=m(m-1)+m * p 0+q 0\), to obtain the roots \(m 1\) and \(m 2\) of the indicial equation.
3. If \(m 1-m 2\) is a non integer there exists two series solutions. If \(m 1=m 2\), there exists only one solution. If \(m 1-m 2\) is an integer, then the existence of one solution is confirmed. The other solution may or may not exist.

The power series solution is of the form \(x^{m} \sum_{n=0}^{\infty} a_{n} x^{n}\). The coefficients are determined by the following recurrence relation. \(a_{n}=-\frac{\sum_{k=0}^{n-1} q_{n-k}+(m+k) p_{n-k}}{f(m+n)}\). For the case in which \(m 1-m 2\) is an integer, it can be seen from the recurrence relation that for the lower root \(m\), when \(n\) equals the difference of both the roots, the denominator becomes zero. So if the numerator is not equal to zero, a second series solution exists.

\section*{Examples}
>>> eq \(=x^{*}(f(x) . \operatorname{diff}((x, 2)))+2 *(f(x) \cdot d i f f(x))+x^{*} f(x)\)
>>> pprint(dsolve(eq), use_unicode=False)


\section*{References}
- [Sim16], pp 176-184.

\section*{Lie heuristics}

These functions are intended for internal use of the Lie Group Solver. Nonetheless, they contain useful information in their docstrings on the algorithms implemented for the various heuristics.

\section*{abacol_simple}
diofant.solvers.ode.lie_heuristic_abacol_simple(match, comp)
The first heuristic uses the following four sets of assumptions on \(\xi\) and \(\eta\)
\[
\begin{aligned}
& \xi=0, \eta=f(x) \\
& \xi=0, \eta=f(y) \\
& \xi=f(x), \eta=0 \\
& \xi=f(y), \eta=0
\end{aligned}
\]

The success of this heuristic is determined by algebraic factorisation. For the first assumption \(\xi=0\) and \(\eta\) to be a function of \(x\), the PDE
\[
\frac{\partial \eta}{\partial x}+\left(\frac{\partial \eta}{\partial y}-\frac{\partial \xi}{\partial x}\right) * h-\frac{\partial \xi}{\partial y} * h^{2}-\xi * \frac{\partial h}{\partial x}-\eta * \frac{\partial h}{\partial y}=0
\]
reduces to \(f^{\prime}(x)-f \frac{\partial h}{\partial y}=0\) If \(\frac{\partial h}{\partial y}\) is a function of \(x\), then this can usually be integrated easily. A similar idea is applied to the other 3 assumptions as well.

\section*{References}
- E.S Cheb-Terrab, L.G.S Duarte and L.A,C.P da Mota, Computer Algebra Solving of First Order ODEs Using Symmetry Methods, pp. 8
abacol_product
diofant.solvers.ode.lie_heuristic_abacol_product (match, comp)
The second heuristic uses the following two assumptions on \(\xi\) and \(\eta\)
\[
\begin{aligned}
& \eta=0, \xi=f(x) * g(y) \\
& \eta=f(x) * g(y), \xi=0
\end{aligned}
\]

The first assumption of this heuristic holds good if \(\frac{1}{h^{2}} \frac{\partial^{2}}{\partial x \partial y} \log (h)\) is separable in \(x\) and \(y\), then the separated factors containing \(x\) is \(f(x)\), and \(g(y)\) is obtained by
\[
e^{\int f \frac{\partial}{\partial x}\left(\frac{1}{f+n}\right) d y}
\]
provided \(f \frac{\partial}{\partial x}\left(\frac{1}{f * h}\right)\) is a function of \(y\) only.
The second assumption holds good if \(\frac{d y}{d x}=h(x, y)\) is rewritten as \(\frac{d y}{d x}=\frac{1}{h(y, x)}\) and the same properties of the first assumption satisifes. After obtaining \(f(x)\) and \(g(y)\), the coordinates are again interchanged, to get \(\eta\) as \(f(x) * g(y)\)

\section*{References}
- E.S. Cheb-Terrab, A.D. Roche, Symmetries and First Order ODE Patterns, pp. 7 pp. 8

\section*{bivariate}
diofant.solvers.ode.lie_heuristic_bivariate (match, comp)
The third heuristic assumes the infinitesimals \(\xi\) and \(\eta\) to be bi-variate polynomials in \(x\) and \(y\). The assumption made here for the logic below is that \(h\) is a rational function in \(x\) and \(y\) though that may not be necessary for the infinitesimals to be bivariate polynomials. The coefficients of the infinitesimals are found out by substituting them in the PDE and grouping similar terms that are polynomials and since they form a linear system, solve and check for non trivial solutions. The degree of the assumed bivariates are increased till a certain maximum value.

\section*{References}
- Lie Groups and Differential Equations pp. 327 - pp. 329

\section*{chi}
diofant.solvers.ode.lie_heuristic_chi(match, comp)
The aim of the fourth heuristic is to find the function \(\chi(x, y)\) that satisifies the PDE \(\frac{d \chi}{d x}+\) \(h \frac{d \chi}{d x}-\frac{\partial h}{\partial y} \chi=0\).
This assumes \(\chi\) to be a bivariate polynomial in \(x\) and \(y\). By intuition, \(h\) should be a rational function in \(x\) and \(y\). The method used here is to substitute a general binomial for \(\chi\) up to a certain maximum degree is reached. The coefficients of the polynomials, are calculated by by collecting terms of the same order in \(x\) and \(y\).

After finding \(\chi\), the next step is to use \(\eta=\xi * h+\chi\), to determine \(\xi\) and \(\eta\). This can be done by dividing \(\chi\) by \(h\) which would give \(-\xi\) as the quotient and \(\eta\) as the remainder.

\section*{References}
- E.S Cheb-Terrab, L.G.S Duarte and L.A,C.P da Mota, Computer Algebra Solving of First Order ODEs Using Symmetry Methods, pp. 8
abaco2_similar
diofant.solvers.ode.lie_heuristic_abaco2_similar (match, comp)
This heuristic uses the following two assumptions on \(\xi\) and \(\eta\)
\[
\begin{aligned}
& \eta=g(x), \xi=f(x) \\
& \eta=f(y), \xi=g(y)
\end{aligned}
\]

For the first assumption,
1. First \(\frac{\frac{\partial h}{\partial b^{h} h}}{\partial y y}\) is calculated. Let us say this value is A
2. If this is constant, then \(h\) is matched to the form \(A(x)+B(x) e^{\frac{y}{c}}\) then, \(\frac{e^{\int \frac{A(x)}{(x} d x}}{B(x)}\) gives \(f(x)\) and \(A(x) * f(x)\) gives \(g(x)\)
3. Otherwise \(\frac{\frac{\partial A}{\partial X}}{\frac{\partial Y}{\partial Y}}=\gamma\) is calculated. If
a] \(\gamma\) is a function of \(x\) alone
b] \(\frac{\gamma \frac{\partial h}{\partial y}-\gamma^{\prime}(x)-\frac{\partial h}{\partial x}}{h+\gamma}=G\) is a function of \(x\) alone. then, \(e^{\int G d x}\) gives \(f(x)\) and \(-\gamma * f(x)\) gives \(g(x)\)
The second assumption holds good if \(\frac{d y}{d x}=h(x, y)\) is rewritten as \(\frac{d y}{d x}=\frac{1}{h(y, x)}\) and the same properties of the first assumption satisifes. After obtaining \(f(x)\) and \(g(x)\), the coordinates are again interchanged, to get \(\xi\) as \(f\left(x^{*}\right)\) and \(\eta\) as \(g\left(y^{*}\right)\)

\section*{References}
- E.S. Cheb-Terrab, A.D. Roche, Symmetries and First Order ODE Patterns, pp. 10 pp. 12

\section*{function_sum}
diofant.solvers.ode.lie_heuristic_function_sum (match, comp)
This heuristic uses the following two assumptions on \(\xi\) and \(\eta\)
\[
\begin{aligned}
& \eta=0, \xi=f(x)+g(y) \\
& \eta=f(x)+g(y), \xi=0
\end{aligned}
\]

The first assumption of this heuristic holds good if
\[
\frac{\partial}{\partial y}\left[\left(h \frac{\partial^{2}}{\partial x^{2}}\left(h^{-1}\right)\right)^{-1}\right]
\]
is separable in \(x\) and \(y\),
1. The separated factors containing \(y\) is \(\frac{\partial g}{\partial y}\). From this \(g(y)\) can be determined.
2. The separated factors containing \(x\) is \(f^{\prime \prime}(x)\).
3. \(h \frac{\partial^{2}}{\partial x^{2}}\left(h^{-1}\right)\) equals \(\frac{f^{\prime \prime}(x)}{f(x)+g(y)}\). From this \(f(x)\) can be determined.

The second assumption holds good if \(\frac{d y}{d x}=h(x, y)\) is rewritten as \(\frac{d y}{d x}=\frac{1}{h(y, x)}\) and the same properties of the first assumption satisifes. After obtaining \(f(x)\) and \(g(y)\), the coordinates are again interchanged, to get \(\eta\) as \(f(x)+g(y)\).
For both assumptions, the constant factors are separated among \(g(y)\) and \(f^{\prime \prime}(x)\), such that \(f^{\prime \prime}(x)\) obtained from 3] is the same as that obtained from 2]. If not possible, then this heuristic fails.

\section*{References}
- E.S. Cheb-Terrab, A.D. Roche, Symmetries and First Order ODE Patterns, pp. 7 pp. 8

\section*{abaco2_unique_unknown}
diofant.solvers.ode.lie_heuristic_abaco2_unique_unknown (match, comp)
This heuristic assumes the presence of unknown functions or known functions with noninteger powers.
1. A list of all functions and non-integer powers containing \(x\) and \(y\)
2. Loop over each element \(f\) in the list, find \(\frac{\frac{\partial f}{\partial f}}{\frac{\partial x}{\partial x}}=R\)

If it is separable in \(x\) and \(y\), let \(X\) be the factors containing \(x\). Then
a] Check if \(\xi=X\) and \(\eta=-\frac{X}{R}\) satisfy the PDE. If yes, then return \(\xi\) and \(\eta\)
b] Check if \(\xi=\frac{-R}{X}\) and \(\eta=-\frac{1}{X}\) satisfy the PDE. If yes, then return \(\xi\) and \(\eta\)
If not, then check if
a] \(\xi=-R, \eta=1\)
b] \(\xi=1, \eta=-\frac{1}{R}\)
are solutions.

\section*{References}
- E.S. Cheb-Terrab, A.D. Roche, Symmetries and First Order ODE Patterns, pp. 10 pp. 12

\section*{linear}
diofant.solvers.ode.lie_heuristic_linear(match, comp)
This heuristic assumes
1. \(\xi=a x+b y+c\) and
2. \(\eta=f x+g y+h\)

After substituting the following assumptions in the determining PDE, it reduces to
\[
f+(g-a) h-b h^{2}-(a x+b y+c) \frac{\partial h}{\partial x}-(f x+g y+c) \frac{\partial h}{\partial y}
\]

Solving the reduced PDE obtained, using the method of characteristics, becomes impractical. The method followed is grouping similar terms and solving the system of linear equations obtained. The difference between the bivariate heuristic is that \(h\) need not be a rational function in this case.

\section*{References}
- E.S. Cheb-Terrab, A.D. Roche, Symmetries and First Order ODE Patterns, pp. 10 pp. 12

\section*{System of ODEs}

These functions are intended for internal use by dsolve() (page 771) for system of differential equations.
system_of_odes_linear_2eq_order1_type3
diofant.solvers.ode._linear_2eq_order1_type3 \((x, y, t, r, e q)\)
The equations of this type of ode are
\[
\begin{aligned}
& x^{\prime}=f(t) x+g(t) y \\
& y^{\prime}=g(t) x+f(t) y
\end{aligned}
\]

The solution of such equations is given by
\[
x=e^{F}\left(C_{1} e^{G}+C_{2} e^{-G}\right), y=e^{F}\left(C_{1} e^{G}-C_{2} e^{-G}\right)
\]
where \(C_{1}\) and \(C_{2}\) are arbitrary constants, and
\[
F=\int f(t) d t, G=\int g(t) d t
\]
system_of_odes_linear_2eq_order1_type4
diofant.solvers.ode._linear_2eq_order1_type4 ( \(x, y, t, r, e q\) )
The equations of this type of ode are.
\[
\begin{aligned}
x^{\prime} & =f(t) x+g(t) y \\
y^{\prime} & =-g(t) x+f(t) y
\end{aligned}
\]

The solution is given by
\[
x=F\left(C_{1} \cos (G)+C_{2} \sin (G)\right), y=F\left(-C_{1} \sin (G)+C_{2} \cos (G)\right)
\]
where \(C_{1}\) and \(C_{2}\) are arbitrary constants, and
\[
F=\int f(t) d t, G=\int g(t) d t
\]

\section*{system_of_odes_linear_2eq_order1_type5}
diofant.solvers.ode._linear_2eq_order1_type5 ( \(x, y, t, r, e q\) )
The equations of this type of ode are
\[
\begin{gathered}
x^{\prime}=f(t) x+g(t) y \\
y^{\prime}=a g(t) x+[f(t)+b g(t)] y
\end{gathered}
\]

The transformation of
\[
x=e^{\int f(t) d t} u, y=e^{\int f(t) d t} v, T=\int g(t) d t
\]
leads to a system of constant coefficient linear differential equations
\[
u^{\prime}(T)=v, v^{\prime}(T)=a u+b v
\]

\section*{system_of_odes_linear_2eq_order1_type6}
diofant.solvers.ode._linear_2eq_order1_type6 ( \(x, y, t, r, e q\) )
The equations of this type of ode are.
\[
\begin{gathered}
x^{\prime}=f(t) x+g(t) y \\
y^{\prime}=a[f(t)+a h(t)] x+a[g(t)-h(t)] y
\end{gathered}
\]

This is solved by first multiplying the first equation by \(-a\) and adding it to the second equation to obtain
\[
y^{\prime}-a x^{\prime}=-a h(t)(y-a x)
\]

Setting \(U=y-a x\) and integrating the equation we arrive at
\[
y-a x=C_{1} e^{-a \int h(t) d t}
\]
and on substituting the value of \(y\) in first equation give rise to first order ODEs. After solving for \(x\), we can obtain \(y\) by substituting the value of \(x\) in second equation.
system_of_odes_linear_2eq_order1_type7
diofant.solvers.ode._linear_2eq_order1_type7 \((x, y, t, r, e q)\)
The equations of this type of ode are.
\[
\begin{aligned}
& x^{\prime}=f(t) x+g(t) y \\
& y^{\prime}=h(t) x+p(t) y
\end{aligned}
\]

Differentiating the first equation and substituting the value of \(y\) from second equation will give a second-order linear equation
\[
g x^{\prime \prime}-\left(f g+g p+g^{\prime}\right) x^{\prime}+\left(f g p-g^{2} h+f g^{\prime}-f^{\prime} g\right) x=0
\]

This above equation can be easily integrated if following conditions are satisfied.
1. \(f g p-g^{2} h+f g^{\prime}-f^{\prime} g=0\)
2. \(f g p-g^{2} h+f g^{\prime}-f^{\prime} g=a g, f g+g p+g^{\prime}=b g\)

If first condition is satisfied then it is solved by current dsolve solver and in second case it becomes a constant coefficient differential equation which is also solved by current solver.
Otherwise if the above condition fails then, a particular solution is assumed as \(x=x_{0}(t)\) and \(y=y_{0}(t)\) Then the general solution is expressed as
\[
\begin{gathered}
x=C_{1} x_{0}(t)+C_{2} x_{0}(t) \int \frac{g(t) F(t) P(t)}{x_{0}^{2}(t)} d t \\
y=C_{1} y_{0}(t)+C_{2}\left[\frac{F(t) P(t)}{x_{0}(t)}+y_{0}(t) \int \frac{g(t) F(t) P(t)}{x_{0}^{2}(t)} d t\right]
\end{gathered}
\]
where C1 and C2 are arbitrary constants and
\[
F(t)=e^{\int f(t) d t}, P(t)=e^{\int p(t) d t}
\]
system_of_odes_linear_2eq_order2_type1
diofant.solvers.ode._linear_2eq_order2_typel ( \(x, y, t, r, e q\) )
System of two constant-coefficient second-order linear homogeneous differential equations
\[
\begin{aligned}
& x^{\prime \prime}=a x+b y \\
& y^{\prime \prime}=c x+d y
\end{aligned}
\]

The characteristic equation for above equations
\[
\lambda^{4}-(a+d) \lambda^{2}+a d-b c=0
\]
whose discriminant is \(D=(a-d)^{2}+4 b c \neq 0\)
1. When \(a d-b c \neq 0\)
1.1. If \(D \neq 0\). The characteristic equation has four distinct roots, \(\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}\). The general solution of the system is
\[
\begin{gathered}
x=C_{1} b e^{\lambda_{1} t}+C_{2} b e^{\lambda_{2} t}+C_{3} b e^{\lambda_{3} t}+C_{4} b e^{\lambda_{4} t} \\
y=C_{1}\left(\lambda_{1}^{2}-a\right) e^{\lambda_{1} t}+C_{2}\left(\lambda_{2}^{2}-a\right) e^{\lambda_{2} t}+C_{3}\left(\lambda_{3}^{2}-a\right) e^{\lambda_{3} t}+C_{4}\left(\lambda_{4}^{2}-a\right) e^{\lambda_{4} t}
\end{gathered}
\]
where \(C_{1}, \ldots, C_{4}\) are arbitrary constants.
1.2. If \(D=0\) and \(a \neq d\) :
\[
\begin{gathered}
x=2 C_{1}\left(b t+\frac{2 b k}{a-d}\right) e^{\frac{k t}{2}}+2 C_{2}\left(b t+\frac{2 b k}{a-d}\right) e^{\frac{-k t}{2}}+2 b C_{3} t e^{\frac{k t}{2}}+2 b C_{4} t e^{\frac{-k t}{2}} \\
y=C_{1}(d-a) t e^{\frac{k t}{2}}+C_{2}(d-a) t e^{\frac{-k t}{2}}+C_{3}[(d-a) t+2 k] e^{\frac{k t}{2}}+C_{4}[(d-a) t-2 k] e^{\frac{-k t}{2}}
\end{gathered}
\]
where \(C_{1}, \ldots, C_{4}\) are arbitrary constants and \(k=\sqrt{2(a+d)}\)
1.3. If \(D=0\) and \(a=d \neq 0\) and \(b=0\) :
\[
\begin{gathered}
x=2 \sqrt{a} C_{1} e^{\sqrt{a} t}+2 \sqrt{a} C_{2} e^{-\sqrt{a} t} \\
y=c C_{1} t e^{\sqrt{a} t}-c C_{2} t e^{-\sqrt{a} t}+C_{3} e^{\sqrt{a} t}+C_{4} e^{-\sqrt{a} t}
\end{gathered}
\]
1.4. If \(D=0\) and \(a=d \neq 0\) and \(c=0\) :
\[
\begin{gathered}
x=b C_{1} t e^{\sqrt{a} t}-b C_{2} t e^{-\sqrt{a} t}+C_{3} e^{\sqrt{a} t}+C_{4} e^{-\sqrt{a} t} \\
y=2 \sqrt{a} C_{1} e^{\sqrt{a} t}+2 \sqrt{a} C_{2} e^{-\sqrt{a} t}
\end{gathered}
\]
2. When \(a d-b c=0\) and \(a^{2}+b^{2}>0\). Then the original system becomes
\[
\begin{gathered}
x^{\prime \prime}=a x+b y \\
y^{\prime \prime}=k(a x+b y)
\end{gathered}
\]
2.1. If \(a+b k \neq 0\) :
\[
\begin{gathered}
x=C_{1} e^{t \sqrt{a+b k}}+C_{2} e^{-t \sqrt{a+b k}}+C_{3} b t+C_{4} b \\
y=C_{1} k e^{t \sqrt{a+b k}}+C_{2} k e^{-t \sqrt{a+b k}}-C_{3} a t-C_{4} a
\end{gathered}
\]
2.2. If \(a+b k=0\) :
\[
\begin{gathered}
x=C_{1} b t^{3}+C_{2} b t^{2}+C_{3} t+C_{4} \\
y=k x+6 C_{1} t+2 C_{2}
\end{gathered}
\]
system_of_odes_linear_2eq_order2_type2
diofant.solvers.ode._linear_2eq_order2_type2 \((x, y, t, r, e q)\)
The equations in this type are
\[
\begin{aligned}
& x^{\prime \prime}=a_{1} x+b_{1} y+c_{1} \\
& y^{\prime \prime}=a_{2} x+b_{2} y+c_{2}
\end{aligned}
\]

The general solution of this system is given by the sum of its particular solution and the general solution of the homogeneous system. The general solution is given by the linear system of 2 equation of order 2 and type 1
1. If \(a_{1} b_{2}-a_{2} b_{1} \neq 0\). A particular solution will be \(x=x_{0}\) and \(y=y_{0}\) where the constants \(x_{0}\) and \(y_{0}\) are determined by solving the linear algebraic system
\[
a_{1} x_{0}+b_{1} y_{0}+c_{1}=0, a_{2} x_{0}+b_{2} y_{0}+c_{2}=0
\]
2. If \(a_{1} b_{2}-a_{2} b_{1}=0\) and \(a_{1}^{2}+b_{1}^{2}>0\). In this case, the system in question becomes
\[
x^{\prime \prime}=a x+b y+c_{1}, y^{\prime \prime}=k(a x+b y)+c_{2}
\]
2.1. If \(\sigma=a+b k \neq 0\), the particular solution will be
\[
\begin{gathered}
x=\frac{1}{2} b \sigma^{-1}\left(c_{1} k-c_{2}\right) t^{2}-\sigma^{-2}\left(a c_{1}+b c_{2}\right) \\
y=k x+\frac{1}{2}\left(c_{2}-c_{1} k\right) t^{2}
\end{gathered}
\]
2.2. If \(\sigma=a+b k=0\), the particular solution will be
\[
\begin{gathered}
x=\frac{1}{24} b\left(c_{2}-c_{1} k\right) t^{4}+\frac{1}{2} c_{1} t^{2} \\
y=k x+\frac{1}{2}\left(c_{2}-c_{1} k\right) t^{2}
\end{gathered}
\]
system_of_odes_linear_2eq_order2_type3
diofant.solvers.ode._linear_2eq_order2_type3 \((x, y, t, r, e q)\)
These type of equation is used for describing the horizontal motion of a pendulum taking into account the Earth rotation. The solution is given with \(a^{2}+4 b>0\) :
\[
\begin{gathered}
x=C_{1} \cos (\alpha t)+C_{2} \sin (\alpha t)+C_{3} \cos (\beta t)+C_{4} \sin (\beta t) \\
y=-C_{1} \sin (\alpha t)+C_{2} \cos (\alpha t)-C_{3} \sin (\beta t)+C_{4} \cos (\beta t)
\end{gathered}
\]
where \(C_{1}, \ldots, C_{4}\) and
\[
\alpha=\frac{1}{2} a+\frac{1}{2} \sqrt{a^{2}+4 b}, \beta=\frac{1}{2} a-\frac{1}{2} \sqrt{a^{2}+4 b}
\]
system_of_odes_linear_2eq_order2_type5
diofant.solvers.ode._linear_2eq_order2_type5 ( \(x, y, t, r, e q\) )
The equation which come under this category are
\[
\begin{aligned}
& x^{\prime \prime}=a\left(t y^{\prime}-y\right) \\
& y^{\prime \prime}=b\left(t x^{\prime}-x\right)
\end{aligned}
\]

The transformation
\[
u=t x^{\prime}-x, b=t y^{\prime}-y
\]
leads to the first-order system
\[
u^{\prime}=a t v, v^{\prime}=b t u
\]

The general solution of this system is given by
If \(a b>0\) :
\[
\begin{gathered}
u=C_{1} a e^{\frac{1}{2} \sqrt{a b} t^{2}}+C_{2} a e^{-\frac{1}{2} \sqrt{a b} t^{2}} \\
v=C_{1} \sqrt{a b} e^{\frac{1}{2} \sqrt{a b} t^{2}}-C_{2} \sqrt{a b} e^{-\frac{1}{2} \sqrt{a b} t^{2}}
\end{gathered}
\]

If \(a b<0\) :
\[
\begin{gathered}
u=C_{1} a \cos \left(\frac{1}{2} \sqrt{|a b|} t^{2}\right)+C_{2} a \sin \left(-\frac{1}{2} \sqrt{|a b|} t^{2}\right) \\
v=C_{1} \sqrt{|a b|} \sin \left(\frac{1}{2} \sqrt{|a b|} t^{2}\right)+C_{2} \sqrt{|a b|} \cos \left(-\frac{1}{2} \sqrt{|a b|} t^{2}\right)
\end{gathered}
\]
where \(C_{1}\) and \(C_{2}\) are arbitrary constants. On substituting the value of \(u\) and \(v\) in above equations and integrating the resulting expressions, the general solution will become
\[
x=C_{3} t+t \int \frac{u}{t^{2}} d t, y=C_{4} t+t \int \frac{u}{t^{2}} d t
\]
where \(C_{3}\) and \(C_{4}\) are arbitrary constants.
system_of_odes_linear_2eq_order2_type6
diofant.solvers.ode._linear_2eq_order2_type6 ( \(x, y, t, r, e q\) )
The equations are
\[
\begin{aligned}
& x^{\prime \prime}=f(t)\left(a_{1} x+b_{1} y\right) \\
& y^{\prime \prime}=f(t)\left(a_{2} x+b_{2} y\right)
\end{aligned}
\]

If \(k_{1}\) and \(k_{2}\) are roots of the quadratic equation
\[
k^{2}-\left(a_{1}+b_{2}\right) k+a_{1} b_{2}-a_{2} b_{1}=0
\]

Then by multiplying appropriate constants and adding together original equations we obtain two independent equations:
\[
\begin{aligned}
& z_{1}^{\prime \prime}=k_{1} f(t) z_{1}, z_{1}=a_{2} x+\left(k_{1}-a_{1}\right) y \\
& z_{2}^{\prime \prime}=k_{2} f(t) z_{2}, z_{2}=a_{2} x+\left(k_{2}-a_{1}\right) y
\end{aligned}
\]

Solving the equations will give the values of \(x\) and \(y\) after obtaining the value of \(z_{1}\) and \(z_{2}\) by solving the differential equation and substituting the result.
system_of_odes_linear_2eq_order2_type7
diofant.solvers.ode._linear_2eq_order2_type7 ( \(x, y, t, r, e q\) )
The equations are given as
\[
\begin{aligned}
& x^{\prime \prime}=f(t)\left(a_{1} x^{\prime}+b_{1} y^{\prime}\right) \\
& y^{\prime \prime}=f(t)\left(a_{2} x^{\prime}+b_{2} y^{\prime}\right)
\end{aligned}
\]

If \(k_{1}\) and ' k 2 ' ' are roots of the quadratic equation
\[
k^{2}-\left(a_{1}+b_{2}\right) k+a_{1} b_{2}-a_{2} b_{1}=0
\]

Then the system can be reduced by adding together the two equations multiplied by appropriate constants give following two independent equations:
\[
\begin{aligned}
& z_{1}^{\prime \prime}=k_{1} f(t) z_{1}^{\prime}, z_{1}=a_{2} x+\left(k_{1}-a_{1}\right) y \\
& z_{2}^{\prime \prime}=k_{2} f(t) z_{2}^{\prime}, z_{2}=a_{2} x+\left(k_{2}-a_{1}\right) y
\end{aligned}
\]

Integrating these and returning to the original variables, one arrives at a linear algebraic system for the unknowns \(x\) and \(y\) :
\[
\begin{aligned}
& a_{2} x+\left(k_{1}-a_{1}\right) y=C_{1} \int e^{k_{1} F(t)} d t+C_{2} \\
& a_{2} x+\left(k_{2}-a_{1}\right) y=C_{3} \int e^{k_{2} F(t)} d t+C_{4}
\end{aligned}
\]
where \(C_{1}, \ldots, C_{4}\) are arbitrary constants and \(F(t)=\int f(t) d t\)

\section*{system_of_odes_linear_2eq_order2_type8}
diofant.solvers.ode._linear_2eq_order2_type8 ( \(x, y, t, r, e q\) )
The equation of this category are
\[
\begin{aligned}
& x^{\prime \prime}=a f(t)\left(t y^{\prime}-y\right) \\
& y^{\prime \prime}=b f(t)\left(t x^{\prime}-x\right)
\end{aligned}
\]

The transformation
\[
u=t x^{\prime}-x, v=t y^{\prime}-y
\]
leads to the system of first-order equations
\[
u^{\prime}=a t f(t) v, v^{\prime}=b t f(t) u
\]

The general solution of this system has the form
If \(a b>0\) :
\[
\begin{gathered}
u=C_{1} a e^{\sqrt{a b} \int t f(t) d t}+C_{2} a e^{-\sqrt{a b} \int t f(t) d t} \\
v=C_{1} \sqrt{a b} e^{\sqrt{a b} \int t f(t) d t}-C_{2} \sqrt{a b} e^{-\sqrt{a b} \int t f(t) d t}
\end{gathered}
\]

If \(a b<0\) :
\[
\begin{gathered}
u=C_{1} a \cos \left(\sqrt{|a b|} \int t f(t) d t\right)+C_{2} a \sin \left(-\sqrt{|a b|} \int t f(t) d t\right) \\
v=C_{1} \sqrt{|a b|} \sin \left(\sqrt{|a b|} \int t f(t) d t\right)+C_{2} \sqrt{|a b|} \cos \left(-\sqrt{|a b|} \int t f(t) d t\right)
\end{gathered}
\]
where \(C_{1}\) and \(C_{2}\) are arbitrary constants. On substituting the value of \(u\) and \(v\) in above equations and integrating the resulting expressions, the general solution will become
\[
x=C_{3} t+t \int \frac{u}{t^{2}} d t, y=C_{4} t+t \int \frac{u}{t^{2}} d t
\]
where \(C_{3}\) and \(C_{4}\) are arbitrary constants.
system_of_odes_linear_2eq_order2_type9
diofant.solvers.ode._linear_2eq_order2_type9 \((x, y, t, r, e q)\)
\[
\begin{aligned}
& t^{2} x^{\prime \prime}+a_{1} t x^{\prime}+b_{1} t y^{\prime}+c_{1} x+d_{1} y=0 \\
& t^{2} y^{\prime \prime}+a_{2} t x^{\prime}+b_{2} t y^{\prime}+c_{2} x+d_{2} y=0
\end{aligned}
\]

These system of equations are euler type.
The substitution of \(t=\sigma e^{\tau}(\sigma \neq 0)\) leads to the system of constant coefficient linear differential equations
\[
\begin{aligned}
& x^{\prime \prime}+\left(a_{1}-1\right) x^{\prime}+b_{1} y^{\prime}+c_{1} x+d_{1} y=0 \\
& y^{\prime \prime}+a_{2} x^{\prime}+\left(b_{2}-1\right) y^{\prime}+c_{2} x+d_{2} y=0
\end{aligned}
\]

The general solution of the homogeneous system of differential equations is determined by a linear combination of linearly independent particular solutions determined by the method of undetermined coefficients in the form of exponentials
\[
x=A e^{\lambda t}, y=B e^{\lambda t}
\]

On substituting these expressions into the original system and collecting the coefficients of the unknown \(A\) and \(B\), one obtains
\[
\begin{aligned}
& \left(\lambda^{2}+\left(a_{1}-1\right) \lambda+c_{1}\right) A+\left(b_{1} \lambda+d_{1}\right) B=0 \\
& \left(a_{2} \lambda+c_{2}\right) A+\left(\lambda^{2}+\left(b_{2}-1\right) \lambda+d_{2}\right) B=0
\end{aligned}
\]

The determinant of this system must vanish for nontrivial solutions A, B to exist. This requirement results in the following characteristic equation for \(\lambda\)
\[
\left(\lambda^{2}+\left(a_{1}-1\right) \lambda+c_{1}\right)\left(\lambda^{2}+\left(b_{2}-1\right) \lambda+d_{2}\right)-\left(b_{1} \lambda+d_{1}\right)\left(a_{2} \lambda+c_{2}\right)=0
\]

If all roots \(k_{1}, \ldots, k_{4}\) of this equation are distinct, the general solution of the original system of the differential equations has the form
\[
\begin{gathered}
x=C_{1}\left(b_{1} \lambda_{1}+d_{1}\right) e^{\lambda_{1} t}-C_{2}\left(b_{1} \lambda_{2}+d_{1}\right) e^{\lambda_{2} t}-C_{3}\left(b_{1} \lambda_{3}+d_{1}\right) e^{\lambda_{3} t}-C_{4}\left(b_{1} \lambda_{4}+d_{1}\right) e^{\lambda_{4} t} \\
y=C_{1}\left(\lambda_{1}^{2}+\left(a_{1}-1\right) \lambda_{1}+c_{1}\right) e^{\lambda_{1} t}+C_{2}\left(\lambda_{2}^{2}+\left(a_{1}-1\right) \lambda_{2}+c_{1}\right) e^{\lambda_{2} t}+C_{3}\left(\lambda_{3}^{2}+\left(a_{1}-1\right) \lambda_{3}+c_{1}\right) e^{\lambda_{3} t}+C_{4}\left(\lambda_{4}^{2}+\left(a_{1}-1\right) \lambda_{4} .\right.
\end{gathered}
\]
system_of_odes_linear_2eq_order2_type11
diofant.solvers.ode._linear_2eq_order2_typell( \(x, y, t, r, e q\) )
The equations which comes under this type are
\[
\begin{aligned}
& x^{\prime \prime}=f(t)\left(t x^{\prime}-x\right)+g(t)\left(t y^{\prime}-y\right) \\
& y^{\prime \prime}=h(t)\left(t x^{\prime}-x\right)+p(t)\left(t y^{\prime}-y\right)
\end{aligned}
\]

The transformation
\[
u=t x^{\prime}-x, v=t y^{\prime}-y
\]
leads to the linear system of first-order equations
\[
u^{\prime}=t f(t) u+t g(t) v, v^{\prime}=t h(t) u+t p(t) v
\]

On substituting the value of \(u\) and \(v\) in transformed equation gives value of \(x\) and \(y\) as
\[
x=C_{3} t+t \int \frac{u}{t^{2}} d t, y=C_{4} t+t \int \frac{v}{t^{2}} d t .
\]
where \(C_{3}\) and \(C_{4}\) are arbitrary constants.

\section*{system_of_odes_linear_3eq_order1_type4}
diofant.solvers.ode._linear_3eq_order1_type4 ( \(x, y, z, t, r, e q\) )
Equations:
\[
\begin{aligned}
x^{\prime} & =\left(a_{1} f(t)+g(t)\right) x+a_{2} f(t) y+a_{3} f(t) z \\
y^{\prime} & =b_{1} f(t) x+\left(b_{2} f(t)+g(t)\right) y+b_{3} f(t) z \\
z^{\prime} & =c_{1} f(t) x+c_{2} f(t) y+\left(c_{3} f(t)+g(t)\right) z
\end{aligned}
\]

The transformation
\[
x=e^{\int g(t) d t} u, y=e^{\int g(t) d t} v, z=e^{\int g(t) d t} w, \tau=\int f(t) d t
\]
leads to the system of constant coefficient linear differential equations
\[
\begin{aligned}
& u^{\prime}=a_{1} u+a_{2} v+a_{3} w \\
& v^{\prime}=b_{1} u+b_{2} v+b_{3} w \\
& w^{\prime}=c_{1} u+c_{2} v+c_{3} w
\end{aligned}
\]

These system of equations are solved by homogeneous linear system of constant coefficients of \(n\) equations of first order. Then substituting the value of \(u, v\) and \(w\) in transformed equation gives value of \(x, y\) and \(z\).

\section*{Diofant Documentation, Release 0.13.0}
system_of_odes_linear_neq_order1_type1
diofant.solvers.ode.sysode_linear_neq_order1(match_)
System of \(n\) first-order constant-coefficient linear differential equations
\[
M x^{\prime}=L x+f(t)
\]

\section*{Notes}

Mass-matrix assumed to be invertible and provided general solution uses the Jordan canonical form for \(A=M^{-1} L\).

\section*{References}
- [HNorsettW14], pp. 73-76.
system_of_odes_nonlinear_2eq_order1_type1
diofant.solvers.ode._nonlinear_2eq_order1_typel ( \(x, y, t, e q\) )
Equations:
\[
\begin{aligned}
x^{\prime} & =x^{n} F(x, y) \\
y^{\prime} & =g(y) F(x, y)
\end{aligned}
\]

Solution:
\[
x=\varphi(y), \int \frac{1}{g(y) F(\varphi(y), y)} d y=t+C_{2}
\]
where
if \(n \neq 1\)
\[
\varphi=\left[C_{1}+(1-n) \int \frac{1}{g(y)} d y\right]^{\frac{1}{1-n}}
\]
if \(n=1\)
\[
\varphi=C_{1} e^{\int \frac{1}{g(y)} d y}
\]
where \(C_{1}\) and \(C_{2}\) are arbitrary constants.
system_of_odes_nonlinear_2eq_order1_type2
diofant.solvers.ode._nonlinear_2eq_order1_type2 ( \(x, y, t, e q\) )
Equations:
\[
\begin{aligned}
x^{\prime} & =e^{\lambda x} F(x, y) \\
y^{\prime} & =g(y) F(x, y)
\end{aligned}
\]

Solution:
\[
x=\varphi(y), \int \frac{1}{g(y) F(\varphi(y), y)} d y=t+C_{2}
\]
where
if \(\lambda \neq 0\)
\[
\varphi=-\frac{1}{\lambda} \log \left(C_{1}-\lambda \int \frac{1}{g(y)} d y\right)
\]
if \(\lambda=0\)
\[
\varphi=C_{1}+\int \frac{1}{g(y)} d y
\]
where \(C_{1}\) and \(C_{2}\) are arbitrary constants.
system_of_odes_nonlinear_2eq_order1_type3
diofant.solvers.ode._nonlinear_2eq_order1_type3( \(x, y, t, e q\) )
Autonomous system of general form
\[
\begin{aligned}
& x^{\prime}=F(x, y) \\
& y^{\prime}=G(x, y)
\end{aligned}
\]

Assuming \(y=y\left(x, C_{1}\right)\) where \(C_{1}\) is an arbitrary constant is the general solution of the first-order equation
\[
F(x, y) y_{x}^{\prime}=G(x, y)
\]

Then the general solution of the original system of equations has the form
\[
\int \frac{1}{F\left(x, y\left(x, C_{1}\right)\right)} d x=t+C_{1}
\]
system_of_odes_nonlinear_2eq_order1_type4
diofant.solvers.ode._nonlinear_2eq_order1_type4 ( \(x, y, t, e q\) )
Equation:
\[
\begin{aligned}
& x^{\prime}=f_{1}(x) g_{1}(y) \phi(x, y, t) \\
& y^{\prime}=f_{2}(x) g_{2}(y) \phi(x, y, t)
\end{aligned}
\]

First integral:
\[
\int \frac{f_{2}(x)}{f_{1}(x)} d x-\int \frac{g_{1}(y)}{g_{2}(y)} d y=C
\]
where \(C\) is an arbitrary constant.
On solving the first integral for \(x\) (resp., \(y\) ) and on substituting the resulting expression into either equation of the original solution, one arrives at a firs-order equation for determining \(y\) (resp., \(x\) ).
system_of_odes_nonlinear_2eq_order1_type5
diofant.solvers.ode._nonlinear_2eq_order1_type5(func, \(t\), eq)
Clairaut system of ODEs
\[
\begin{aligned}
& x=t x^{\prime}+F\left(x^{\prime}, y^{\prime}\right) \\
& y=t y^{\prime}+G\left(x^{\prime}, y^{\prime}\right)
\end{aligned}
\]

The following are solutions of the system
(i) straight lines:
\[
x=C_{1} t+F\left(C_{1}, C_{2}\right), y=C_{2} t+G\left(C_{1}, C_{2}\right)
\]
where \(C_{1}\) and \(C_{2}\) are arbitrary constants;
(ii) envelopes of the above lines;
(iii) continuously differentiable lines made up from segments of the lines (i) and (ii).
system_of_odes_nonlinear_3eq_order1_type1
diofant.solvers.ode._nonlinear_3eq_order1_typel ( \(x, y, z, t, e q\) )
Equations:
\[
a x^{\prime}=(b-c) y z, \quad b y^{\prime}=(c-a) z x, \quad c z^{\prime}=(a-b) x y
\]

First Integrals:
\[
\begin{gathered}
a x^{2}+b y^{2}+c z^{2}=C_{1} \\
a^{2} x^{2}+b^{2} y^{2}+c^{2} z^{2}=C_{2}
\end{gathered}
\]
where \(C_{1}\) and \(C_{2}\) are arbitrary constants. On solving the integrals for \(y\) and \(z\) and on substituting the resulting expressions into the first equation of the system, we arrives at a separable first-order equation on \(x\). Similarly doing that for other two equations, we will arrive at first order equation on \(y\) and \(z\) too.

\section*{References}
-http://eqworld.ipmnet.ru/en/solutions/sysode/sode0401.pdf
system_of_odes_nonlinear_3eq_order1_type2
diofant.solvers.ode._nonlinear_3eq_order1_type2 \((x, y, z, t, e q)\)
Equations:
\[
\begin{aligned}
a x^{\prime} & =(b-c) y z f(x, y, z, t) \\
b y^{\prime} & =(c-a) z x f(x, y, z, t) \\
c z^{\prime} & =(a-b) x y f(x, y, z, t)
\end{aligned}
\]

First Integrals:
\[
\begin{gathered}
a x^{2}+b y^{2}+c z^{2}=C_{1} \\
a^{2} x^{2}+b^{2} y^{2}+c^{2} z^{2}=C_{2}
\end{gathered}
\]
where \(C_{1}\) and \(C_{2}\) are arbitrary constants. On solving the integrals for \(y\) and \(z\) and on substituting the resulting expressions into the first equation of the system, we arrives at a first-order differential equations on \(x\). Similarly doing that for other two equations we will arrive at first order equation on \(y\) and \(z\).

\section*{References}
-http://eqworld.ipmnet.ru/en/solutions/sysode/sode0402.pdf

\section*{Information on the ode module}

This module contains dsolve() (page 771) and different helper functions that it uses.
dsolve() (page 771) solves ordinary differential equations. See the docstring on the various functions for their uses. Note that partial differential equations support is in pde.py. Note that hint functions have docstrings describing their various methods, but they are intended for internal use. Use dsolve(ode, func, hint=hint) to solve an ODE using a specific hint. See also the docstring on dsolve() (page 771).

\section*{Functions in this module}

These are the user functions in this module:
- dsolve() (page 771)- Solves ODEs.
- classify_ode() (page 774) - Classifies ODEs into possible hints for dsolve() (page 771).
- checkodesol() (page 776) - Checks if an equation is the solution to an ODE.
- homogeneous_order() (page 777) - Returns the homogeneous order of an expression.
- infinitesimals() (page 777) - Returns the infinitesimals of the Lie group of point transformations of an ODE, such that it is invariant.
These are the non-solver helper functions that are for internal use. The user should use the various options to dsolve() (page 771) to obtain the functionality provided by these functions:
- odesimp() (page 779) - Does all forms of ODE simplification.
- ode_sol_simplicity() (page 782) - A key function for comparing solutions by simplicity.
- constantsimp() (page 781)- Simplifies arbitrary constants.
- constant_renumber() (page 780) - Renumber arbitrary constants.
- _handle_Integral() (page 821) - Evaluate unevaluated Integrals.

See also the docstrings of these functions.

\section*{Currently implemented solver methods}

The following methods are implemented for solving ordinary differential equations. See the docstrings of the various hint functions for more information on each (run help(ode)):
- 1st order separable differential equations.
- 1st order differential equations whose coefficients or \(d x\) and \(d y\) are functions homogeneous of the same order.
- 1st order exact differential equations.
- 1st order linear differential equations.
- 1st order Bernoulli differential equations.
- Power series solutions for first order differential equations.
- Lie Group method of solving first order differential equations.
- 2nd order Liouville differential equations.
- Power series solutions for second order differential equations at ordinary and regular singular points.
- \(n\)th order linear homogeneous differential equation with constant coefficients.
- \(n\)th order linear inhomogeneous differential equation with constant coefficients using the method of undetermined coefficients.
- \(n\)th order linear inhomogeneous differential equation with constant coefficients using the method of variation of parameters.

\section*{Philosophy behind this module}

This module is designed to make it easy to add new ODE solving methods without having to mess with the solving code for other methods. The idea is that there is a classify ode() (page 774) function, which takes in an ODE and tells you what hints, if any, will solve the ODE. It does this without attempting to solve the ODE, so it is fast. Each solving method is a hint, and it has its own function, named ode_<hint>. That function takes in the ODE and any match expression gathered by classify_ode() (page 774) and returns a solved result. If this result has any integrals in it, the hint function will return an unevaluated Integral (page 481) class. dsolve() (page 771), which is the user wrapper function around all of this, will then call odesimp() (page 779) on the result, which, among other things, will attempt to solve the equation for the dependent variable (the function we are solving for), simplify the arbitrary constants in the expression, and evaluate any integrals, if the hint allows it.

\section*{How to add new solution methods}

If you have an ODE that you want dsolve() (page 771) to be able to solve, try to avoid adding special case code here. Instead, try finding a general method that will solve your ODE, as well as others. This way, the ode (page 817) module will become more robust, and unhindered by special case hacks. WolphramAlpha and Maple's DETools[odeadvisor] function are two resources you can use to classify a specific ODE. It is also better for a method to work with an \(n\)th order ODE instead of only with specific orders, if possible.

To add a new method, there are a few things that you need to do. First, you need a hint name for your method. Try to name your hint so that it is unambiguous with all other methods, including ones that may not be implemented yet. If your method uses integrals, also include a hint_Integral hint. If there is more than one way to solve ODEs with your method, include a hint for each one, as well as a <hint> best hint. Your ode <hint> best() function should choose the best using min with ode_sol_simplicity as the key argument. See ode_1st_homogeneous_coeff_best() (page 784), for example. The function that uses your
method will be called ode_<hint>(), so the hint must only use characters that are allowed in a Python function name (alphanumeric characters and the underscore '_' character). Include a function for every hint, except for Integral hints (dsolve() (pagé 771) takes care of those automatically). Hint names should be all lowercase, unless a word is commonly capitalized (such as Integral or Bernoulli). If you have a hint that you do not want to run with all Integral that doesn't have an Integral counterpart (such as a best hint that would defeat the purpose of all_Integral), you will need to remove it manually in the dsolve() (page 771) code. See also the classify_ode() (page 774) docstring for guidelines on writing a hint name.

Determine in general how the solutions returned by your method compare with other methods that can potentially solve the same ODEs. Then, put your hints in the allhints (page 779) tuple in the order that they should be called. The ordering of this tuple determines which hints are default. Note that exceptions are ok, because it is easy for the user to choose individual hints with dsolve() (page 771). In general, Integral variants should go at the end of the list, and _best variants should go before the various hints they apply to. For example, the undetermined_coefficients hint comes before the variation_of_parameters hint because, even thoug \(\bar{h}\) variation of parameters is more general than undetermined coefficients, undetermined coefficients generally returns cleaner results for the ODEs that it can solve than variation of parameters does, and it does not require integration, so it is much faster.

Next, you need to have a match expression or a function that matches the type of the ODE, which you should put in classify_ode() (page 774) (if the match function is more than just a few lines, like _undetermined_coefficients_match() (page 820), it should go outside of classify_ode() (page 774)). It should match the ODE without solving for it as much as possible, so that classify_ode() (page 774) remains fast and is not hindered by bugs in solving code. Be sure to consider corner cases. For example, if your solution method involves dividing by something, make sure you exclude the case where that division will be 0 .
In most cases, the matching of the ODE will also give you the various parts that you need to solve it. You should put that in a dictionary (.match() will do this for you), and add that as matching_hints['hint'] = matchdict in the relevant part of classify_ode() (page 774). classify_ode() (page 774) will then send this to dsolve() (page 771), which will send it to your function as the match argument. Your function should be named ode_<hint>(eq, func, order, match)`. If you need to send more information, put it in the ``match dictionary. For example, if you had to substitute in a dummy variable in classify_ode() (page 774) to match the ODE, you will need to pass it to your function using the match dict to access it. You can access the independent variable using func.args[0], and the dependent variable (the function you are trying to solve for) as func.func. If, while trying to solve the ODE, you find that you cannot, raise NotImplementedError. dsolve() (page 771) will catch this error with the all meta-hint, rather than causing the whole routine to fail.
Add a docstring to your function that describes the method employed. Like with anything else in Diofant, you will need to add a doctest to the docstring, in addition to real tests in test_ode.py. Try to maintain consistency with the other hint functions' docstrings. Add your method to the list at the top of this docstring. Also, add your method to ode. rst in the docs/src directory, so that the Sphinx docs will pull its docstring into the main Diofant documentation. Be sure to make the Sphinx documentation by running make html from within the docs directory to verify that the docstring formats correctly.
If your solution method involves integrating, use Integral() (page 481) instead of integrate() (page 475). This allows the user to bypass hard/slow integration by using the Integral variant of your hint. In most cases, calling diofant.core.basic.Basic.doit() (page 48) will integrate your solution. If this is not the case, you will need to write special code in handle Integral() (page 821). Arbitrary constants should be symbols named C1, C2, and so on. All solution methods should return an equality instance. If you need an arbitrary
number of arbitrary constants, you can use constants = numbered_symbols(prefix='C', \(\mathrm{cls}=\) Symbol, \(s t a r t=1\) ). If it is possible to solve for the dependent function in a general way, do so. Otherwise, do as best as you can, but do not call solve in your ode_<hint>() function. odesimp() (page 779) will attempt to solve the solution for you, so you do not need to do that. Lastly, if your ODE has a common simplification that can be applied to your solutions, you can add a special case in odesimp() (page 779) for it. For example, solutions returned from the 1st homogeneous_coeff hints often have many log() (page 307) terms, so odesimp() (page 779) calls logcombine() (page 684) on them (it also helps to write the arbitrary constant as \(\log (\mathrm{Cl})\) instead of C 1 in this case). Also consider common ways that you can rearrange your solution to have constantsimp() (page 781) take better advantage of it. It is better to put simplification in odesimp() (page 779) than in your method, because it can then be turned off with the simplify flag in dsolve() (page 771). If you have any extraneous simplification in your function, be sure to only run it using if match.get('simplify', True):, especially if it can be slow or if it can reduce the domain of the solution.
Finally, as with every contribution to Diofant, your method will need to be tested. Add a test for each method in test_ode.py. Follow the conventions there, i.e., test the solver using dsolve(eq, \(f(x)\), hint=your hint), and also test the solution using checkodesol() (page 776) (you can put these in a separate tests and skip/XFAIL if it runs too slow/doesn't work). Be sure to call your hint specifically in dsolve( ) (page 771), that way the test won't be broken simply by the introduction of another matching hint. If your method works for higher order ( \(>1\) ) ODEs, you will need to run sol = constant_renumber(sol, 'C', 1, order) for each solution, where order is the order of the ODE. This is because constant_renumber renumbers the arbitrary constants by printing order, which is platform dependent. Try to test every corner case of your solver, including a range of orders if it is a \(n\)th order solver, but if your solver is slow, such as if it involves hard integration, try to keep the test run time down.
Feel free to refactor existing hints to avoid duplicating code or creating inconsistencies. If you can show that your method exactly duplicates an existing method, including in the simplicity and speed of obtaining the solutions, then you can remove the old, less general method. The existing code is tested extensively in test_ode. py, so if anything is broken, one of those tests will surely fail.
diofant.solvers.ode._undetermined_coefficients_match (expr, x)
Returns a trial function match if undetermined coefficients can be applied to expr, and None otherwise.

A trial expression can be found for an expression for use with the method of undetermined coefficients if the expression is an additive/multiplicative combination of constants, polynomials in \(x\) (the independent variable of expr), \(\sin (a x+b), \cos (a x+b)\), and \(e^{a x}\) terms (in other words, it has a finite number of linearly independent derivatives).
Note that you may still need to multiply each term returned here by sufficient \(x\) to make it linearly independent with the solutions to the homogeneous equation.
This is intended for internal use by undetermined_coefficients hints.
Diofant currently has no way to convert \(\sin ^{n}(x) \cos ^{m}(y)\) into a sum of only \(\sin (a x)\) and \(\cos (b x)\) terms, so these are not implemented. So, for example, you will need to manually convert \(\sin ^{2}(x)\) into \([1+\cos (2 x)] / 2\) to properly apply the method of undetermined coefficients on it.

\section*{Examples}
```

>>> _undetermined_coefficients_match(9*x*exp(x) + exp(-x), x)
{'te\overline{st': True, 't\overline{rialset': {E*\overline{*}}(-x), E**x, E**x*x}}}
>>> undetermined_coefficients match(log(x), x)
{'test': False}

```
diofant.solvers.ode._handle_Integral (expr, func, order, hint)
Converts a solution with Integrals in it into an actual solution.
For most hints, this simply runs expr.doit().

\subsection*{4.20.5 Recurrence Equations}

This module is intended for solving recurrences (difference equations).
diofant.solvers.recurr. \(\mathbf{r s o l v e}\left(f,{ }^{*} y\right.\), init \(=\{ \}\), simplify=True)
Solve recurrence equations.
The equations can involve objects of the form \(y(n+k)\), where \(k\) is a constant.

\section*{Parameters}
- f (Expr, Equality or iterable of above) - The single recurrence equation or a system of recurrence equations.
- *y (tuple) - Holds function applications \(y(n)\), wrt to which the recurrence equation(s) will be solved. If none given (empty tuple), this will be guessed from the provided equation(s).
- init (dict, optional) - The initial/boundary conditions for the recurrence equations as mapping of the function application \(y\left(n_{i}\right)\) to its value. Default is empty dictionary.
- simplify (bool, optional) - Enable simplification (default) on solutions.

\section*{Examples}
```

>>> eq = (n - 1)*f(n + 2) - (n**2 + 3*n - 2)*f(n + 1) + 2*n*(n + 1)*f(n)

```
```

>>> rsolve(eq)

```
[\{f: Lambda(n, 2**n*C0 + C1*factorial(n)) \}]
\(\ggg\) rsolve(eq, init=\{f(0): 0, f(1): 3\})
[\{f: Lambda(n, \(3 * 2 * * n-3 * f a c t o r i a l(n))\}]\)

\section*{Notes}

Currently, the function can handle linear recurrences with polynomial coefficients and hypergeometric inhomogeneous part.

\section*{See also:}
diofant.solvers.ode.dsolve (page 771) solving differential equations
diofant.solvers.solvers.solve (page 742) solving algebraic equations
diofant.solvers.recurr.rsolve_hyper(coeffs, \(f, n\) )
Find hypergeometric solutions for linear recurrence.
Given linear recurrence operator L of order \(k\) with polynomial coefficients and inhomogeneous equation \(\mathrm{L} y=f\) we seek for all hypergeometric solutions over field \(K\) of characteristic zero.
The inhomogeneous part can be either hypergeometric or a sum of a fixed number of pairwise dissimilar hypergeometric terms.

\section*{Notes}

The algorithm performs three basic steps:
1. Group together similar hypergeometric terms in the inhomogeneous part of \(\mathrm{L} y=f\), and find particular solution using Abramov's algorithm.
2. Compute generating set of \(L\) and find basis in it, so that all solutions are linearly independent.
3. Form final solution with the number of arbitrary constants equal to dimension of basis of L .

The output of this procedure is a linear combination of fixed number of hypergeometric terms. However the underlying method can generate larger class of solutions D'Alembertian terms.
This method not only computes the kernel of the inhomogeneous equation, but also reduces in to a basis so that solutions generated by this procedure are linearly independent.

\section*{Examples}
```

>>> rsolve_hyper([-1, 1], 1 + n, n)
(C0 + n* (n- + 1)/2, [C0])

```

\section*{References}
- [Petkovvsek92]
- [PetkovvsekWZ97]
diofant.solvers.recurr.rsolve_poly(coeffs, \(f, n\) )
Find polynomial solutions for linear recurrence.
Given linear recurrence operator L of order \(k\) with polynomial coefficients and inhomogeneous equation \(\mathrm{L} y=f\), where \(f\) is a polynomial, we seek for all polynomial solutions over field \(K\) of characteristic zero.

\section*{Notes}

The algorithm performs two basic steps:
1. Compute degree \(N\) of the general polynomial solution.
2. Find all polynomials of degree \(N\) or less of \(\mathrm{L} y=f\).

There are two methods for computing the polynomial solutions. If the degree bound is relatively small, i.e. it's smaller than or equal to the order of the recurrence, then naive method of undetermined coefficients is being used. This gives system of algebraic equations with \(N+1\) unknowns.
In the other case, the algorithm performs transformation of the initial equation to an equivalent one, for which the system of algebraic equations has only \(r\) indeterminates. This method is quite sophisticated (in comparison with the naive one) and was invented together by Abramov, Bronstein and Petkovšek.
It is possible to generalize the algorithm implemented here to the case of linear qdifference and differential equations.

\section*{Examples}

Lets say that we would like to compute \(m\)-th Bernoulli polynomial up to a constant, using \(b(n+1)-b(n)=m n^{m-1}\) recurrence:
```

>>> rsolve_poly([-1, 1], 4*n**3, n)
(C0 + n**4-2*n**3 + n**2, [C0])
>>> bernoulli(4, n)
n**4 - 2*n**3 + n**2 - 1/30

```

\section*{References}
- [ABPetkovvsek95]
- [Petkovvsek92]
- [PetkovvsekWZ97]
diofant.solvers.recurr.rsolve_ratio(coeffs, \(f, n\) )
Find rational solutions for linear recurrence.
Given linear recurrence operator \(L\) of order \(k\) with polynomial coefficients and inhomogeneous equation \(\mathrm{L} y=f\), where \(f\) is a polynomial, we seek for all rational solutions over field \(K\) of characteristic zero.

\section*{Notes}

The algorithm performs two basic steps:
1. Compute polynomial \(v(n)\) which can be used as universal denominator of any rational solution of equation \(\mathrm{L} y=f\).
2. Construct new linear difference equation by substitution \(y(n)=u(n) / v(n)\) and solve it for \(u(n)\) finding all its polynomial solutions. Return None if none were found.
Algorithm implemented here is a revised version of the original Abramov's algorithm, developed in 1989. The new approach is much simpler to implement and has better overall efficiency. This method can be easily adapted to q-difference equations case.
Besides finding rational solutions alone, this functions is an important part of the Hyper algorithm were it is used to find particular solution of inhomogeneous part of a recurrence.

\section*{Examples}
```

>>> rsolve_ratio([-2*n**3 + n**2 + 2*n - 1, 2*n**3 + n**2 - 6*n,
... - - *n**3 - 11*n**2 - 18*n - 9,
***2*n**3 + 13*n**2 + 22*n + 8], 0, n)
(C2*(2*n - 3)/(2*(n**2 - 1)), [C2])

```

\section*{References}
- [Abr95]

\section*{See also:}
rsolve_hyper (page 821)

\subsection*{4.20.6 PDE}

\section*{User Functions}

These are functions that are imported into the global namespace with from diofant import *. They are intended for user use.
pde_separate
diofant.solvers.pde.pde_separate(eq, fun, sep, strategy='mul')
Separate variables in partial differential equation either by additive or multiplicative separation approach. It tries to rewrite an equation so that one of the specified variables occurs on a different side of the equation than the others.

\section*{Parameters}
- eq - Partial differential equation
- fun - Original function \(F(x, y, z)\)
- sep - List of separated functions [X(x), u(y, z)]
- strategy - Separation strategy. You can choose between additive separation ('add') and multiplicative separation ('mul') which is default.

\section*{Examples}
```

>>> u, X, T = map(Function, 'uXT')

```
```

>>> eq = Eq(Derivative(u(x, t), x), E**(u(x, t))*Derivative(u(x, t), t))
>> pde_separate(eq, u(x, t), [X(x), T(t)], strategy='add')
[E**(-X\overline{(x))*Derivative(X(x), x), E**T(t)*Derivative(T(t), t)]}

```
```

>>> eq = Eq(Derivative(u(x, t), (x, 2)), Derivative(u(x, t), (t, 2)))
>>> pde_separate(eq, u(x, t), [X(x), T(t)], strategy='mul')
[Derivative(X(x), x, x)/X(x), Derivative(T(t), t, t)/T(t)]

```

\section*{See also:}
diofant.solvers.pde.pde_separate_add (page 825), diofant.solvers.pde. pde_separate_mul (page 825)
pde_separate_add
diofant.solvers.pde.pde_separate_add(eq, fun, sep)
Helper function for searching additive separable solutions.
Consider an equation of two independent variables \(x, y\) and a dependent variable \(w\), we look for the product of two functions depending on different arguments:
\(w(x, y, z)=X(x)+y(y, z)\)

\section*{Examples}
```

>>> u, X, T = map(Function, 'uXT')

```
```

>>> eq = Eq(Derivative(u(x, t), x), E**(u(x, t))*Derivative(u(x, t), t))
>>> pde_separate_add(eq,u(x, t), [X(x), T(t)])
[E**(-X\overline{(x))*Derivative(X(x), x), E**T(t)*Derivative(T(t), t)]}

```

\section*{pde_separate_mul}
diofant.solvers.pde.pde_separate_mul (eq, fun, sep)
Helper function for searching multiplicative separable solutions.
Consider an equation of two independent variables \(\mathrm{x}, \mathrm{y}\) and a dependent variable w , we look for the product of two functions depending on different arguments:
\(w(x, y, z)=X(x) * u(y, z)\)

\section*{Examples}
>>> u, X, Y = map(Function, 'uXY')
>>> eq = Eq(Derivative(u(x, y), (x, 2)), Derivative(u(x, y), (y, 2)))
>>> pde_separate_mul(eq, u(x, y), [X(x), Y(y)])
[Derivātive(X(x), \(x, x) / X(x)\), Derivative(Y(y), y, y)/Y(y)]
pdsolve
diofant.solvers.pde.pdsolve(eq, func=None, hint='default', dict=False, solvefun=None, **kwargs)
Solves any (supported) kind of partial differential equation.

\section*{Usage}
pdsolve(eq, \(f(x, y)\), hint) -> Solve partial differential equation eq for function \(\mathrm{f}(\mathrm{x}, \mathrm{y})\), using method hint.

\section*{Details}
eq can be any supported partial differential equation (see the pde docstring for supported methods). This can either be an Equality, or an expression, which is assumed to be equal to 0 .
\(\mathbf{f}(\mathbf{x}, \mathrm{y})\) is a function of two variables whose derivatives in that variable make up the partial differential equation. In many cases it is not necessary to provide this; it will be autodetected (and an error raised if it couldn't be detected).
hint is the solving method that you want pdsolve to use. Use classify_pde(eq, \(f(x, y))\) to get all of the possible hints for a PDE. The default hint, 'default', will use whatever hint is returned first by classify_pde(). See Hints below for more options that you can use for hint.
solvefun is the convention used for arbitrary functions returned by the PDE solver. If not set by the user, it is set by default to be F.

\section*{Hints}

Aside from the various solving methods, there are also some meta-hints that you can pass to pdsolve():
"default": This uses whatever hint is returned first by classify_pde(). This is the default argument to pdsolve().
"all": To make pdsolve apply all relevant classification hints, use pdsolve(PDE, func, hint="all"). This will return a dictionary of hint:solution terms. If a hint causes pdsolve to raise the NotImplementedError, value of that hint's key will be the exception object raised. The dictionary will also include some special keys:
- order: The order of the PDE. See also ode_order() in deutils.py
- default: The solution that would be returned by default. This is the one produced by the hint that appears first in the tuple returned by classify_pde().
"all_Integral": This is the same as "all", except if a hint also has a corresponding "_Integral" hint, it only returns the "_Integral" hint. This is useful if "all" causes pdsolve() to hang because of a difficult or impossible integral. This meta-hint will also be much faster than "all", because integrate() is an expensive routine.

See also the classify_pde() docstring for more info on hints, and the pde docstring for a list of all supported hints.

\section*{Tips}
- You can declare the derivative of an unknown function this way:
```

>>> f = Function('f')(x, y) \# f is a function of x and y
>>> \# fx will be the partial derivative of f with respect to x
>>> fx = Derivative(f, x)
>>> \# fy will be the partial derivative of f with respect to y
>>> fy = Derivative(f, y)

```
- See test_pde.py for many tests, which serves also as a set of examples for how to use pdsolve().
- pdsolve always returns an Equality class (except for the case when the hint is "all" or "all_Integral"). Note that it is not possible to get an explicit solution for \(\mathrm{f}(\mathrm{x}, \mathrm{y})\) as in the case of ODE's
- Do help(pde.pde_hintname) to get help more information on a specific hint

\section*{Examples}
```

>>> f = Function('f')
>>> u = f(x, y)
>>> ux = u.diff(x)
>>> uy = u.diff(y)
>> eq = Eq(1 + (2*(ux/u)) + (3*(uy/u)), 0)
>>> pdsolve(eq)
Eq(f(x, y), E**(-2*x/13 - 3*y/13)*F(3*x - 2*y))

```

\section*{classify_pde}
diofant.solvers.pde.classify_pde(eq, func=None, dict=False, **kwargs)
Returns a tuple of possible pdsolve() classifications for a PDE.
The tuple is ordered so that first item is the classification that pdsolve() uses to solve the PDE by default. In general, classifications near the beginning of the list will produce better solutions faster than those near the end, though there are always exceptions. To make pdsolve use a different classification, use pdsolve(PDE, func, hint=<classification>). See also the pdsolve() docstring for different meta-hints you can use.

If dict is true, classify_pde() will return a dictionary of hint:match expression terms. This is intended for internal use by pdsolve(). Note that because dictionaries are ordered arbitrarily, this will most likely not be in the same order as the tuple.
You can get help on different hints by doing help(pde.pde_hintname), where hintname is the name of the hint without "_Integral".

See diofant.pde.allhints or the diofant.pde docstring for a list of all supported hints that can be returned from classify_pde.

\section*{Examples}
```

>>> u = f(x, y)
>>> ux = u.diff(x)
>>> uy = u.diff(y)
>>> eq = Eq(1 + (2*(ux/u)) + (3*(uy/u)), 0)
>>> classify_pde(eq)
('1st_linear_constant_coeff_homogeneous',)

```

\section*{checkpdesol}
diofant.solvers.pde.checkpdesol ( \(p d e\), sol, func=None, solve for func=True)
Checks if the given solution satisfies the partial differential equation.
pde is the partial differential equation which can be given in the form of an equation or an expression. sol is the solution for which the pde is to be checked. This can also be given in an equation or an expression form. If the function is not provided, the helper function _preprocess from deutils is used to identify the function.
If a sequence of solutions is passed, the same sort of container will be used to return the result for each solution.
The following methods are currently being implemented to check if the solution satisfies the PDE:
1. Directly substitute the solution in the PDE and check. If the solution hasn't been solved for \(f\), then it will solve for f provided solve_for_func hasn't been set to False.
If the solution satisfies the PDE, then a tuple (True, 0) is returned. Otherwise a tuple (False, expr) where expr is the value obtained after substituting the solution in the PDE. However if a known solution returns False, it may be due to the inability of doit() to simplify it to zero.

\section*{Examples}
```

>>> eq = 2*f(x, y) + 3*f(x, y).diff(x) + 4*f(x, y).diff(y)
>>> sol = pdsolve(eq)
>>> assert checkpdesol(eq, sol)[0]
>> eq = x*f(x, y) + f(x, y).diff(x)
>>> checkpdesol(eq, sol)
(False, E**(-6*x/25 - 8*y/25)*(x*F(4*x - 3*y) - 6*F(4*x - 3*y)/25 + + >
\hookrightarrow4*Subs(Derivative(F(_xi_1), _xi_1), (_xi_1, 4*x - 3*y))))

```

\section*{Hint Methods}

These functions are meant for internal use. However they contain useful information on the various solving methods.

\section*{pde_1st_linear_constant_coeff_homogeneous}
diofant.solvers.pde.pde_1st_linear_constant_coeff_homogeneous(eq, func, order, match, solvefun)
Solves a first order linear homogeneous partial differential equation with constant coefficients.
The general form of this partial differential equation is
\[
a \frac{d f(x, y)}{d x}+b \frac{d f(x, y)}{d y}+c f(x, y)=0
\]
where \(a, b\) and \(c\) are constants.
The general solution is of the form:
```

>>> u = f(x, y)
>>> ux = u.diff(x)
>>> uy = u.diff(y)
>>> genform = a*ux + b*uy + c*u
>>> pprint(genform, use_unicode=False)
d d
dx
>>> pprint(pdsolve(genform), use_unicode=False)
-c*(a*x + b*y)

2 2
a + b
f(x,y) = E *F(-a*y + b*x)

```

\section*{Examples}
```

>>> pdsolve(f(x, y) + f(x, y).diff(x) + f(x, y).diff(y))
Eq(f(x, y), E**(-x/2 - y/2)*F(x - y))
>>> pprint(pdsolve(f(x, y) + f(x, y).diff(x) + f(x, y).diff(y)), use
unicode=False)
- - - -
f(x, y) = E *F(x - y)

```

\section*{References}
- Viktor Grigoryan, "Partial Differential Equations" Math 124A - Fall 2010, pp. 7
pde_1st_linear_constant_coeff
diofant.solvers.pde.pde_1st_linear_constant_coeff(eq, func, order, match, solvefun)
Solves a first order linear partial differential equation with constant coefficients.
The general form of this partial differential equation is
\[
a \frac{d f(x, y)}{d x}+b \frac{d f(x, y)}{d y}+c f(x, y)=G(x, y)
\]
where \(a, b\) and \(c\) are constants and \(G(x, y)\) can be an arbitrary function in \(x\) and \(y\). The general solution of the PDE is:
```

>>> f = Function('f')
>>> G = Function('G')
>>> u = f(x, y)
>>> ux = u.diff(x)
>>> uy = u.diff(y)
>>> genform = a*u + b*ux + c*uy - G(x, y)
>>> pprint(genform, use unicode=False)
d - d
a*f(x,y) +dx + b*-(f(x,y)) + + c*--(f(x,y)) - G(x,y)
>>> pprint(pdsolve(genform, hint='1st_linear_constant_coeff_Integral'),
... use_unicode=False)
"": / / b*x + c*y
|
S

```

\section*{Examples}
```

>>> eq = -2*f(x, y).diff(x) + 4*f(x, y).diff(y) + 5*f(x, y) - exp(x + 3*y)
>>> pdsolve(eq)
Eq(f(x, y), E**(x/2 - y)*(E**(x/2 + 4*y)/15 + F(4*x + 2*y)))

```

\section*{References}
- Viktor Grigoryan, "Partial Differential Equations" Math 124A - Fall 2010, pp. 7

\section*{pde_1st_linear_variable_coeff}
diofant.solvers.pde.pde_1st_linear_variable_coeff(eq, func, order, match, solvefun) Solves a first order linear partial differential equation with variable coefficients. The general form of this partial differential equation is
\[
a(x, y) \frac{d f(x, y)}{d x}+a(x, y) \frac{d f(x, y)}{d y}+c(x, y) f(x, y)-G(x, y)
\]
where \(a(x, y), b(x, y), c(x, y)\) and \(G(x, y)\) are arbitrary functions in \(x\) and \(y\). This PDE is converted into an ODE by making the following transformation.
1] \(\xi\) as \(x\)
2] \(\eta\) as the constant in the solution to the differential equation \(\frac{d y}{d x}=-\frac{b}{a}\)
Making the following substitutions reduces it to the linear ODE
\[
a(\xi, \eta) \frac{d u}{d \xi}+c(\xi, \eta) u-d(\xi, \eta)=0
\]
which can be solved using dsolve.
The general form of this PDE is:
```

>> a, b, c, G, f = [Function(i) for i in ['a', 'b', 'c', 'G', 'f']]
>> u = f(x, y)
>>> ux = u.diff(x)
>>> uy = u.diff(y)
>>> genform = a(x, y)*u + b(x, y)*ux + c(x, y)*uy - G(x, y)
>>> pprint(genform, use_unicode=False)
-G(x,y) +a(x, y)*f(x,y)+b(x,y)*_-(f(x,y)) + c(x,y)**--(f(x,y))

```

Examples
```

>>> f = Function('f')
>>> eq = x*(u.diff(x)) - y*(u.diff(y)) + y**2*u - y**2
>> pdsolve(eq)
Eq(f(x, y), E**(y**2/2)*F(x*y) + 1)

```

\section*{References}
- Viktor Grigoryan, "Partial Differential Equations" Math 124A - Fall 2010, pp. 7

\section*{Information on the pde module}

This module contains pdsolve() and different helper functions that it uses. It is heavily inspired by the ode module and hence the basic infrastructure remains the same.

\section*{Functions in this module}

These are the user functions in this module:
- pdsolve() - Solves PDE's
- classify_pde() - Classifies PDEs into possible hints for dsolve().
- pde_separate() - Separate variables in partial differential equation either by additive or multiplicative separation approach.

These are the helper functions in this module:
- pde_separate_add() - Helper function for searching additive separable solutions.
- pde_separate_mul() - Helper function for searching multiplicative
separable solutions.

\section*{Currently implemented solver methods}

The following methods are implemented for solving partial differential equations. See the docstrings of the various pde_hint() functions for more information on each (run help(pde)):
- 1st order linear homogeneous partial differential equations with constant coefficients.
- 1st order linear general partial differential equations with constant coefficients.
- 1st order linear partial differential equations with variable coefficients.

\subsection*{4.20.7 Utilities for solving}

General utility functions for solvers.
diofant.solvers.utils.checksol (f, sol, **flags)
Checks whether sol is a solution of equations \(f\).

\section*{Examples}
```

>>> checksol(x**4 - 1, {x: 1})
True
>>> checksol(x**4 - 1, {x: 0})
False
>> checksol(x**2 + y**2 - 5**2, {x: 3, y: 4})
True

```

Returns bool or None - Return True, if solution satisfy all equations in f. Return False, if a solution doesn't satisfy any equation. Else (i.e. one or more checks are inconclusive), return None.

\section*{Parameters}
- f (Expr or iterable of Expr's) - Equations to substitute solutions in.
- sol (dict of Expr's) - Mapping of symbols to values.
- **flags (dict) - A dictionary of following parameters:
minimal [bool, optional] Do a very fast, minimal testing. Default is False.
warn [bool, optional] Show a warning if it could not conclude. Default is False.
simplify [bool, optional] Simplify solution before substituting into function and simplify the function before trying specific simplifications. Default is True.
force [bool, optional] Make positive all symbols without assumptions regarding sign. Default is False.

Utility functions for classifying and solving ordinary and partial differential equations.

\section*{Contains}
_preprocess ode_order _desolve
```

diofant.solvers.deutils.ode_order (expr, func)

```

Returns the order of a given differential equation with respect to func.
This function is implemented recursively.

Examples
```

>>> ode_order(f(x).diff((x, 2)) + f(x).diff(x)**2 +
\#..f(x).diff(x), f(x))
2
>>> ode_order(f(x).diff((x, 2)) + g(x).diff((x, 3)), f(x))
2
>>> ode_order(f(x).diff((x, 2)) + g(x).diff((x, 3)), g(x))
3

```

\subsection*{4.21 Tensors}

A module to manipulate symbolic objects with indices including tensors

\subsection*{4.21.1 N-dim array}

N-dim array module.
Four classes are provided to handle N-dim arrays, given by the combinations dense/sparse (i.e. whether to store all elements or only the non-zero ones in memory) and mutable/immutable (immutable classes are Diofant objects, but cannot change after they have been created).

\section*{Examples}

The following examples show the usage of Array. This is an abbreviation for ImmutableDenseNDimArray, that is an immutable and dense N-dim array, the other classes are analogous. For mutable classes it is also possible to change element values after the object has been constructed.

Array construction can detect the shape of nested lists and tuples:
```

>>> a1 = Array([[1, 2], [3, 4], [5, 6]])
>>> al
[[1, 2], [3, 4], [5, 6]]
>>> a1.shape
(3, 2)
>>> al.rank()
2
>>> a2 = Array([[[x, y], [z, x*z]], [[1, x*y], [1/x, x/y]]])
>>> a2
[[[x, y], [z, x*z]], [[1, x*y], [1/x, x/y]]]
>>> a2.shape
(2, 2, 2)
>>> a2.rank()
3

```

Otherwise one could pass a 1-dim array followed by a shape tuple:
```

>>> m1 = Array(range(12), (3, 4))
>>> m1
[[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]]
>> m2 = Array(range(12), (3, 2, 2))
>>> m2
[[[0, 1], [2, 3]], [[4, 5], [6, 7]], [[8, 9], [10, 11]]]
>>> m2[1, 1, 1]
7
>>> m2.reshape(4, 3)
[[0, 1, 2], [3, 4, 5], [6, 7, 8], [9, 10, 11]]

```

Slice support:
```

>>> m2[:, 1, 1]
[3, 7, 11]

```

Elementwise derivative:
```

>>> m3 = Array([x**3, x*y, z])
>> m3.diff(x)
[3*x**2, y, 0]
>> m3.diff(z)
[0, 0, 1]

```

Multiplication with other Diofant expressions is applied elementwisely:
```

>>> (1+x)*m3
[\mp@subsup{x}{}{**}\mp@subsup{3}{}{*}(x+1), x*y*}(x+1),\mp@subsup{z}{}{*}(x+1)

```

To apply a function to each element of the N-dim array, use applyfunc:
```

>>> m3.applyfunc(lambda x: x/2)
[x**3/2, x*y/2, z/2]

```

N -dim arrays can be converted to nested lists by the tolist() method:
```

>>> m2.tolist()
[[[0, 1], [2, 3]], [[4, 5], [6, 7]], [[8, 9], [10, 11]]]

```

If the rank is 2 , it is possible to convert them to matrices with tomatrix():
```

>>> m1.tomatrix()
Matrix([
[0, 1, 2, 3],
[4, 5, 6, 7],
[8, 9, 10, 11]])

```

\section*{Products and contractions}

Tensor product between arrays \(A_{i_{1}, \ldots, i_{n}}\) and \(B_{j_{1}, \ldots, j_{m}}\) creates the combined array \(P=A \otimes B\) defined as
\[
P_{i_{1}, \ldots, i_{n}, j_{1}, \ldots, j_{m}}:=A_{i_{1}, \ldots, i_{n}} \cdot B_{j_{1}, \ldots, j_{m}}
\]

It is available through tensorproduct (...):
```

>>> A = Array([x, y, z, t])
>> B = Array([1, 2, 3, 4])
>>> tensorproduct(A, B)
[[x, 2*x, 3*x, 4*x], [y, 2*y, 3*y, 4*y], [z, 2*z, 3*z, 4*z],
[t, 2*t, 3*t, 4*t]]

```

Tensor product between a rank-1 array and a matrix creates a rank-3 array:
```

>>> p1 = tensorproduct(A, eye(4))
>>> p1
[[[x, 0, 0, 0], [0, x, 0, 0], [0, 0, x, 0], [0, 0, 0, x]],
[[y, 0, 0, 0], [0, y, 0, 0], [0, 0, y, 0], [0, 0, 0, y]],
[[z, 0, 0, 0], [0, z, 0, 0], [0, 0, z, 0], [0, 0, 0, z]],
[[t, 0, 0, 0], [0, t, 0, 0], [0, 0, t, 0], [0, 0, 0, t]]]

```

Now, to get back \(A_{0} \otimes \mathbf{1}\) one can access \(p_{0, m, n}\) by slicing:
```

>>> p1[0, :, :]
[[x, 0, 0, 0], [0, x, 0, 0], [0, 0, x, 0], [0, 0, 0, x]]

```

Tensor contraction sums over the specified axes, for example contracting positions \(a\) and \(b\) means
\[
A_{i_{1}, \ldots, i_{a}, \ldots, i_{b}, \ldots, i_{n}} \Longrightarrow \sum_{k} A_{i_{1}, \ldots, k, \ldots, k, \ldots, i_{n}}
\]

Remember that Python indexing is zero starting, to contract the a-th and b-th axes it is therefore necessary to specify \(a-1\) and \(b-1\)
```

>>> C = Array([[x, y], [z, t]])

```

The matrix trace is equivalent to the contraction of a rank-2 array:
\(A_{m, n} \Longrightarrow \sum_{k} A_{k, k}\)
```

>>> tensorcontraction(C, (0, 1))

```
t + x

Matrix product is equivalent to a tensor product of two rank-2 arrays, followed by a contraction of the 2nd and 3rd axes (in Python indexing axes number 1, 2).
\[
A_{m, n} \cdot B_{i, j} \Longrightarrow \sum_{k} A_{m, k} \cdot B_{k, j}
\]
```

>>> D = Array([[2, 1], [0, -1]])
>>> tensorcontraction(tensorproduct(C, D), (1, 2))
[[2*x, x - y], [2*z, -t + z]]

```

One may verify that the matrix product is equivalent:
```

>>> Matrix([[x, y], [z, t]])*Matrix([[2, 1], [0, -1]])
Matrix([
[2*x, x - y],
[2*z, -t + z]])

```
or equivalently
```

>>> C.tomatrix()*D.tomatrix()
Matrix([
[2*x, x - y],
[2*z, -t + z]])

```

\section*{Derivatives by array}

The usual derivative operation may be extended to support derivation with respect to arrays, provided that all elements in the that array are symbols or expressions suitable for derivations.

The definition of a derivative by an array is as follows: given the array \(A_{i_{1}, \ldots, i_{N}}\) and the array \(X_{j_{1}, \ldots, j_{M}}\) the derivative of arrays will return a new array \(B\) defined by
\(B_{j_{1}, \ldots, j_{M}, i_{1}, \ldots, i_{N}}:=\frac{\partial A_{i_{1}, \ldots, i_{N}}}{\partial X_{j_{1}, \ldots, j_{M}}}\)
The function derive_by_array performs such an operation. With scalars, it behaves exactly as the ordinary derivative:
```

>>> derive_by_array(sin(x*y), x)
y*}\operatorname{cos}(x*y

```

Scalar derived by an array basis:
```

>>> derive by array(sin(x*y), [x, y, z])
[y*}\operatorname{cos}(\mp@subsup{x}{}{*}y), \overline{x}*\operatorname{cos}(\mp@subsup{x}{}{*}y),0

```

Deriving array by an array basis: \(B^{n m}:=\frac{\partial A^{m}}{\partial x^{n}}\)
```

>>> basis = [x, y, z]
>>> ax = derive by array([exp(x), sin(y*z), t], basis)
>>> ax
[[E**x, 0, 0], [0, z* cos(y*z), 0], [0, y*cos(y*z), 0]]

```

Contraction of the resulting array: \(\sum_{m} \frac{\partial A^{m}}{\partial x^{m}}\)
```

>> tensorcontraction(ax, (0, 1))
E**x + z**

```

\section*{Classes}

\section*{class diofant.tensor.array.Array}
alias of ImmutableDenseNDimArray (page 837)
class diofant.tensor.array.ImmutableDenseNDimArray (iterable=None, shape=None, **kwargs)
An immutable version of a dense N -dim array.
class diofant.tensor.array.ImmutableSparseNDimArray (iterable=None, shape=None, **kwargs)
An immutable version of a sparse N -dim array.
class diofant.tensor.array.MutableDenseNDimArray (iterable=None, shape=None, **kwargs)
A mutable version of a dense N -dim array.
class diofant.tensor.array.MutableSparseNDimArray (iterable=None, shape=None, **kwargs)
A mutable version of a sparse N -dim array.

\section*{Functions}
diofant.tensor.array.derive_by_array (expr, dx)
Derivative by arrays. Supports both arrays and scalars.
Given the array \(A_{i_{1}, \ldots, i_{N}}\) and the array \(X_{j_{1}, \ldots, j_{M}}\) this function will return a new array \(B\) defined by
\(B_{j_{1}, \ldots, j_{M}, i_{1}, \ldots, i_{N}}:=\frac{\partial A_{i_{1}, \ldots, i_{N}}}{\partial X_{j_{1}, \ldots, j_{M}}}\)

\section*{Examples}
```

>>> derive_by_array(cos(x*t), x)
-t*sin(t*x)
>>> derive_by_array(cos(x*t), [x, y, z, t])
[-t*sin(t*\overline{x}), 0, 0, -x*sin(t*x)]
>>> derive_by_array([x, y**2*z], [[x, y], [z, t]])
[[[1, 0], [0, 2*y*z]], [[0, y**2], [0, 0]]]

```
diofant.tensor.array. permutedims(expr, perm)
Permutes the indices of an array.
Parameter specifies the permutation of the indices.

\section*{Examples}
```

>>> a = Array([[x, y, z], [t, sin(x), 0]])
>>> a
[[x, y, z], [t, sin(x), 0]]
>>> permutedims(a, (1, 0))
[[x, t], [y, sin(x)], [z, 0]]

```

If the array is of second order, transpose can be used:
```

>>> transpose(a)
[[x, t], [y, sin(x)], [z, 0]]

```

Examples on higher dimensions:
```

>>> b = Array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]])
>>> permutedims(b, (2, 1, 0))
[[[1, 5], [3, 7]], [[2, 6], [4, 8]]]
>> permutedims(b, (1, 2, 0))
[[[1, 5], [2, 6]], [[3, 7], [4, 8]]]

```

Permutation objects are also allowed:
```

>>> permutedims(b, Permutation([1, 2, 0]))

```
[[[1, 5], [2, 6]], [[3, 7], [4, 8]]]
diofant.tensor.array.tensorcontraction (array, *Contraction_axes)
Contraction of an array-like object on the specified axes.

\section*{Examples}
```

>>> tensorcontraction(eye(3), (0, 1))
3
>>> A = Array(range(18), (3, 2, 3))
>>> A
[[[0, 1, 2], [3, 4, 5]], [[6, 7, 8], [9, 10, 11]],
[[12, 13, 14], [15, 16, 17]]]
>>> tensorcontraction(A, (0, 2))
[21, 30]

```

Matrix multiplication may be emulated with a proper combination of tensorcontraction and tensorproduct
```

>>> from diofant.abc import e, f, g, h
>>> ml = Matrix([[a, b], [c, d]])
>>> m2 = Matrix([[e, f], [g, h]])
>>> p = tensorproduct(m1, m2)
>>
[[[[a*e, a*f], [a*g, a*h]], [[b*e, b*f], [b*g, b*h]]],
[[[c*e, c*f], [c*g, c*h]], [[d*e, d*f], [d*g, d*h]]]]
>> tensorcontraction(p, (1, 2))
[[a*e + b*g, a*f + b*h], [c*e + d*g, c*f + d*h]]
>>> ml*m2
Matrix([
[a*e + b*g, a*f + b*h],
[c*e + d*g, c*f + d*h]])

```
diofant.tensor.array.tensorproduct(*args)
Tensor product among scalars or array-like objects.

\section*{Examples}
```

>>> A = Array([[1, 2], [3, 4]])
>>> B = Array([x, y])
>>> tensorproduct(A, B)
[[[x, y], [2*x, 2*y]], [[3*x, 3*y], [4*x, 4*y]]]
>>> tensorproduct(A, x)
[[x, 2*x], [3*x, 4*x]]
>> tensorproduct(A, B, B)
[[[[x**2, x*y], [x*y, y**2]], [[2*x**2, 2*x*y], [2*x*y, 2*y**2]]],
[[[3*x**2, 3*x*y], [3*x*y, 3*y**2]], [[4*x**2, 4*x*y], [4*x*y, 4*y**2]]]]

```

Applying this function on two matrices will result in a rank 4 array.
```

>>> m = Matrix([[x, y], [z, t]])
>>> p = tensorproduct(eye(3), m)
>> p
[[[[x, y], [z, t]], [[0, 0], [0, 0]], [[0, 0], [0, 0]]],
[[[0, 0], [0, 0]], [[x, y], [z, t]], [[0, 0], [0, 0]]],
[[[0, 0], [0, 0]], [[0, 0], [0, 0]], [[x, y], [z, t]]]]

```

\subsection*{4.21.2 Indexed Objects}

Module that defines indexed objects
The classes IndexedBase, Indexed and Idx would represent a matrix element M[i, j] as in the following graph:


There can be any number of indices on an Indexed object. No transformation properties are implemented in these Base objects, but implicit contraction of repeated indices is supported.
Note that the support for complicated (i.e. non-atomic) integer expressions as indices is limited. (This should be improved in future releases.)

\section*{Examples}

To express the above matrix element example you would write:
```

>>> M = IndexedBase('M')
>> i, j = symbols('i j', cls=Idx)
>>> M[i, j]
M[i, j]

```

Repeated indices in a product implies a summation, so to express a matrix-vector product in terms of Indexed objects:
```

>>> x = IndexedBase('x')
>>> M[i, j]*x[j]
x[j]*M[i, j]

```

If the indexed objects will be converted to component based arrays, e.g. with the code printers or the autowrap framework, you also need to provide (symbolic or numerical) dimensions. This can be done by passing an optional shape parameter to IndexedBase upon construction:
```

>>> dim1, dim2 = symbols('dim1 dim2', integer=True)
>>> A = IndexedBase('A', shape=(dim1, 2*dim1, dim2))
>>> A.shape
(dim1, 2*dim1, dim2)
>>> A[i, j, 3].shape
(dim1, 2*dim1, dim2)

```

If an IndexedBase object has no shape information, it is assumed that the array is as large as the ranges of its indices:
```

>>> i = Idx('i', m)
>> j = Idx('j', n)
>>> M[i, j].shape
(m, n)
>>> M[i, j].ranges
[(0, m - 1), (0, n - 1)]

```

The above can be compared with the following:
```

>> A[i, 2, j].shape
(dim1, 2*dim1, dim2)
>>> A[i, 2, j].ranges
[(0, m - 1), None, (0, n - 1)]

```

To analyze the structure of indexed expressions, you can use the methods get_indices() and get_contraction_structure():
```

>>> get_indices(A[i, j, j])
({i}, {\overline{}}
>>> get_contraction_structure(A[i, j, j])
{(j,): \A[i, j, j]}\overline{}}

```

See the appropriate docstrings for a detailed explanation of the output.
class diofant.tensor.indexed.Idx (label, range=None, **kw_args)
Represents an integer index as an Integer or integer expression.
There are a number of ways to create an Idx object. The constructor takes two arguments:
label An integer or a symbol that labels the index.
range Optionally you can specify a range as either
- Symbol or integer: This is interpreted as a dimension. Lower and upper bounds are set to 0 and range - 1 , respectively.
- tuple: The two elements are interpreted as the lower and upper bounds of the range, respectively.

Note: the Idx constructor is rather pedantic in that it only accepts integer arguments. The only exception is that you can use oo and -oo to specify an unbounded range. For all other cases, both label and bounds must be declared as integers, e.g. if \(n\) is given as an argument then n.is_integer must return True.

For convenience, if the label is given as a string it is automatically converted to an integer symbol. (Note: this conversion is not done for range or dimension arguments.)

\section*{Examples}
>>> i, L, U = symbols('i L U', integer=True)
If a string is given for the label an integer Symbol is created and the bounds are both None:
```

>>> idx = Idx('qwerty')
>>> idx
qwerty
>>> idx.lower, idx.upper
(None, None)

```

Both upper and lower bounds can be specified:
```

>>> idx = Idx(i, (L, U))
>>> idx
i
>>> idx.lower, idx.upper
(L, U)

```

When only a single bound is given it is interpreted as the dimension and the lower bound defaults to 0 :
```

>>> idx = Idx(i, n)
>>> idx.lower, idx.upper
(0, n - 1)
>>> idx = Idx(i, 4)
>>> idx.lower, idx.upper
(0, 3)
>>> idx = Idx(i, oo)
>>> idx.lower, idx.upper
(0, oo)

```

The label can be a literal integer instead of a string/Symbol:
```

>>> idx = Idx(2, n)
>>> idx.lower, idx.upper
(0, n - 1)
>>> idx.label
2

```
property label
Returns the label (Integer or integer expression) of the Idx object.

\section*{Examples}
```

>>> Idx(2).label
2
>>> j = Symbol('j', integer=True)
>>> Idx(j).label
j
>>> Idx(j + 1).label
j + 1

```
property lower
    Returns the lower bound of the Index.

\section*{Examples}
```

>>> Idx('j', 2).lower
0
>>> Idx('j', 5).lower
0
>>> Idx('j').lower is None
True

```
property upper
Returns the upper bound of the Index.

\section*{Examples}
```

>>> Idx('j', 2).upper
1
>>> Idx('j', 5).upper
4
>>> Idx('j').upper is None
True

```
exception diofant.tensor.indexed.IndexException
Generic index error.
class diofant.tensor.indexed.Indexed(base, *args, **kw_args)
Represents a mathematical object with indices.
```

>>> i, j = symbols('i j', cls=Idx)
>>> Indexed('A', i, j)
A[i, j]

```

It is recommended that Indexed objects are created via IndexedBase:
```

>>> A = IndexedBase('A')
>>> Indexed('A', i, j) == A[i, j]
True

```

\section*{property base}

Returns the IndexedBase of the Indexed object.

\section*{Examples}
```

>>> i, j = symbols('i j', cls=Idx)
>>> Indexed('A', i, j).base
A
>>> B = IndexedBase('B')
>>> B == B[i, j].base
True

```

\section*{property indices}

Returns the indices of the Indexed object.

\section*{Examples}
```

>>> i, j = symbols('i j', cls=Idx)
>>> Indexed('A', i, j).indices
(i, j)

```
property ranges

Returns a list of tuples with lower and upper range of each index.
If an index does not define the data members upper and lower, the corresponding slot in the list contains None instead of a tuple.

\section*{Examples}
```

>>> Indexed('A', Idx('i', 2), Idx('j', 4), Idx('k', 8)).ranges
[(0, 1), (0, 3), (0, 7)]
>> Indexed('A', Idx('i', 3), Idx('j', 3), Idx('k', 3)).ranges
[(0, 2), (0, 2), (0, 2)]
>>> Indexed('A', x, y, z).ranges
[None, None, None]

```
property rank

Returns the rank of the Indexed object.

\section*{Examples}
```

>>> i, j, k, l, m = symbols('i:m', cls=Idx)
>>> Indexed('A', i, j).rank
2
>>> q = Indexed('A', i, j, k, l, m)
>>> q.rank
5
>>> q.rank == len(q.indices)
True

```

\section*{property shape}

Returns a list with dimensions of each index.
Dimensions is a property of the array, not of the indices. Still, if the IndexedBase does not define a shape attribute, it is assumed that the ranges of the indices correspond to the shape of the array.
```

>>> i = Idx('i', m)
>>> j = Idx('j', m)
>>> A = IndexedBase('A', shape=(n, n))
>>> B = IndexedBase('B')
>> A[i, j].shape
(n, n)
>>> B[i, j].shape
(m, m)

```
class diofant.tensor.indexed.IndexedBase(label, shape=None, **kw_args)
Represent the base or stem of an indexed object
The IndexedBase class represent an array that contains elements. The main purpose of this class is to allow the convenient creation of objects of the Indexed class. The getitem__ method of IndexedBase returns an instance of Indexed. Alone, without indices, the IndexedBase class can be used as a notation for e.g. matrix equations, resembling what you could do with the Symbol class. But, the IndexedBase class adds functionality that is not available for Symbol instances:
- An IndexedBase object can optionally store shape information. This can be used in to check array conformance and conditions for numpy broadcasting. (TODO)
- An IndexedBase object implements syntactic sugar that allows easy symbolic representation of array operations, using implicit summation of repeated indices.
- The IndexedBase object symbolizes a mathematical structure equivalent to arrays, and is recognized as such for code generation and automatic compilation and wrapping.
```

>>> A = IndexedBase('A')
>> A
A
>>> type(A)
<class 'diofant.tensor.indexed.IndexedBase'>

```

When an IndexedBase object receives indices, it returns an array with named axes, represented by an Indexed object:
```

>>> i,j = symbols('i j', integer=True)
>>> A[i, j, 2]
A[i, j, 2]
>>> type(A[i, j, 2])
<class 'diofant.tensor.indexed.Indexed'>

```

The IndexedBase constructor takes an optional shape argument. If given, it overrides any shape information in the indices. (But not the index ranges!)
```

>>> o, p = symbols('o p', integer=True)
>>> i = Idx('i', m)
>> j = Idx('j', n)
>> A[i, j].shape
(m, n)
>> B = IndexedBase('B', shape=(o, p))
>>> B[i, j].shape
(o, p)

```

\section*{property args}

Returns the arguments used to create this IndexedBase object.

\section*{Examples}
```

>>> IndexedBase('A', shape=(x, y)).args

```
(A, (x, y))
property label
Returns the label of the IndexedBase object.

\section*{Examples}
```

>>> IndexedBase('A', shape=(x, y)).label
A

```
property shape
Returns the shape of the IndexedBase object.

\section*{Examples}
```

>>> IndexedBase('A', shape=(x, y)).shape
(x, y)

```

Note: If the shape of the IndexedBase is specified, it will override any shape information given by the indices.
```

>> A = IndexedBase('A', shape=(x, y))
>>> B = IndexedBase('B')
>>> i = Idx('i', 2)
>>> j = Idx('j', 1)
>>> A[i, j].shape
(x, y)
>>> B[i, j].shape
(2, 1)

```

\subsection*{4.21.3 Methods}

Module with functions operating on IndexedBase, Indexed and Idx objects
- Check shape conformance
- Determine indices in resulting expression
etc.
Methods in this module could be implemented by calling methods on Expr objects instead. When things stabilize this could be a useful refactoring.

\section*{exception diofant.tensor.index_methods.IndexConformanceException}

Raised if indexes are not consistent.
```

diofant.tensor.index_methods.get_contraction_structure(expr)

```

Determine dummy indices of expr and describe its structure
By dummy we mean indices that are summation indices.
The structure of the expression is determined and described as follows:
1) A conforming summation of Indexed objects is described with a dict where the keys are summation indices and the corresponding values are sets containing all terms for which the summation applies. All Add objects in the Diofant expression tree are described like this.
2) For all nodes in the Diofant expression tree that are not of type Add, the following applies:

If a node discovers contractions in one of its arguments, the node itself will be stored as a key in the dict. For that key, the corresponding value is a list of dicts, each of which is the result of a recursive call to get_contraction_structure(). The list contains only dicts for the non-trivial deeper contractions, omitting dicts with None as the one and only key.

Note: The presence of expressions among the dictionary keys indicates multiple levels of index contractions. A nested dict displays nested contractions and may itself contain dicts from a deeper level. In practical calculations the summation in the deepest nested level must be calculated first so that the outer expression can access the resulting indexed object.

\section*{Examples}
```

>>> x, y, A = map(IndexedBase, ['x', 'y', 'A'])
>>> i, j, k, l = map(Idx, ['i', 'j', 'k', 'l'])
>> get contraction_structure(x[i]*y[i] + A[j, j])
{(i,): \x[i]*y[i]},-(j,): {A[j, j]}}
>>> get_contraction_structure(x[i]*y[j])
{None: {x[i]*y[j]}}

```

A multiplication of contracted factors results in nested dicts representing the internal contractions.
```

>>> d = get contraction structure(x[i, i]*y[j, j])
>>> sorted(d, key=default_sort_key)
[None, x[i, i]*y[j, j]]

```

In this case, the product has no contractions:
```

>>> d[None]
{x[i, i]*y[j, j]}

```

Factors are contracted "first":
```

>>> sorted(d[x[i, i]*y[j, j]], key=default_sort_key)
[{(i,): {x[i, i]}}, {(j,): {y[j, j]}}]

```

A parenthesized Add object is also returned as a nested dictionary. The term containing the parenthesis is a Mul with a contraction among the arguments, so it will be found as a key in the result. It stores the dictionary resulting from a recursive call on the Add expression.
```

>>> d = get_contraction_structure(x[i]*(y[i] + A[i, j]*x[j]))
>>> sorted(\overline{d}, key=defau\tt_sort_key)
[(x[j]*A[i, j] + y[i])*x[i], (i,)]
>>> d[(i,)]
{(x[j]*A[i, j] + y[i])*x[i]}
>>> d[x[i]*(A[i, j]*x[j] + y[i])]
[{None: {y[i]}, (j,): {x[j]*A[i, j]}}]

```

Powers with contractions in either base or exponent will also be found as keys in the dictionary, mapping to a list of results from recursive calls:
```

>> d = get_contraction_structure(A[j, j]**A[i, i])
>>> d[None]
{A[j, j]**A[i, i]}
>>> nested_contractions = d[A[j, j]**A[i, i]]
>>> nested_contractions[0]
{(j,): {A[j, j]}}
>>> nested contractions[1]
{(i,): {A[\overline{i}, i]}}

```

The description of the contraction structure may appear complicated when represented with a string in the above examples, but it is easy to iterate over:
```

>>> for key in d:
... if isinstance(key, Expr):
... continue
\#. for term in d[key]:
... if term in d:
... \# treat deepest contraction first
... pass
... \# treat outermost contactions here

```
diofant.tensor.index_methods.get_indices (expr)
Determine the outer indices of expression expr
By outer we mean indices that are not summation indices. Returns a set and a dict. The set contains outer indices and the dict contains information about index symmetries.

\section*{Examples}
```

>>> x, y, A = map(IndexedBase, ['x', 'y', 'A'])
>>> i, j = symbols('i j', integer=True)

```

The indices of the total expression is determined, Repeated indices imply a summation, for instance the trace of a matrix A:
```

>>> get_indices(A[i, i])
(set(), {})

```

In the case of many terms, the terms are required to have identical outer indices. Else an IndexConformanceException is raised.
```

>>> get indices(x[i] + A[i, j]*y[j])
({i}, {})

```

\section*{Exceptions}

An IndexConformanceException means that the terms are not compatible, e.g.
```

>>> get_indices(x[i] + y[j])
Tracebac\overline{k (most recent call last):}
IndexConformanceException: Indices are not consistent: x(i) + y(j)

```

Warning: The concept of outer indices applies recursively, starting on the deepest level. This implies that dummies inside parenthesis are assumed to be summed first, so that the following expression is handled gracefully:
```

>>> get_indices((x[i] + A[i, j]*y[j])*x[j])

```
(\{i, j\}, \{\})

This is correct and may appear convenient, but you need to be careful with this as Diofant will happily .expand() the product, if requested. The resulting expression would mix the outer \(j\) with the dummies inside the parenthesis, which makes it a different expression. To be on the safe side, it is best to avoid such ambiguities by using unique indices for all contractions that should be held separate.
```

4.21.4 Tensor
class diofant.tensor.tensor._TensorManager
Class to manage tensor properties.

```

\section*{Notes}

Tensors belong to tensor commutation groups; each group has a label comm; there are predefined labels:
0 tensors commuting with any other tensor
1 tensors anticommuting among themselves
2 tensors not commuting, apart with those with comm=0
Other groups can be defined using set_comm; tensors in those groups commute with those with comm=0; by default they do not commute with any other group.
```

clear()

```

Clear the TensorManager.

\section*{comm_i2symbol(i)}

Returns the symbol corresponding to the commutation group number.
comm_symbols2i(i)
Get the commutation group number corresponding to i
i can be a symbol or a number or a string
If \(i\) is not already defined its commutation group number is set.
get_comm ( \(i, j\) )
Return the commutation parameter for commutation group numbers i, \(j\)
see _TensorManager.set_comm
set_comm (i,j, c)
Set the commutation parameter c for commutation groups i, j

\section*{Parameters}
- \(\mathbf{i}, \mathbf{j}\) (symbols representing commutation groups)
- c (group commutation number)

\section*{Notes}
i, j can be symbols, strings or numbers, apart from 0, 1 and 2 which are reserved respectively for commuting, anticommuting tensors and tensors not commuting with any other group apart with the commuting tensors. For the remaining cases, use this method to set the commutation rules; by default c=None.
The group commutation number c is assigned in correspondence to the group commutation symbols; it can be
0 commuting
1 anticommuting
None no commutation property

\section*{Examples}

G and GH do not commute with themselves and commute with each other; A is commuting.
```

>>> Lorentz = TensorIndexType('Lorentz')
>>> i0, i1, i2, i3, i4 = tensor_indices('i0:5', Lorentz)
>>> A = tensorhead('A', [Lorent\overline{z}], [[1]])
>>> G = tensorhead('G', [Lorentz], [[1]], 'Gcomm')
>>> GH = tensorhead('GH', [Lorentz], [[1]], 'GHcomm')
>>> TensorManager.set_comm('Gcomm', 'GHcomm', 0)
>>> (GH(i1)*G(i0)).canon_bp()
G(i0)*GH(i1)
>>> (G(i1)*G(i0)).canon_bp()
G(i1)*G(i0)
>>> (G(i1)*A(i0)).canon_bp()
A(i0)*G(i1)

```
set_comms (*args)

Set the commutation group numbers c for symbols i, \(j\)
Parameters args (sequence of (i, j, c))
class diofant.tensor.tensor. TensorIndexType(name, metric=False, dim=None, eps_dim=None, dummy_fmt=None)
A TensorIndexType is characterized by its name and its metric.

\section*{Parameters}
- name (name of the tensor type)
- metric (metric symmetry or metric object or None)
dim : dimension, it can be a symbol or an integer or None
eps_dim : dimension of the epsilon tensor
dummy_fmt : name of the head of dummy indices
```

``name``

```
```

``metric_name``
it is 'metric' or metric.name
Type str
``metric_antisym``
``metric``
the metric tensor
Type TensorType (page 853)
``delta``
Type Kronecker delta
``epsilon``
Type the Levi-Civita epsilon tensor
``dim` ``dim_eps`` ``dummy_fmt`` ``data``

```

Type a property to add ndarray values, to work in a specified basis.

\section*{Notes}

The metric parameter can be: metric \(=\) False symmetric metric (in Riemannian geometry)
metric \(=\) True antisymmetric metric (for spinor calculus)
metric \(=\) None there is no metric
metric can be an object having name and antisym attributes.
If there is a metric the metric is used to raise and lower indices.
In the case of antisymmetric metric, the following raising and lowering conventions will be adopted:
```

psi(a) = g(a, b)*psi(-b); chi(-a) = chi(b)*g(-b, -a)
g(-a, b) = delta(-a, b); g(b, -a) = - delta(a, -b)

```
where delta(-a, b) \(=\operatorname{delta}(b,-a)\) is the Kronecker delta (see TensorIndex for the conventions on indices).

If there is no metric it is not possible to raise or lower indices; e.g. the index of the defining representation of \(\mathrm{SU}(\mathrm{N})\) is 'covariant' and the conjugate representation is 'contravariant'; for \(\mathrm{N}>2\) they are linearly independent.
eps_dim is by default equal to dim, if the latter is an integer; else it can be assigned (for use in naive dimensional regularization); if eps_dim is not an integer epsilon is None.

\section*{Examples}
```

>>> Lorentz = TensorIndexType('Lorentz', dummy_fmt='L')
>>> Lorentz.metric
metric(Lorentz,Lorentz)

```

Examples with metric components data added, this means it is working on a fixed basis:
```

>>> Lorentz.data = [1, -1, -1, -1]
>>> print(sstr(Lorentz))
TensorIndexType(Lorentz, 0)
>>> print(str(Lorentz.data))
[[1 0 0 0]
[0 -1 0 0]
[0 0 -1 0
[0 0 0 - -1]]

```
class diofant.tensor.tensor. TensorIndex(name, tensortype, is_up=True)
Represents an abstract tensor index.

\section*{Parameters}
- name (name of the index, or True if you want it to be automatically assigned)
- tensortype (TensorIndexType of the index)
- is_up (flag for contravariant index)
"`name"
"'tensortype"
'`is_up"

\section*{Notes}

Tensor indices are contracted with the Einstein summation convention.
An index can be in contravariant or in covariant form; in the latter case it is represented prepending a - to the index name.

Dummy indices have a name with head given by tensortype._dummy_fmt

\section*{Examples}
```

>>> Lorentz = TensorIndexType('Lorentz', dummy_fmt='L')
>>> i = TensorIndex('i', Lorentz)
>>> i
i
>>> sym1 = TensorSymmetry(*get_symmetric_group_sgs(1))
>>> S1 = TensorType([Lorentz], sym1)
>> A, B = S1('A B')
>> A(i)*B(-i)
A(L_0)*B(-L_0)

```

If you want the index name to be automatically assigned, just put True in the name field, it will be generated using the reserved character _ in front of its name, in order to avoid conflicts with possible existing indices:
```

>>> i0 = TensorIndex(True, Lorentz)
>>> i0
_i0
>>> i1 = TensorIndex(True, Lorentz)
>>> il
i1
>>> A(i0)*B(-il)
A(_i0)*B(--il)
>>> A(i0)*\overline{B}}(-i0
A(L_0)*B(-L_0)

```
diofant.tensor.tensor.tensor_indices (s, typ)
Returns list of tensor indices given their names and their types

\section*{Parameters}
- s (string of comma separated names of indices)
- typ (list of TensorIndexType of the indices)

\section*{Examples}
```

>>> Lorentz = TensorIndexType('Lorentz', dummy_fmt='L')

```
>>> a, b, c, d = tensor_indices('a b c d', Lorentz)
class diofant.tensor.tensor.TensorSymmetry(*args, **kw_args)
Monoterm symmetry of a tensor
Parameters bsgs (tuple (base, sgs) BSGS of the symmetry of the tensor)
``base"
base of the BSGS
Type Tuple (page 143)
'`generators"
generators of the BSGS
Type Tuple (page 143)
"'rank"
rank of the tensor
Type Tuple (page 143)

\section*{Notes}

A tensor can have an arbitrary monoterm symmetry provided by its BSGS. Multiterm symmetries, like the cyclic symmetry of the Riemann tensor, are not covered.

\section*{See also:}
diofant.combinatorics.tensor_can.get_symmetric_group_sgs (page 235)

\section*{Examples}

Define a symmetric tensor
```

>>> Lorentz = TensorIndexType('Lorentz', dummy_fmt='L')
>>> sym2 = TensorSymmetry(get_symmetric_group_sgs(2))
>>> S2 = TensorType([Lorentz]*2, sym2)
>>> V = S2('V')

```
diofant.tensor.tensor.tensorsymmetry (*args)
Return a TensorSymmetry object.
One can represent a tensor with any monoterm slot symmetry group using a BSGS.
args can be a BSGS args[0] base args[1] sgs
Usually tensors are in (direct products of) representations of the symmetric group; args can be a list of lists representing the shapes of Young tableaux

\section*{Notes}

For instance: [[1]] vector [[1]*n] symmetric tensor of rank n [[n]] antisymmetric tensor of rank \(\mathrm{n}[[2,2]]\) monoterm slot symmetry of the Riemann tensor [[1], [1]] vector*vector [[2], [1],[1] (antisymmetric tensor)*vector*vector

Notice that with the shape [2, 2] we associate only the monoterm symmetries of the Riemann tensor; this is an abuse of notation, since the shape [2, 2] corresponds usually to the irreducible representation characterized by the monoterm symmetries and by the cyclic symmetry.

\section*{Examples}

Symmetric tensor using a Young tableau
```

>>> Lorentz = TensorIndexType('Lorentz', dummy_fmt='L')
>>> sym2 = tensorsymmetry([1, 1])
>>> S2 = TensorType([Lorentz]*2, sym2)
>>> V = S2('V')

```

Symmetric tensor using a BSGS (base, strong generator set)
```

>>> sym2 = tensorsymmetry(*get_symmetric_group_sgs(2))
>>> S2 = TensorType([Lorentz]*2, sym2)
>>> V = S2('V')

```
class diofant.tensor.tensor.TensorType(index_types, symmetry, **kw_args)
Class of tensor types.

\section*{Parameters}
- index_types (list of TensorIndexType of the tensor indices)
- symmetry (TensorSymmetry of the tensor)
"`index_types"
``symmetry``
‘’types"

Type list of TensorIndexType without repetitions

\section*{Examples}

Define a symmetric tensor
```

>>> Lorentz = TensorIndexType('Lorentz', dummy_fmt='L')
>>> sym2 = tensorsymmetry([1, 1])
>>> S2 = TensorType([Lorentz]*2, sym2)
>>> V = S2('V')

```
class diofant.tensor.tensor.TensorHead (name, typ, comm \(=0\), matrix_behavior \(=0\),
                                    **kw_args)

Tensor head of the tensor

\section*{Parameters}
- name (name of the tensor)
- typ (list of TensorIndexType)
- comm (commutation group number)
```

``name``

```
``index_types`
" \({ }^{\prime}\) rank"
"'types"

Type equal to typ.types
'`symmetry"
Type equal to typ. symmetry
```

``comm``

```
commutation group
Type int

\section*{Notes}

A TensorHead belongs to a commutation group, defined by a symbol on number comm (see _TensorManager.set_comm); tensors in a commutation group have the same commutation properties; by default comm is 0 , the group of the commuting tensors.

\section*{Examples}
```

>>> Lorentz = TensorIndexType('Lorentz', dummy fmt='L')
>> A = tensorhead('A', [Lorentz, Lorentz], [[\overline{1], [1]])}

```

Examples with ndarray values, the components data assigned to the TensorHead object are assumed to be in a fully-contravariant representation. In case it is necessary to assign components data which represents the values of a non-fully covariant tensor, see the other examples.
```

>>> Lorentz.data = [1, -1, -1, -1]
>>> i0, il = tensor_indices('i0:2', Lorentz)
>>> A.data = [[j+2*}\overline{i}\mathrm{ for j in range(4)] for i in range(4)]

```
in order to retrieve data, it is also necessary to specify abstract indices enclosed by round brackets, then numerical indices inside square brackets.
```

>>> A(i0, i1)[0, 0]
0
>> A(i0, i1)[2, 3] == 3+2*2
True

```

Notice that square brackets create a valued tensor expression instance:
```

>>> A(i0, i1)
A(i0, i1)

```

To view the data, just type:
```

>>> print(str(A.data))
[[$$
\begin{array}{llll}{0}&{1}&{2}&{3}\end{array}
$$]
[[$$
\begin{array}{llll}{2}&{3}&{4}&{5}\end{array}
$$]
[4 5 6 7]
[$$
\begin{array}{llll}{6}&{7}&{8}&{9}\end{array}
$$]

```

Turning to a tensor expression, covariant indices get the corresponding components data corrected by the metric:
```

>> print(str(A(i0, -il).data))
[[[$$
\begin{array}{lllll}{0}&{-1}&{-2}&{-3}\end{array}
$$]
[$$
\begin{array}{lllll}{2}&{-3}&{-4}&{-5}\end{array}
$$]
[4 -5 -6 -7]
[6 -7 -8 -9]]

```
```

>>> print(str(A(-i0, -il).data))
[[$$
\begin{array}{llll}{0}&{-1}&{-2}&{-3}\end{array}
$$]
[-2 3 4 5]
[-4 5 6 7]
[[-6 7 8 9]]

```
while if all indices are contravariant, the ndarray remains the same
```

>>> print(str(A(i0, i1).data))
[[[0 1 1 2 3]
[2
[4 5 5 6 7]
[$$
\begin{array}{llll}{6}&{7}&{8}&{9}\end{array}
$$]

```

When all indices are contracted and components data are added to the tensor, accessing the data will return a scalar, no numpy object. In fact, numpy ndarrays are dropped to scalars if they contain only one element.
```

>> A(i0, -i0)
A(L_0, -L_0)
>>> A(i0, -i0).data
-18

```

It is also possible to assign components data to an indexed tensor, i.e. a tensor with specified covariant and contravariant components. In this example, the covariant components data of the Electromagnetic tensor are injected into \(A\) :
```

>>> Ex, Ey, Ez, Bx, By, Bz = symbols('E_x E_y E_z B_x B_y B_z')
>>> c = symbols('c', positive=True)

```

Let's define \(F\), an antisymmetric tensor, we have to assign an antisymmetric matrix to it, because [[2]] stands for the Young tableau representation of an antisymmetric set of two elements:
```

>>> F = tensorhead('A', [Lorentz, Lorentz], [[2]])
>> F(-i0, -il).data = [[0, Ex/c, Ey/c, Ez/c],
\#. [-Ex/c, 0, -Bz, By],
\cdots. [-Ey/c, Bz, 0, -Bx],
\#.. [-Ez/c, -By, Bx, 0]]

```

Now it is possible to retrieve the contravariant form of the Electromagnetic tensor:
```

>>> print(str(F(i0, il).data))
[[0 -E_x/C -E_y/c -E_z/c]
[E_x/\overline{c}0}0-B_\overline{z} B_y
[E_y/C B_z \overline{0}
[E_z/c --\overline{B}_y B_x 0]]

```
and the mixed contravariant-covariant form:
```

>> print(str(F(i0, -il).data))
[[0 E x/c E y/c E z/c]
[E_x/c 0 B_z -B_y]
[E_y/C - B_\overline{z}}0
[E_z/c B_y -B_x-0]]

```

To convert the numpy's ndarray to a diofant matrix, just cast:
```

>>> Matrix(F.data)
Matrix([
[0, -E_x/c, -E_y/c, -E_z/c],
[E_x/C, - 0, -B_z, - B_y],
[E_y/c, B_z, - 0, -B_x],
[E_z/c, -B_y, B_x, 0]])

```

Still notice, in this last example, that accessing components data from a tensor without specifying the indices is equivalent to assume that all indices are contravariant.
It is also possible to store symbolic components data inside a tensor, for example, define a four-momentum-like tensor:
```

>>> P = tensorhead('P', [Lorentz], [[1]])
>>> E, px, py, pz = symbols('E p_x p_y p_z', positive=True)
>>> P.data = [E, px, py, pz]

```

The contravariant and covariant components are, respectively:
```

>>> print(str(P(i0).data))
[E p_x p_y p_z]
>>> p
[E -p_x -p_y -p_z]

```

The contraction of a 1 -index tensor by itself is usually indicated by a power by two:
```

>>> P(i0)**2
E**2 - p_x**2 - p_y**2 - p_z**2

```

As the power by two is clearly identical to \(P_{\mu} P^{\mu}\), it is possible to simply contract the TensorHead object, without specifying the indices
>> \(\mathrm{P}^{* * 2}\)

commutes_with (other)
Returns 0 if self and other commute, 1 if they anticommute.
Returns None if self and other neither commute nor anticommute.
class diofant.tensor.tensor. TensExpr (*args)
Abstract base class for tensor expressions

\section*{Notes}

A tensor expression is an expression formed by tensors; currently the sums of tensors are distributed.

A TensExpr can be a TensAdd or a TensMul.
TensAdd objects are put in canonical form using the Butler-Portugal algorithm for canonicalization under monoterm symmetries.
TensMul objects are formed by products of component tensors, and include a coefficient, which is a Diofant expression.
In the internal representation contracted indices are represented by (ipos1, ipos2, icomp1, icomp2), where icomp1 is the position of the component tensor with contravariant index, ipos 1 is the slot which the index occupies in that component tensor.
Contracted indices are therefore nameless in the internal representation.
get_matrix()
Returns ndarray components data as a matrix, if components data are available and ndarray dimension does not exceed 2.

\section*{Examples}
```

>>> Lorentz = TensorIndexType('Lorentz', dummy_fmt='L')
>>> sym2 = tensorsymmetry([1]*2)
>>> S2 = TensorType([Lorentz]*2, sym2)
>>> A = S2('A')

```

The tensor A is symmetric in its indices, as can be deduced by the [1, 1] Young tableau when constructing sym2. One has to be careful to assign symmetric component data to \(A\), as the symmetry properties of data are currently not checked to be compatible with the defined tensor symmetry.
```

>>> Lorentz.data = [1, -1, -1, -1]
>>> i0, il = tensor indices('i0:2', Lorentz)
>>> A.data = [[j+i for j in range(4)] for i in range(4)]
>>> A(i0, il).get_matrix()
Matrix([
[0, 1, 2, 3],
[1, 2, 3, 4],
[2, 3, 4, 5],
[3, 4, 5, 6]])

```

It is possible to perform usual operation on matrices, such as the matrix multiplication:
```

>>> A(i0, i1).get_matrix()*ones(4, 1)
Matrix([
[6],
[10],
[14],
[18]])

```
>>> del A.data
class diofant.tensor.tensor. TensAdd(*args, **kw_args)
    Sum of tensors
        Parameters free_args (list of the free indices)
    '`args"
        of addends
            Type tuple
    ``rank`
        rank of the tensor
            Type tuple
    '`free_args"
        of the free indices in sorted order
            Type list

\section*{Notes}

Sum of more than one tensor are put automatically in canonical form.

\section*{Examples}
```

>>> Lorentz = TensorIndexType('Lorentz', dummy_fmt='L')
>>> a, b = tensor_indices('a b', Lorentz)
>>> p, q = tensorhead('p q', [Lorentz], [[1]])
>> t = p(a) + q(a)
>> t
p(a) + q(a)
>> t(b)
p(b) + q(b)

```

Examples with components data added to the tensor expression:
```

>>> Lorentz.data = [1, -1, -1, -1]
>> a, b = tensor indices('a, b', Lorentz)
>>> p.data = [2, \overline{3, -2, 7]}
>> q.data = [2, 3, -2, 7]
>> t = p(a) + q(a)
>>> t
p(a)+q(a)
>> t(b)
p(b) +q(b)

```

The following are: \(2^{* *} 2-3^{* *} 2-2^{* *} 2-7^{* *} 2==>-58\)
```

>>> (p(a)*p(-a)).data
-58
>>> p(a)**2
-58

```
canon_bp ( )
Canonicalize using the Butler-Portugal algorithm for canonicalization under monoterm symmetries.
contract_metric (g)
Raise or lower indices with the metric \(g\)

\section*{Parameters}
- \(\mathbf{g}\) (metric)
- contract_all (if True, eliminate all \(g\) which are contracted)

\section*{Notes}

\section*{See also:}

TensorIndexType (page 849)
static from_TIDS_list(coeff, tids_list)
Given a list of coefficients and a list of TIDS objects, construct a TensAdd instance, equivalent to the one that would result from creating single instances of TensMul and then adding them.

\section*{Examples}
```

>>> Lorentz = TensorIndexType('Lorentz', dummy_fmt='L')
>>> i, j = tensor_indices('i j', Lorentz)
>>> A, B = tensorh̆ead('A B', [Lorentz]*2, [[1]*2])
>> ea = 3*A(i, j)
>>> eb = 2*B(j, i)
>>> t1 = ea._tids
>>> t2 = eb.-tids
>>> c1 = ea.\overline{coeff}
>>> c2 = eb.coeff
>>> TensAdd.from_TIDS_list([c1, c2], [t1, t2])
2*B(i, j) + 3*A(i, j)

```

If the coefficient parameter is a scalar, then it will be applied as a coefficient on all TIDS objects.
```

>>> TensAdd.from_TIDS_list(4, [t1, t2])
4*A(i, j) + 4*B(\overline{i}, j)

```
fun_eval(*index_tuples)
Return a tensor with free indices substituted according to index_tuples
Parameters index_types (list of tuples (old_index, new_index))

\section*{Examples}
```

>>> Lorentz = TensorIndexType('Lorentz', dummy_fmt='L')
>>> i, j, k, l = tensor_indices('i j k l', Lorentz)
>>> A, B = tensorhead('\overline{A}B', [Lorentz]*2, [[1]*2])
>> = A(i, k)*B(-k, -j) + A(i, -j)
>>> t.fun eval((i, k), (-j, l))

```

substitute_indices(*index_tuples)
Return a tensor with free indices substituted according to index_tuples
Parameters index_types (list of tuples (old_index, new_index))

\section*{Examples}
```

>>> Lorentz = TensorIndexType('Lorentz', dummy_fmt='L')
>>> i, j, k, l = tensor_indices('i j k l', Lorēntz)
>>> A, B = tensorhead('\overline{A}B', [Lorentz]*2, [[1]*2])
>> t = A(i, k)*B(-k, -j)
>>> t
A(i, L_0)*B(-L 0, -j)
>>> t.\overline{substitū}e_indices((i, j), (j, k))
A(j, L_0)*B(-L_0, -k)

```
class diofant.tensor.tensor. TensMul(*args, **kw_args)
    Product of tensors

\section*{Parameters}
- coeff (Diofant coefficient of the tensor)
- args
'`components"
Type list of TensorHead of the component tensors
"'types"
Type list of nonrepeated TensorIndexType
" \(\quad\) free"
Type list of (ind, ipos, icomp), see Notes
‘`dum"
Type list of (ipos1, ipos2, icomp1, icomp2), see Notes
" \({ }^{\prime}\) ext_rank"
rank of the tensor counting the dummy indices
Type tuple
' \({ }^{\prime}\) rank"
rank of the tensor
Type tuple
"'coeff"
Diofant coefficient of the tensor
Type Expr (page 57)
"'free_args"
list of the free indices in sorted order
Type list
"'is_canon_bp"
Type True if the tensor in in canonical form

\section*{Notes}
args[0] list of TensorHead of the component tensors.
args[1] list of (ind, ipos, icomp) where ind is a free index, ipos is the slot position of ind in the icomp-th component tensor.
args[2] list of tuples representing dummy indices. (ipos1, ipos2, icomp1, icomp2) indicates that the contravariant dummy index is the ipos1-th slot position in the icomp1th component tensor; the corresponding covariant index is in the ipos2 slot position in the icomp2-th component tensor.
```

canon_bp()

```

Canonicalize using the Butler-Portugal algorithm for canonicalization under monoterm symmetries.

\section*{Examples}
```

>>> Lorentz = TensorIndexType('Lorentz', dummy_fmt='L')
>>> m0, m1, m2 = tensor_indices('m0 m1 m2', Lorentz)
>>> A = tensorhead('A', [Lorentz]*2, [[2]])
>> t = A(m0, -m1)*A(m1, -m0)
>>> t.canon bp()
-A(L_0, L_1)*A(-L_0, -L_1)
>> \overline{t}=A(m0,-m1)*A(m1, -m2)*A(m2, -m0)
>>> t.canon_bp()
0

```
contract_metric(g)

Raise or lower indices with the metric \(g\)

\section*{Parameters \(\mathbf{g}\) (metric)}

\section*{Notes}

\section*{See also:}

TensorIndexType (page 849)

\section*{Examples}
```

>>> Lorentz = TensorIndexType('Lorentz', dummy_fmt='L')
>>> m0, m1, m2 = tensor_indices('m0 m1 m2', Lorrentz)
>>> g = Lorentz.metric
>>> p, q = tensorhead('p q', [Lorentz], [[1]])
>>> t = p(m0)*q(m1)*g(-m0, -m1)
>>> t.canon_bp()
metric(L_0, L_1)*p(-L_00)*q(-L_1)
>>> t.co\overline{n}trac\overline{t}_metric(g).cano\overline{n}_bp()
p(L_0)*q(-L_0)

```
fun_eval (*index_tuples)
Return a tensor with free indices substituted according to index_tuples
index_types list of tuples (old_index, new_index)

\section*{Examples}
```

>>> Lorentz = TensorIndexType('Lorentz', dummy_fmt='L')
>>> i, j, k, l = tensor_indices('i j k l', Lorēntz)
>>> A, B = tensorhead(''\overline{A}B', [Lorentz]*2, [[1]*2])
>>> t = A(i, k)*B(-k, -j)
>>> t
A(i, L_0)*B(-L_0, -j)
>>> t.fun_eval((i, k), (-j, l))
A(k, L_0)}\mp@subsup{}{}{*}B(-L_0, l)

```

\section*{get_indices()}

Returns the list of indices of the tensor
The indices are listed in the order in which they appear in the component tensors. The dummy indices are given a name which does not collide with the names of the free indices.

\section*{Examples}
```

>>> Lorentz = TensorIndexType('Lorentz', dummy_fmt='L')
>>> m0, m1, m2 = tensor_indices('m0 m1 m2', Lo'rentz)
>>> g = Lorentz.metric
>>> p, q = tensorhead('p q', [Lorentz], [[1]])
>>> t = p(m1)*g(m0, m2)
>>> t.get_indices()
[m1, m0, \overline{m}2]

```
perm2tensor ( \(g\), canon_bp=False)
Returns the tensor corresponding to the permutation \(g\)
For further details, see the method in TIDS with the same name.
sorted_components()
Returns a tensor with sorted components calling the corresponding method in a TIDS object.
split()
Returns a list of tensors, whose product is self

Dummy indices contracted among different tensor components become free indices with the same name as the one used to represent the dummy indices.

\section*{Examples}
```

>>> Lorentz = TensorIndexType('Lorentz', dummy_fmt='L')
>>> a, b, c, d = tensor_indices('a b c d', Lorēntz)
>>> A, B = tensorhead('A B', [Lorentz]*2, [[1]*2])
>>> t = A(a, b)*B(-b, c)
>>> t
A(a, L_0)*B(-L_0, c)
>>> t.split()
[A(a, L_0), B(-L_0, c)]

```
diofant.tensor.tensor.canon_bp( \(p\) )
Butler-Portugal canonicalization.
diofant.tensor.tensor.tensor_mul(*a)
Product of tensors.
diofant.tensor.tensor.riemann_cyclic_replace(t_r)
Replace Riemann tensor with an equivalent expression.
\(R(m, n, p, q)\)-> 2/3*R(m,n,p,q) - 1/3*R(m,q,n,p) + 1/3*R(m,p,n,q)
diofant.tensor.tensor.riemann_cyclic(t2)
Replace each Riemann tensor with an equivalent expression satisfying the cyclic identity.
This trick is discussed in the reference guide to Cadabra.

\section*{Examples}
```

>>> Lorentz = TensorIndexType('Lorentz', dummy_fmt='L')
>>> i, j, k, l = tensor_indices('i j k l', Lorēntz)
>> R = tensorhead('R',-[Lorentz]*4, [[2, 2]])
>> t = R(i, j, k, l)*(R(-i, -j, -k, -l) - 2*R(-i, -k, -j, -l))
>>> riemann_cyclic(t)
0

```

\subsection*{4.22 Utilities}

This module contains some general purpose utilities that are used across Diofant.

\subsection*{4.22.1 Autowrap Module}

The autowrap module works very well in tandem with the Indexed classes of the Tensors (page 834). Here is a simple example that shows how to setup a binary routine that calculates a matrix-vector product.
```

>>> from diofant.utilities.autowrap import autowrap
>> A, x, y = map(IndexedBase, ['A', 'x', 'y'])
>> i = Idx('i', m)

```
```

>>> j = Idx('j', n)
>>> instruction = Eq(y[i], A[i, j]*x[j])
>>> instruction
Eq(y[i], x[j]*A[i, j])

```

Because the code printers treat Indexed objects with repeated indices as a summation, the above equality instance will be translated to low-level code for a matrix vector product. This is how you tell Diofant to generate the code, compile it and wrap it as a python function:
```

>>> matvec = autowrap(instruction)

```

That's it. Now let's test it with some numpy arrays. The default wrapper backend is f2py. The wrapper function it provides is set up to accept python lists, which it will silently convert to numpy arrays. So we can test the matrix vector product like this:
```

>>> M = [[0, 1],
\#. [1, 0]]
>>> matvec(M, [2, 3])
[3. 2.]

```

\section*{Implementation details}

The autowrap module is implemented with a backend consisting of CodeWrapper objects. The base class CodeWrapper takes care of details about module name, filenames and options. It also contains the driver routine, which runs through all steps in the correct order, and also takes care of setting up and removing the temporary working directory.
The actual compilation and wrapping is done by external resources, such as the system installed f2py command. The Cython backend runs a distutils setup script in a subprocess. Subclasses of CodeWrapper takes care of these backend-dependent details.

\section*{API Reference}

Module for compiling codegen output, and wrap the binary for use in python.
This module provides a common interface for different external backends, such as f2py, fwrap, Cython, SWIG(?) etc. (Currently only f2py and Cython are implemented) The goal is to provide access to compiled binaries of acceptable performance with a one-button user interface, i.e.
```

>>> expr = ((x - y)**25).expand()
>>> binary_callable = autowrap(expr)
>>> binary_callable(1, 2)
-1.0

```

The callable returned from autowrap() is a binary python function, not a Diofant object. If it is desired to use the compiled function in symbolic expressions, it is better to use binary_function() which returns a Diofant Function object. The binary callable is attached as the _imp_ attribute and invoked when a numerical evaluation is requested with evalf(), or with lambdify().
```

>>> f = binary_function('f', expr)
>>> 2*f(x, y) + y
y + 2*f(x, y)
>>> (2*f(x, y) + y).evalf(2, subs={x: 1, y: 2}, strict=False)
0.e-190

```

The idea is that a Diofant user will primarily be interested in working with mathematical expressions, and should not have to learn details about wrapping tools in order to evaluate expressions numerically, even if they are computationally expensive.
When is this useful?
1) For computations on large arrays, Python iterations may be too slow, and depending on the mathematical expression, it may be difficult to exploit the advanced index operations provided by NumPy.
2) For really long expressions that will be called repeatedly, the compiled binary should be significantly faster than Diofant's .evalf()
3) If you are generating code with the codegen utility in order to use it in another project, the automatic python wrappers let you test the binaries immediately from within Diofant.
4) To create customized ufuncs for use with numpy arrays. See ufuncify.

When is this module NOT the best approach?
1) If you are really concerned about speed or memory optimizations, you will probably get better results by working directly with the wrapper tools and the low level code. However, the files generated by this utility may provide a useful starting point and reference code. Temporary files will be left intact if you supply the keyword tempdir="path/to/files/".
2) If the array computation can be handled easily by numpy, and you don't need the binaries for another project.
exception diofant.utilities.autowrap.CodeWrapError Generic code wrapping error.
class diofant.utilities.autowrap.CodeWrapper(generator, filepath=None, flags=[], verbose=False)
Base Class for code wrappers.
class diofant.utilities.autowrap.CythonCodeWrapper(*args,**kwargs)
Wrapper that uses Cython.
dump_pyx(routines, \(f\), prefix)
Write a Cython file with python wrappers
This file contains all the definitions of the routines in c code and refers to the header file.

\section*{Parameters}
- routines (list) - List of Routine instances
- f (file) - File-like object to write the file to
- prefix (str) - The filename prefix, used to refer to the proper header file. Only the basename of the prefix is used.
class diofant.utilities.autowrap.DummyWrapper(generator, filepath=None, flags=[],
verbose=False )
Class used for testing independent of backends.
class diofant.utilities.autowrap.F2PyCodeWrapper (generator, filepath=None, flags=[], verbose=False )
Wrapper that uses f2py.
class diofant.utilities.autowrap.UfuncifyCodeWrapper(generator, filepath=None, flags=[], verbose=False)
Wrapper for Ufuncify.
dump_c (routines, \(f\), prefix)
Write a C file with python wrappers
This file contains all the definitions of the routines in c code.

\section*{Parameters}
- routines (list) - List of Routine instances
- f (file) - File-like object to write the file to
- prefix (str) - The filename prefix, used to name the imported module.
diofant.utilities.autowrap.autowrap(expr, language=None, backend='f2py', tempdir=None, args=None, flags=None, verbose=False, helpers=[])
Generates python callable binaries based on the math expression.

\section*{Parameters}
- expr - The Diofant expression that should be wrapped as a binary routine.
- language (string, optional) - If supplied, (options: 'C' or 'F95'), specifies the language of the generated code. If None [default], the language is inferred based upon the specified backend.
- backend (string, optional) - Backend used to wrap the generated code. Either 'f2py' [default], or 'cython'.
- tempdir (string, optional) - Path to directory for temporary files. If this argument is supplied, the generated code and the wrapper input files are left intact in the specified path.
- args (iterable, optional) - An ordered iterable of symbols. Specifies the argument sequence for the function.
- flags (iterable, optional) - Additional option flags that will be passed to the backend.
- verbose (bool, optional) - If True, autowrap will not mute the command line backends. This can be helpful for debugging.
- helpers (iterable, optional) - Used to define auxillary expressions needed for the main expr. If the main expression needs to call a specialized function it should be put in the helpers iterable. Autowrap will then make sure that the compiled main expression can link to the helper routine. Items should be tuples with (<function_name>, <diofant_expression>, <arguments>). It is mandatory to supply an argument sequence to helper routines.

\section*{Examples}
```

>>> expr = ((x - y + z)**13).expand()

```
>>> binary_func = autowrap(expr)
>>> binary_func(1, 4, 2)
-1.0
diofant.utilities.autowrap.binary_function(symfunc, expr, **kwargs) Returns a diofant function with expr as binary implementation

This is a convenience function that automates the steps needed to autowrap the Diofant expression and attaching it to a Function object with implemented_function().
```

>>> expr = ((x - y)**25).expand()
>>> f = binary_function('f', expr)
>>> type(f)
<class 'diofant.core.function.UndefinedFunction'>
>>> 2*f(x, y)
2*f(x, y)
>> f(x, y).evalf(2, subs={x: 1, y: 2})
-1.0

```
diofant.utilities.autowrap.ufuncify (args, expr, language=None, backend='numpy', tempdir=None, flags=None, verbose=False, helpers=[])
Generates a binary function that supports broadcasting on numpy arrays.

\section*{Parameters}
- args (iterable) - Either a Symbol or an iterable of symbols. Specifies the argument sequence for the function.
- expr - A Diofant expression that defines the element wise operation.
- language (string, optional) - If supplied, (options: 'C' or 'F95'), specifies the language of the generated code. If None [default], the language is inferred based upon the specified backend.
- backend (string, optional) - Backend used to wrap the generated code. Either 'numpy' [default], 'cython', or 'f2py'.
- tempdir (string, optional) - Path to directory for temporary files. If this argument is supplied, the generated code and the wrapper input files are left intact in the specified path.
- flags (iterable, optional) - Additional option flags that will be passed to the backend
- verbose (bool, optional) - If True, autowrap will not mute the command line backends. This can be helpful for debugging.
- helpers (iterable, optional) - Used to define auxillary expressions needed for the main expr. If the main expression needs to call a specialized function it should be put in the helpers iterable. Autowrap will then make sure that the compiled main expression can link to the helper routine. Items should be tuples with (<function_name>, <diofant_expression>, <arguments>). It is mandatory to supply an argument sequence to helper routines.

\section*{Notes}

The default backend ('numpy') will create actual instances of numpy. ufunc. These support ndimensional broadcasting, and implicit type conversion. Use of the other backends will result in a "ufunc-like" function, which requires equal length 1-dimensional arrays for all arguments, and will not perform any type conversions.

\section*{References}
- https://docs.scipy.org/doc/numpy/reference/ufuncs.html

\section*{Examples}
```

>>> import numpy as np
>>> f = ufuncify((x, y), y + x**2)
>>> type(f) is np.ufunc
True
>> f([1, 2, 3], 2)
[3. 6. 11.]
>>> f(np.arange(5), 3)
[3. 4. 7. 12. 19.]

```

For the F2Py and Cython backends, inputs are required to be equal length 1-dimensional arrays. The F2Py backend will perform type conversion, but the Cython backend will error if the inputs are not of the expected type.
```

>>> f_fortran = ufuncify((x, y), y + x**2, backend='F2Py')
>>> f_fortran(1, 2)
[3.]
>>> f_fortran(np.array([1, 2, 3]), np.array([1.0, 2.0, 3.0]))
[2.- 6. 12.]

```

\subsection*{4.22.2 Codegen}

This module provides functionality to generate directly compilable code from Diofant expressions. The codegen function is the user interface to the code generation functionality in Diofant. Some details of the implementation is given below for advanced users that may want to use the framework directly.

Note: The codegen callable is not in the diofant namespace automatically, to use it you must first execute
>>> from diofant.utilities.codegen import codegen \# noqa: F401

\section*{Implementation Details}

Here we present the most important pieces of the internal structure, as advanced users may want to use it directly, for instance by subclassing a code generator for a specialized application. It is very likely that you would prefer to use the codegen() function documented above.
Basic assumptions:
- A generic Routine data structure describes the routine that must be translated into C/Fortran/... code. This data structure covers all features present in one or more of the supported languages.
- Descendants from the CodeGen class transform multiple Routine instances into compilable code. Each derived class translates into a specific language.
- In many cases, one wants a simple workflow. The friendly functions in the last part are a simple api on top of the Routine/CodeGen stuff. They are easier to use, but are less powerful.

\section*{Routine}

The Routine class is a very important piece of the codegen module. Viewing the codegen utility as a translator of mathematical expressions into a set of statements in a programming language, the Routine instances are responsible for extracting and storing information about how the math can be encapsulated in a function call. Thus, it is the Routine constructor that decides what arguments the routine will need and if there should be a return value.

\section*{API Reference}
module for generating C, C++, Fortran77, Fortran90 and Octave/Matlab routines that evaluate diofant expressions. This module is work in progress. Only the milestones with a '+' character in the list below have been completed.
- How is diofant.utilities.codegen different from diofant.printing.ccode? -

We considered the idea to extend the printing routines for diofant functions in such a way that it prints complete compilable code, but this leads to a few unsurmountable issues that can only be tackled with dedicated code generator:
- For C, one needs both a code and a header file, while the printing routines generate just one string. This code generator can be extended to support .pyf files for f2py.
- Diofant functions are not concerned with programming-technical issues, such as input, output and input-output arguments. Other examples are contiguous or non-contiguous arrays, including headers of other libraries such as gsl or others.
- It is highly interesting to evaluate several diofant functions in one C routine, eventually sharing common intermediate results with the help of the cse routine. This is more than just printing.
- From the programming perspective, expressions with constants should be evaluated in the code generator as much as possible. This is different for printing.

\footnotetext{
- Basic assumptions -
}
- A generic Routine data structure describes the routine that must be translated into C/Fortran/... code. This data structure covers all features present in one or more of the supported languages.
- Descendants from the CodeGen class transform multiple Routine instances into compilable code. Each derived class translates into a specific language.
- In many cases, one wants a simple workflow. The friendly functions in the last part are a simple api on top of the Routine/CodeGen stuff. They are easier to use, but are less powerful.
- Milestones -
- First working version with scalar input arguments, generating C code, tests
- Friendly functions that are easier to use than the rigorous Routine/CodeGen workflow.
- Integer and Real numbers as input and output
- Output arguments
- InputOutput arguments
- Sort input/output arguments properly
- Contiguous array arguments (numpy matrices)
- Also generate .pyf code for f2py (in autowrap module)
- Isolate constants and evaluate them beforehand in double precision
- Fortran 90
- Octave/Matlab
- Common Subexpression Elimination
- User defined comments in the generated code
- Optional extra include lines for libraries/objects that can eval special functions
- Test other C compilers and libraries: gcc, tcc, libtcc, gcc+gsl, ...
- Contiguous array arguments (diofant matrices)
- Non-contiguous array arguments (diofant matrices)
- ccode must raise an error when it encounters something that can not be translated into c. ccode (integrate \((\sin (x) / x, x))\) does not make sense.
- Complex numbers as input and output
- A default complex datatype
- Include extra information in the header: date, user, hostname, sha1 hash, ...
- Fortran 77
- C++
- Python
- ...
class diofant.utilities.codegen.Argument (name, datatype=None, dimensions=None, precision=None)
An abstract Argument data structure: a name and a data type.
This structure is refined in the descendants below.
class diofant.utilities.codegen. CCodeGen (project='project', printer=None, preprocessor_statements=None, cse=False )
Generator for C code.
The .write() method inherited from CodeGen will output a code file and an interface file, <prefix>.c and <prefix>.h respectively.
dump_c (routines, f, prefix, header=True, empty=True)
Write the code by calling language specific methods.
The generated file contains all the definitions of the routines in low-level code and refers to the header file if appropriate.

\section*{Parameters}
- routines (list) - A list of Routine instances.
- f(file-like) - Where to write the file.
- prefix (string) - The filename prefix, used to refer to the proper header file. Only the basename of the prefix is used.
- header (bool, optional) - When True, a header comment is included on top of each source file. [default : True]
- empty (bool, optional) - When True, empty lines are included to structure the source files. [default : True]
dump_h (routines, \(f\), prefix, header=True, empty=True)
Writes the C header file.
This file contains all the function declarations.

\section*{Parameters}
- routines (list) - A list of Routine instances.
- f (file-like) - Where to write the file.
- prefix (string) - The filename prefix, used to construct the include guards. Only the basename of the prefix is used.
- header (bool, optional) - When True, a header comment is included on top of each source file. [default : True]
- empty (bool, optional) - When True, empty lines are included to structure the source files. [default : True]
get_prototype(routine)
Returns a string for the function prototype of the routine.
If the routine has multiple result objects, an CodeGenError is raised.
See: https://en.wikipedia.org/wiki/Function_prototype
class diofant.utilities.codegen. CodeGen(project='project', cse=False)
Abstract class for the code generators.
dump_code(routines, f, prefix, header=True, empty=True)
Write the code by calling language specific methods.
The generated file contains all the definitions of the routines in low-level code and refers to the header file if appropriate.

\section*{Parameters}
- routines (list) - A list of Routine instances.
- f(file-like) - Where to write the file.
- prefix (string) - The filename prefix, used to refer to the proper header file. Only the basename of the prefix is used.
- header (bool, optional) - When True, a header comment is included on top of each source file. [default : True]
- empty (bool, optional) - When True, empty lines are included to structure the source files. [default : True]
routine (name, expr, argument_sequence, global_vars=None)
Creates an Routine object that is appropriate for this language.
This implementation is appropriate for at least C/Fortran. Subclasses can override this if necessary.
Here, we assume at most one return value (the l-value) which must be scalar. Additional outputs are OutputArguments (e.g., pointers on right-hand-side or pass-by-reference). Matrices are always returned via OutputArguments. If argument_sequence is None, arguments will be ordered alphabetically, but with all InputArguments first, and then OutputArgument and InOutArguments.
write(routines, prefix, to files=False, header=True, empty=True)
Writes all the source code files for the given routines.
The generated source is returned as a list of (filename, contents) tuples, or is written to files (see below). Each filename consists of the given prefix, appended with an appropriate extension.

\section*{Parameters}
- routines (list) - A list of Routine instances to be written
- prefix (string) - The prefix for the output files
- to_files (bool, optional) - When True, the output is written to files. Otherwise, a list of (filename, contents) tuples is returned. [default: False]
- header (bool, optional) - When True, a header comment is included on top of each source file. [default: True]
- empty (bool, optional) - When True, empty lines are included to structure the source files. [default: True]
class diofant.utilities.codegen. DataType(cname, fname, pyname, octname)
Holds strings for a certain datatype in different languages.
class diofant.utilities.codegen.FCodeGen(project='project')
Generator for Fortran 95 code
The .write() method inherited from CodeGen will output a code file and an interface file, <prefix>.f90 and <prefix>.h respectively.
dump_f95(routines, \(f\), prefix, header=True, empty=True)
\(\bar{W}\) rite the code by calling language specific methods.
The generated file contains all the definitions of the routines in low-level code and refers to the header file if appropriate.

\section*{Parameters}
- routines (list) - A list of Routine instances.
- f (file-like) - Where to write the file.
- prefix (string) - The filename prefix, used to refer to the proper header file. Only the basename of the prefix is used.
- header (bool, optional) - When True, a header comment is included on top of each source file. [default : True]
- empty (bool, optional) - When True, empty lines are included to structure the source files. [default : True]
dump_h (routines, f, prefix, header=True, empty=True)
Writes the interface to a header file.
This file contains all the function declarations.

\section*{Parameters}
- routines (list) - A list of Routine instances.
- f (file-like) - Where to write the file.
- prefix (string) - The filename prefix.
- header (bool, optional) - When True, a header comment is included on top of each source file. [default : True]
- empty (bool, optional) - When True, empty lines are included to structure the source files. [default : True]
get_interface(routine)
Returns a string for the function interface.
The routine should have a single result object, which can be None. If the routine has multiple result objects, a CodeGenError is raised.
See: https://en.wikipedia.org/wiki/Function_prototype
class diofant.utilities.codegen.InputArgument (name, datatype=None, dimensions=None, precision=None)
Input argument class.
class diofant.utilities.codegen.OctaveCodeGen(project='project', cse=False)
Generator for Octave code.
The .write() method inherited from CodeGen will output a code file <prefix>.m.
Octave .m files usually contain one function. That function name should match the filename (prefix). If you pass multiple name_expr pairs, the latter ones are presumed to be private functions accessed by the primary function.
You should only pass inputs to argument_sequence: outputs are ordered according to their order in name_expr.
dump_m (routines, f, prefix, header=True, empty=True, inline=True)
Write the code by calling language specific methods.
The generated file contains all the definitions of the routines in low-level code and refers to the header file if appropriate.

\section*{Parameters}
- routines (list) - A list of Routine instances.
- f(file-like) - Where to write the file.
- prefix (string) - The filename prefix, used to refer to the proper header file. Only the basename of the prefix is used.
- header (bool, optional) - When True, a header comment is included on top of each source file. [default : True]
- empty (bool, optional) - When True, empty lines are included to structure the source files. [default : True]
routine (name, expr, argument_sequence, global_vars)
Specialized Routine creation for Octave.
class diofant.utilities.codegen.OutputArgument(name, result_var, expr, datatype=None, dimensions=None, precision=None)
OutputArgument are always initialized in the routine.
class diofant.utilities.codegen. Result(expr, name=None, result_var=None, datatype \(=\) None, dimensions \(=\) None, precision=None)
An expression for a return value.
The name result is used to avoid conflicts with the reserved word "return" in the python language. It is also shorter than ReturnValue.
These may or may not need a name in the destination (e.g., "return(x*y)" might return a value without ever naming it).
class diofant.utilities.codegen.Routine(name, arguments, results, local_vars, global_vars)
Generic description of evaluation routine for set of expressions.
A CodeGen class can translate instances of this class into code in a particular language. The routine specification covers all the features present in these languages. The CodeGen part must raise an exception when certain features are not present in the target language. For example, multiple return values are possible in Python, but not in C or Fortran. Another example: Fortran and Python support complex numbers, while C does not.

\section*{property result_variables}

Returns a list of OutputArgument, InOutArgument and Result.
If return values are present, they are at the end ot the list.
property variables
Returns a set of all variables possibly used in the routine.
For routines with unnamed return values, the dummies that may or may not be used will be included in the set.
diofant.utilities.codegen.codegen(name_expr, language, prefix=None,
project='project', to files=False, header=True, empty=True, argument_sequence=None, global_vars=None)
Generate source code for expressions in a given language.

\section*{Parameters}
- name_expr (tuple, or list of tuples) - A single (name, expression) tuple or a list of (name, expression) tuples. Each tuple corresponds to a routine. If the expression is an equality (an instance of class Equality) the left
hand side is considered an output argument. If expression is an iterable, then the routine will have multiple outputs.
- language (string) - A string that indicates the source code language. This is case insensitive. Currently, 'C', 'F95' and 'Octave' are supported. 'Octave' generates code compatible with both Octave and Matlab.
- prefix (string, optional) - A prefix for the names of the files that contain the source code. Language-dependent suffixes will be appended. If omitted, the name of the first name_expr tuple is used.
- project (string, optional) - A project name, used for making unique preprocessor instructions. [default: "project"]
- to_files (bool, optional) - When True, the code will be written to one or more files with the given prefix, otherwise strings with the names and contents of these files are returned. [default: False]
- header (bool, optional) - When True, a header is written on top of each source file. [default: True]
- empty (bool, optional) - When True, empty lines are used to structure the code. [default: True]
- argument_sequence (iterable, optional) - Sequence of arguments for the routine in a preferred order. A CodeGenError is raised if required arguments are missing. Redundant arguments are used without warning. If omitted, arguments will be ordered alphabetically, but with all input aguments first, and then output or in-out arguments.
- global_vars (iterable, optional) - Sequence of global variables used by the routine. Variables listed here will not show up as function arguments.

\section*{Examples}
```

>>> [(c_name, c_code), (h_name, c_header)] = codegen(
... ('f', x+y*z), 'C', 'test', header=False, empty=False)
>>> print(c_name)
test.c
>>> print(c_code)
\#include "tēst.h"
\#include <math.h>
double f(double x, double y, double z) {
double f_result;
f_result = x + y*z;
rēturn f_result;
}
>>> print(h_name)
test.h
>> print(c header)
\#ifndef PROJECT__TEST__H
\#define PROJECT__TEST__H
double f(double \overline{x}}\mathrm{ , do位le y, double z);
\#endif

```

Another example using Equality objects to give named outputs. Here the filename (prefix) is taken from the first (name, expr) pair.
```

>>> from diofant.abc import f, g
>>> [(c_name, c_code),
\#.. (h_name, c_header)] = codegen([('myfcn', x + y),
\#. ('fcn2', [Eq(f, 2*x), Eq(g, y)])],
\#". 'C', header=False, empty=False)
>>> print(c_name)
myfcn.c
>>> print(c_code)
\#include "mȳfcn.h"
\#include <math.h>
double myfcn(double x, double y) {
double myfcn_result;
myfon_result = x + y;
retur\overline{n}}\mathrm{ myfcn_result;
}
void fcn2(double x, double y, double *f, double *g) {
(*f) = 2*x;
(*g) = y;
}

```

If the generated function(s) will be part of a larger project where various global variables have been defined, the 'global_vars' option can be used to remove the specified variables from the function signature
```

>>> [(f_name, f_code), header] = codegen(
... -('f', x+y*z), 'F95', header=False, empty=False,
\#. argument_sequence=(x, y), global_vars=(z,))
>>> print(f_code)
REAL*8 func\overline{tion f(x, y)}
implicit none
REAL*8, intent(in) :: x
REAL*8, intent(in) :: y
f = x + y*z
end function

```
diofant.utilities.codegen.get_default_datatype(expr)
Derives an appropriate datatype based on the expression.
```

diofant.utilities.codegen.make_routine(name, expr, argument_sequence=None,
global_vars=None, language='F95')

```

A factory that makes an appropriate Routine from an expression.

\section*{Parameters}
- name (string) - The name of this routine in the generated code.
- expr (expression or list/tuple of expressions) - A Diofant expression that the Routine instance will represent. If given a list or tuple of expressions, the routine will be considered to have multiple return values and/or output arguments.
- argument_sequence (list or tuple, optional) - List arguments for the routine in a preferred order. If omitted, the results are language dependent, for example, alphabetical order or in the same order as the given expressions.
- global_vars (iterable, optional) - Sequence of global variables used by the routine. Variables listed here will not show up as function arguments.
- language (string, optional) - Specify a target language. The Routine itself should be language-agnostic but the precise way one is created, error checking, etc depend on the language. [default: "F95"].
- A decision about whether to use output arguments or return values is made
- depending on both the language and the particular mathematical expressions.
- For an expression of type Equality, the left hand side is typically made
- into an OutputArgument (or perhaps an InOutArgument if appropriate).
- Otherwise, typically, the calculated expression is made a return values of
- the routine.

\section*{Examples}
```

>>> from diofant.abc import f,g
>>> r = make_routine('test', [Eq(f, 2*x), Eq(g, x + y)])
>>> [arg.result_var for arg in r.results]
[]
>>> [arg.name for arg in r.arguments]
[x, y, f, g]
>>> [arg.name for arg in r.result_variables]
[f, g]
>>> r.local_vars
set()

```

Another more complicated example with a mixture of specified and automaticallyassigned names. Also has Matrix output.
```

>>> r = make_routine('fcn', [x*y, Eq(f, 1), Eq(g, x + g), Matrix([[x, 2]])])
>>> [arg.resūlt_var for arg in r.results]
[result_...]
>>> [arg}.\operatorname{expr for arg in r.results]
[x*y]
>>> [arg.name for arg in r.arguments]
[x, y, f, g, out_...]

```

We can examine the various arguments more closely:
```

>>> [a.name for a in r.arguments if isinstance(a, InputArgument)]
[x, y]

```
```

>>> [a.name for a in r.arguments if isinstance(a, OutputArgument)]
[f, out ...]
>>> [a.expr for a in r.arguments if isinstance(a, OutputArgument)]
[1, Matrix([[x, 2]])]

```
```

>>> [a.name for a in r.arguments if isinstance(a, InOutArgument)]
[g]
>>> [a.expr for a in r.arguments if isinstance(a, InOutArgument)]
[g + x]

```

\subsection*{4.22.3 Decorator}

Useful utility decorators.
diofant.utilities.decorator.conserve_mpmath_dps (func)
After the function finishes, resets the value of mpmath.mp.dps to the value it had before the function was run.
diofant.utilities.decorator.doctest_depends_on(exe=None, modules=None, disable_viewers=None)
Adds metadata about the dependencies which need to be met for doctesting the docstrings of the decorated objects.
class diofant.utilities.decorator.no_attrs_in_subclass(cls,f)
Don't 'inherit' certain attributes from a base class
```

>>> class A:
... x = 'test'

```
>>> A.x = no_attrs_in_subclass(A, A.x)
```

>>> class B(A):

```
... pass
```

>>> hasattr(A, 'x')
True
>>> hasattr(B, 'x')
False

```

\subsection*{4.22.4 Enumerative}

This module includes functions and classes for enumerating and counting multiset partitions.
```

diofant.utilities.enumerative.multiset_partitions_taocp(multiplicities)

```

Enumerates partitions of a multiset.
Parameters multiplicities - list of integer multiplicities of the components of the multiset.

Yields state - Internal data structure which encodes a particular partition. This output is then usually processed by a vistor function which combines the information from this data structure with the components themselves to produce an actual partition.

Unless they wish to create their own visitor function, users will have little need to look inside this data structure. But, for reference, it is a 3-element list with components:
\(\mathbf{f}\) is a frame array, which is used to divide pstack into parts.
lpart points to the base of the topmost part.
pstack is an array of PartComponent objects.
The state output offers a peek into the internal data structures of the enumeration function. The client should treat this as read-only; any modification of the data structure will cause unpredictable (and almost certainly incorrect) results. Also, the components of state are modified in place at each
iteration. Hence, the visitor must be called at each loop iteration. Accumulating the state instances and processing them later will not work.

\section*{Examples}
```

>>> \# variables components and multiplicities represent the multiset 'abb'
>>> components = 'ab'
>>> multiplicities = [1, 2]
>>> states = multiset partitions taocp(multiplicities)
>>> [list_visitor(state, components) for state in states]
[[['a', '\overline{b', 'b']],}
[['a', 'b'], ['b']],
[['a'], ['b', 'b']],
[['a'], ['b'], ['b']]]

```
diofant.utilities.enumerative.factoring_visitor(state, primes)
Use with multiset_partitions_taocp to enumerate the ways a number can be expressed as a product of factors. For this usage, the exponents of the prime factors of a number are arguments to the partition enumerator, while the corresponding prime factors are input here.

\section*{Examples}

To enumerate the factorings of a number we can think of the elements of the partition as being the prime factors and the multiplicities as being their exponents.
```

>>> primes, multiplicities = zip(*factorint(24).items())
>>> primes
(2, 3)
>>> multiplicities
(3, 1)
>>> states = multiset_partitions taocp(multiplicities)
>>> [factoring_visitor(state, primes) for state in states]
[[24], [8, 3], [12, 2], [4, 6], [4, 2, 3], [6, 2, 2], [2, 2, 2, 3]]

```
diofant.utilities.enumerative.list_visitor(state, components)
Return a list of lists to represent the partition.

\section*{Examples}
```

>>> states = multiset_partitions_taocp([1, 2, 1])
>>> s = next(states)
>>> list_visitor(s, 'abc') \# for multiset 'a b b c'
[['a', 'b', 'b', 'c']]
>>> s = next(states)
>>> list_visitor(s, [1, 2, 3]) \# for multiset '1 2 2 3
[[1, 2, \overline{2], [3]]}

```

The approach of the function multiset_partitions_taocp is extended and generalized by the class MultisetPartitionTraverser.

\section*{class diofant.utilities.enumerative.MultisetPartitionTraverser}

Has methods to enumerate and count the partitions of a multiset.
This implements a refactored and extended version of Knuth's algorithm 7.1.2.5M.

The enumeration methods of this class are generators and return data structures which can be interpreted by the same visitor functions used for the output of multiset_partitions_taocp.

\section*{See also:}
multiset_partitions_taocp (page 878)

Examples
```

>>> m = MultisetPartitionTraverser()
>>> m.count_partitions([4, 4, 4, 2])
127750
>>> m.count_partitions([3, 3, 3])
6 8 6

```

\section*{References}
- Algorithm 7.1.2.5M in Volume 4A, Combinatoral Algorithms, Part 1, of The Art of Computer Programming, by Donald Knuth.
- On a Problem of Oppenheim concerning "Factorisatio Numerorum" E. R. Canfield, Paul Erdős, Carl Pomerance, JOURNAL OF NUMBER THEORY, Vol. 17, No. 1. August 1983. See section 7 for a description of an algorithm similar to Knuth's.
- Generating Multiset Partitions, Brent Yorgey, The Monad.Reader, Issue 8, September 2007.

\section*{count_partitions(multiplicities)}

Returns the number of partitions of a multiset whose components have the multiplicities given in multiplicities.
For larger counts, this method is much faster than calling one of the enumerators and counting the result. Uses dynamic programming to cut down on the number of nodes actually explored. The dictionary used in order to accelerate the counting process is stored in the MultisetPartitionTraverser object and persists across calls. If the the user does not expect to call count_partitions for any additional multisets, the object should be cleared to save memory. On the other hand, the cache built up from one count run can significantly speed up subsequent calls to count_partitions, so it may be advantageous not to clear the object.

\section*{Examples}
```

>>> m = MultisetPartitionTraverser()
>>> m.count_partitions([9, 8, 2])
288716
>>> m.count_partitions([2, 2])
9
>>> del m

```

\section*{Notes}

If one looks at the workings of Knuth's algorithm M, it can be viewed as a traversal of a binary tree of parts. A part has (up to) two children, the left child resulting from the spread operation, and the right child from the decrement operation. The ordinary enumeration of multiset partitions is an in-order traversal of this tree, and with the partitions corresponding to paths from the root to the leaves. The mapping from paths to partitions is a little complicated, since the partition would contain only those parts which are leaves or the parents of a spread link, not those which are parents of a decrement link.
For counting purposes, it is sufficient to count leaves, and this can be done with a recursive in-order traversal. The number of leaves of a subtree rooted at a particular part is a function only of that part itself, so memoizing has the potential to speed up the counting dramatically.

This method follows a computational approach which is similar to the hypothetical memoized recursive function, but with two differences:
1) This method is iterative, borrowing its structure from the other enumerations and maintaining an explicit stack of parts which are in the process of being counted. (There may be multisets which can be counted reasonably quickly by this implementation, but which would overflow the default Python recursion limit with a recursive implementation.)
2) Instead of using the part data structure directly, a more compact key is constructed. This saves space, but more importantly coalesces some parts which would remain separate with physical keys.
Unlike the enumeration functions, there is currently no _range version of count_partitions. If someone wants to stretch their brain, it should be possible to construct one by memoizing with a histogram of counts rather than a single count, and combining the histograms.

\section*{References}
- Algorithm 7.1.2.5M in Volume 4A, Combinatoral Algorithms, Part 1, of The Art of Computer Programming, by Donald Knuth.
enum_all(multiplicities)
Enumerate the partitions of a multiset.

\section*{Examples}
```

>>> m = MultisetPartitionTraverser()
>>> states = m.enum_all([2, 2])
>>> [list_visitor(state, 'ab') for state in states]
[[['a', 'a', 'b', 'b']],
[['a', 'a', 'b'], ['b']],
[['a', 'a'], ['b', 'b']],
[['a', 'a'], ['b'], ['b']],
[['a', 'b','b'], ['a']],
[['a', 'b'], ['a', 'b']],
[['a', 'b'], ['a'], ['b']],
[['a'], ['a'], ['b', 'b']],
[['a'], ['a'], ['b'], ['b']]]

```

\section*{See also:}
multiset_partitions_taocp (page 878) which provides the same result as this method, but is about twice as fast. Hence, enum_all is primarily useful for testing. Also see the function for a discussion of states and visitors.
enum_large(multiplicities, lb)
Enumerate the partitions of a multiset with \(\mathrm{lb}<\) num(parts)

\section*{See also:}
enum_all (page 881), enum_small (page 882), enum_range (page 882)

\section*{Parameters}
- multiplicities - list of multiplicities of the components of the multiset.
- lb - Number of parts in the partition must be greater than this lower bound.

\section*{Examples}
```

>>> m = MultisetPartitionTraverser()
>>> states = m.enum_large([2, 2], 2)
>>> [list_visitor(state, 'ab') for state in states]
[[['a', 'a'], ['b'], ['b']],
[['a', 'b'], ['a'], ['b']],
[['a'], ['a'], ['b','b']],
[['a'], ['a'], ['b'], ['b']]]

```
enum_range ( multiplicities, \(l b, u b\) )
Enumerate the partitions of a multiset with \(\mathrm{lb}<\) num (parts) <= ub.
In particular, if partitions with exactly \(k\) parts are desired, call with (multiplicities, k - 1, k). This method generalizes enum_all, enum_small, and enum_large.

\section*{Examples}
```

>>> m = MultisetPartitionTraverser()
>>> states = m.enum_range([2, 2], 1, 2)
>>> [list_visitor(state, 'ab') for state in states]
[[['a', 'a', 'b'], ['b']],
[['a', 'a'], ['b', 'b']],
[['a', 'b', 'b'], ['a']],
[['a', 'b'j, ['a','b']]]

```
enum_small (multiplicities, ub)
Enumerate multiset partitions with no more than ub parts.
Equivalent to enum_range(multiplicities, 0, ub)

\section*{See also:}
enum_all (page 881), enum_large (page 882), enum_range (page 882)

\section*{Parameters}
- multiplicities - list of multiplicities of the components of the multiset.
- ub - Maximum number of parts

\section*{Examples}
```

>>> m = MultisetPartitionTraverser()
>>> states = m.enum small([2, 2], 2)
>>> [list_visitor(state, 'ab') for state in states]
[[['a', 'a', 'b', 'b']],
[['a', 'a', 'b'], ['b']],
[['a', 'a'], ['b', 'b']],
[['a', 'b', 'b'], ['a']],
[['a', 'b'], ['a', 'b']]]

```

The implementation is based, in part, on the answer given to exercise 69, in Knuth.

\section*{References}
- Algorithm 7.1.2.5M in Volume 4A, Combinatoral Algorithms, Part 1, of The Art of Computer Programming, by Donald Knuth.

\subsection*{4.22.5 Iterables}

\section*{variations}
variations(seq, n) Returns all the variations of the list of size \(n\).
Has an optional third argument. Must be a boolean value and makes the method return the variations with repetition if set to True, or the variations without repetition if set to False.

\section*{Examples::}
```

>>> from diofant.utilities.iterables import variations
>>> list(variations([1, 2, 3], 2))
[(1, 2), (1, 3), (2, 1), (2, 3), (3, 1), (3, 2)]
>> list(variations([1, 2, 3], 2, True))
[(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)]

```

\section*{partitions}

Although the combinatorics module contains Partition and IntegerPartition classes for investigation and manipulation of partitions, there are a few functions to generate partitions that can be used as low-level tools for routines: partitions and multiset_partitions. The former gives integer partitions, and the latter gives enumerated partitions of elements.
partitions:
```

>>> from diofant.utilities.iterables import partitions
>> [p.copy() for s, p in partitions(7, m=2, size=True) if s == 2]
[{1: 1, 6: 1}, {2: 1, 5: 1}, {3: 1, 4: 1}]

```
multiset_partitions:
```

>>> from diofant.utilities.iterables import multiset_partitions
>>> list(multiset_partitions(3, 2))
[[[0, 1], [2]], [[0, 2], [1]], [[0], [1, 2]]]
>>> list(multiset_partitions([1, 1, 1, 2], 2))
[[[1, 1, 1], [2]], [[1, 1, 2], [1]], [[1, 1], [1, 2]]]

```

\section*{Docstring}
diofant.utilities.iterables.binary_partitions(n)
Generates the binary partition of \(n\).
A binary partition consists only of numbers that are powers of two. Each step reduces a \(2^{* *}(\mathrm{k}+1)\) to \(2^{* *} \mathrm{k}\) and \(2^{* *} \mathrm{k}\). Thus 16 is converted to 8 and 8 .

\section*{References}
- TAOCP 4, section 7.2.1.5, problem 64

\section*{Examples}
```

>>> for i in binary_partitions(5):
... print(i)
[4, 1]
[2, 2, 1]
[2, 1, 1, 1]
[1, 1, 1, 1, 1]

```
diofant.utilities.iterables.bracelets ( \(n, k\) )
Wrapper to necklaces to return a free (unrestricted) necklace.
diofant.utilities.iterables.cantor_product(*args)
Breadth-first (diagonal) cartesian product of iterables.
Each iterable is advanced in turn in a round-robin fashion. As usual with breadth-first, this comes at the cost of memory consumption.
```

>>> from itertools import islice, count
>>> list(islice(cantor_product(count(), count()), 9))
[(0, 0), (0, 1), (1, 0), (1, 1), (0, 2), (1, 2), (2, 0), (2, 1), (2, 2)]

```
diofant.utilities.iterables.capture(func)
Return the printed output of func().
func should be a function without arguments that produces output with print statements.
```

>>> def foo():
... print('hello world!')
>>> 'hello' in capture(foo) \# foo, not foo()
True
>>> capture(lambda: pprint(2/x, use_unicode=False))
'2\n-\nx\n'

```
diofant.utilities.iterables.common_prefix(*seqs)
Return the subsequence that is a common start of sequences in seqs.
```

>>> common_prefix(list(range(3)))
[0, 1, 2]
>>> common_prefix(list(range(3)), list(range(4)))
[0, 1, 2]
>>> common_prefix([1, 2, 3], [1, 2, 5])
[1, 2]
>>> common_prefix([1, 2, 3], [1, 3, 5])
[1]

```
diofant.utilities.iterables.common_suffix(*seqs)
Return the subsequence that is a common ending of sequences in seqs.
```

>>> common_suffix(list(range(3)))
[0, 1, 2]
>>> common_suffix(list(range(3)), list(range(4)))
[]
>>> common_suffix([1, 2, 3], [9, 2, 3])
[2, 3]
>>> common_suffix([1, 2, 3], [9, 7, 3])
[3]

```
diofant.utilities.iterables.default_sort_key(item, order=None)

Return a key that can be used for sorting.
The key has the structure:
(class_key, (len(args), args), exponent.sort_key(), coefficient)
This key is supplied by the sort_key routine of Basic objects when item is a Basic object or an object (other than a string) that sympifies to a Basic object. Otherwise, this function produces the key.
The order argument is passed along to the sort_key routine and is used to determine how the terms within an expression are ordered. (See examples below) order options are: 'lex', 'grlex', 'grevlex', and reversed values of the same (e.g. 'rev-lex'). The default order value is None (which translates to 'lex').

\section*{Examples}
```

>>> from diofant.core.function import UndefinedFunction

```

The following are equivalent ways of getting the key for an object:
```

>>> x.sort_key() == default_sort_key(x)
True

```

Here are some examples of the key that is produced:
```

>>> default_sort_key(UndefinedFunction('f'))
((0, 0, 'Un\overline{definēdFunction'), (1, ('f',)), ((1, 0, 'Number'),}
(0, ()), (), 1), 1)
>>> default_sort_key('1')
((0, 0, 'st\overline{r}'), (1, ('1',)), ((1, 0, 'Number'), (0, ()), (), 1), 1)
>>> default_sort_key(Integer(1))
((1, 0, 'Number'), (0, ()), (), 1)
>>> default_sort key(2)
((1, 0, 'Number'), (0, ()), (), 2)

```

While sort_key is a method only defined for Diofant objects, default_sort_key will accept anything as an argument so it is more robust as a sorting key. For the following, using
key = lambda i: i.sort_key() would fail because 2 doesn't have a sort_key method; that's why default_sort_key is used. Note, that it also handles sympification of non-string items likes ints:
```

>>> a = [2, I, -I]
>>> sorted(a, key=default_sort_key)
[2, -I, I]

```

The returned key can be used anywhere that a key can be specified for a function, e.g. sort, min, max, etc...:
```

>>> a.sort(key=default_sort_key)
>>> a[0]
2
>>> min(a, key=default_sort_key)
2

```

\section*{Notes}

The key returned is useful for getting items into a canonical order that will be the same across platforms. It is not directly useful for sorting lists of expressions:
```

>>> a, b = x, 1/x

```

Since a has only 1 term, its value of sort_key is unaffected by order:
```

>>> a.sort_key() == a.sort_key('rev-lex')
True

```

If \(a\) and \(b\) are combined then the key will differ because there are terms that can be ordered:
```

>>> eq = a + b
>>> eq.sort_key() == eq.sort_key('rev-lex')
False
>>> eq.as_ordered_terms()
[x, 1/x]
>>> eq.as_ordered_terms('rev-lex')
[1/x, x]

```

But since the keys for each of these terms are independent of order's value, they don't sort differently when they appear separately in a list:
```

>>> sorted(eq.args, key=default_sort_key)
[1/x, x]
>>> sorted(eq.args, key=lambda i: default_sort_key(i, order='rev-lex'))
[1/x, x]

```

The order of terms obtained when using these keys is the order that would be obtained if those terms were factors in a product.
Although it is useful for quickly putting expressions in canonical order, it does not sort expressions based on their complexity defined by the number of operations, power of variables and others:
```

>>> sorted([sin(x)*\operatorname{cos(x), sin(x)], key=default_sort_key)}
[sin(x)*\operatorname{cos(x), sin(x)]}
>>> sorted([x, x**2, sqrt(x), x**3], key=default_sort_key)
[sqrt(x), x, x**2, x**3]

```

\section*{See also:}
ordered (page 892), diofant.core.expr.Expr.as_ordered_factors (page 64), diofant.core.expr.Expr.as_ordered_terms (page 64)
diofant.utilities.iterables.filter_symbols(iterator, exclude)
Only yield elements from iterator that do not occur in exclude.

\section*{Parameters}
- iterator (iterable)
- iterator to take elements from
- exclude (iterable)
- elements to exclude

\section*{Returns}
- iterator (iterator)
- filtered iterator
diofant.utilities.iterables.flatten(iterable, levels=None, cls=None)
Recursively denest iterable containers.
```

>>> flatten([1, 2, 3])
[1, 2, 3]
>>> flatten([1, 2, [3]])
[1, 2, 3]
>>> flatten([1, [2, 3], [4, 5]])
[1, 2, 3, 4, 5]
>> flatten([1.0, 2, (1, None)])
[1.0, 2, 1, None]

```

If you want to denest only a specified number of levels of nested containers, then set levels flag to the desired number of levels:
>>> ls \(=[[(-2,-1),(1,2)],[(0,0)]]\)
```

>>> flatten(ls, levels=1)
[(-2, -1), (1, 2), (0, 0)]

```

If cls argument is specified, it will only flatten instances of that class, for example:
```

>>> class MyOp(Basic):
... pass
>>> flatten([MyOp(1, MyOp(2, 3))], cls=My0p)
[1, 2, 3]

```
adapted from https://kogs-www.informatik.uni-hamburg.de/~meine/python_tricks
diofant.utilities.iterables.generate_derangements(perm)
Routine to generate unique derangements.
TODO: This will be rewritten to use the ECO operator approach once the permutations branch is in master.

\section*{Examples}
```

>>> list(generate_derangements([0, 1, 2]))
[[1, 2, 0], [2, 0, 1]]
>>> list(generate_derangements([0, 1, 2, 3]))
[[1, 0, 3, 2], [1, 2, 3, 0], [1, 3, 0, 2], [2, 0, 3, 1],
[2, 3, 0, 1], [2, 3, 1, 0], [3, 0, 1, 2], [3, 2, 0, 1],
[3, 2, 1, 0]]
>>> list(generate_derangements([0, 1, 1]))
[]

```

\section*{See also:}
diofant.functions.combinatorial.factorials.subfactorial (page 321)
diofant.utilities.iterables.generate_involutions( \(n\) )
Generates involutions.
An involution is a permutation that when multiplied by itself equals the identity permutation. In this implementation the involutions are generated using Fixed Points.
Alternatively, an involution can be considered as a permutation that does not contain any cycles with a length that is greater than two.

\section*{References}
- https://mathworld.wolfram.com/PermutationInvolution.html

\section*{Examples}
```

>>> list(generate_involutions(3))
[(0, 1, 2), (0, 2, 1), (1, 0, 2), (2, 1, 0)]
>>> len(list(generate_involutions(4)))
10

```
diofant.utilities.iterables.group(seq, multiple=True)
Splits a sequence into a list of lists of equal, adjacent elements.

\section*{Examples}
```

>>> group([1, 1, 1, 2, 2, 3])
[[1, 1, 1], [2, 2], [3]]
>>> group([1, 1, 1, 2, 2, 3], multiple=False)
[(1, 3), (2, 2), (3, 1)]
>>> group([1, 1, 3, 2, 2, 1], multiple=False)
[(1, 2), (3, 1), (2, 2), (1, 1)]

```

\section*{See also:}
multiset (page 889)
diofant.utilities.iterables.has_dups(seq)
Return True if there are any duplicate elements in seq.

\section*{Examples}
```

>>> has_dups((1, 2, 1))
True
>>> has_dups(range(3))
False
>>> all(has_dups(c) is False for c in (set(), Set(), {}, Dict()))
True

```
diofant.utilities.iterables.has_variety(seq)
Return True if there are any different elements in seq.

\section*{Examples}
```

>>> has_variety((1, 2, 1))
True
>>> has variety((1, 1, 1))
False

```
diofant.utilities.iterables.minlex (seq, directed=True, is_set=False, small=None)
Return a tuple where the smallest element appears first; if directed is True (default) then the order is preserved, otherwise the sequence will be reversed if that gives a smaller ordering.
If every element appears only once then is_set can be set to True for more efficient processing.
If the smallest element is known at the time of calling, it can be passed and the calculation of the smallest element will be omitted.

\section*{Examples}
```

>>> minlex((1, 2, 0))
(0, 1, 2)
>> minlex((1, 0, 2))
(0, 2, 1)
>>> minlex((1, 0, 2), directed=False)
(0, 1, 2)

```
```

>>> minlex('11010011000', directed=True)
'00011010011'
>>> minlex('11010011000', directed=False)
'00011001011'

```
diofant.utilities.iterables.multiset (seq)
Return the hashable sequence in multiset form with values being the multiplicity of the item in the sequence.

\section*{Examples}
>>> multiset('mississippi')
\{'i': 4, 'm': 1, 'p': 2, 's': 4\}

\section*{See also:}
group (page 888)
diofant.utilities.iterables.multiset_combinations( \(m, n, g=\) None)
Return the unique combinations of size n from multiset m .

\section*{Examples}
```

>>> from itertools import combinations
>>> [''.join(i) for i in multiset_combinations('baby', 3)]
['abb', 'aby', 'bby']

```
```

>>> def count(f, s):
... return len(list(f(s, 3)))

```

The number of combinations depends on the number of letters; the number of unique combinations depends on how the letters are repeated.
```

>>> s1 = 'abracadabra'
>>> s2 = 'banana tree'
>>> count(combinations, s1), count(multiset_combinations, s1)
(165, 23)
>>> count(combinations, s2), count(multiset_combinations, s2)
(165, 54)

```
diofant.utilities.iterables.multiset_partitions(multiset, \(m=\) None)
Return unique partitions of the given multiset (in list form). If \(m\) is None, all multisets will be returned, otherwise only partitions with m parts will be returned.
If multiset is an integer, a range \([0,1, \ldots\), multiset -1\(]\) will be supplied.

\section*{Counting}

The number of partitions of a set is given by the bell number:
```

>>> len(list(multiset_partitions(5))) == bell(5) == 52
True

```

The number of partitions of length k from a set of size n is given by the Stirling Number of the 2nd kind:
```

>>> def s2(n, k):
... from diofant import Dummy, binomial, factorial, Sum
... if k > n:
... return 0
\#.. j = Dummy()

arg = (-1)**(k-j)*j**n*binomial(k, j)

... return 1/factorial(k)*Sum(arg, (j, 0, k)).doit()
>> s2(5, 2) == len(list(multiset_partitions(5, 2))) == 15
True

```

These comments on counting apply to sets, not multisets.

\section*{Examples}
```

>>> list(multiset partitions([1, 2, 3, 4], 2))
[[[1, 2, 3], [4]], [[1, 2, 4], [3]], [[1, 2], [3, 4]],
[[1, 3, 4], [2]], [[1, 3], [2, 4]], [[1, 4], [2, 3]],
[[1], [2, 3, 4]]]
>>> list(multiset_partitions([1, 2, 3, 4], 1))
[[[1, 2, 3, 4]]]

```

Only unique partitions are returned and these will be returned in a canonical order regardless of the order of the input:
```

>>> a = [1, 2, 2, 1]
>>> ans = list(multiset_partitions(a, 2))
>>> a.sort()
>>> list(multiset_partitions(a, 2)) == ans
True
>>> a = range(3, 1, -1)
>>> (list(multiset partitions(a)) ==
\#". list(multiset_partitions(sorted(a))))
True

```

If m is omitted then all partitions will be returned:
```

>>> list(multiset_partitions([1, 1, 2]))
[[[1, 1, 2]], [[1, 1], [2]], [[1, 2], [1]], [[1], [1], [2]]]
>>> list(multiset_partitions([1]*3))
[[[1, 1, 1]], [[1], [1, 1]], [[1], [1], [1]]]

```

\section*{Notes}

When all the elements are the same in the multiset, the order of the returned partitions is determined by the partitions routine. If one is counting partitions then it is better to use the nT function.

\section*{See also:}
partitions (page 895), diofant. combinatorics.partitions.Partition (page 148), diofant. combinatorics.partitions.IntegerPartition (page 149), diofant. functions. combinatorial. numbers.nT (page 330)
diofant.utilities.iterables.multiset_permutations( \(m\), size \(=\) None, \(g=\) None)
Return the unique permutations of multiset \(m\).

\section*{Examples}
```

>>> [''.join(i) for i in multiset_permutations('aab')]
['aab', 'aba', 'baa']
>>> factorial(len('banana'))
720
>>> len(list(multiset_permutations('banana')))
6 0

```
diofant.utilities.iterables.necklaces ( \(n, k\), free \(=\) False )
A routine to generate necklaces that may (free=True) or may not (free=False) be turned over to be viewed. The "necklaces" returned are comprised of \(n\) integers (beads) with \(k\) different values (colors). Only unique necklaces are returned.

\section*{Examples}
>>> def show(s, i):
... return ''.join(s[j] for \(j\) in i)
The "unrestricted necklace" is sometimes also referred to as a "bracelet" (an object that can be turned over, a sequence that can be reversed) and the term "necklace" is used to imply a sequence that cannot be reversed. So \(\mathrm{ACB}==\mathrm{ABC}\) for a bracelet (rotate and reverse) while the two are different for a necklace since rotation alone cannot make the two sequences the same.
(mnemonic: Bracelets can be viewed Backwards, but Not Necklaces.)
```

>>> B = [show('ABC', i) for i in bracelets(3, 3)]
>>> N = [show('ABC', i) for i in necklaces(3, 3)]
>>> set(N) - set(B)
{'ACB'}

```
```

>>> list(necklaces(4, 2))
[(0, 0, 0, 0), (0, 0, 0, 1), (0, 0, 1, 1),
(0, 1, 0, 1), (0, 1, 1, 1), (1, 1, 1, 1)]

```
>>> [show('.o', i) for i in bracelets(4, 2)]
['...'', '...o', '..oo', '.o.o', '.000', '0000']

\section*{References}
https://mathworld.wolfram.com/Necklace.html
diofant.utilities.iterables.numbered_symbols (prefix=' \(x^{\prime}\), cls=None, start=0, exclude \(=[]\), *args, \({ }^{* *}\) assumptions)
Generate an infinite stream of Symbols consisting of a prefix and increasing subscripts provided that they do not occur in exclude.

\section*{Parameters}
- prefix (str, optional) - The prefix to use. By default, this function will generate symbols of the form "x0", "x1", etc.
- cls (class, optional) - The class to use. By default, it uses Symbol, but you can also use Wild or Dummy.
- start (int, optional) - The start number. By default, it is 0 .

Returns sym (Symbol) - The subscripted symbols.
diofant.utilities.iterables.ordered (seq, keys=None, default=True, warn=False)
Return an iterator of the seq where keys are used to break ties in a conservative fashion: if, after applying a key, there are no ties then no other keys will be computed.
Two default keys will be applied if 1) keys are not provided or 2) the given keys don't resolve all ties (but only if default is True). The two keys are \({ }_{n}\) odes (which places smaller expressions before large) and default \({ }_{s}\) ort \({ }_{k} e y\) which (if the sort \({ }_{k} e y\) for an object is defined properly) should resolve any ties.
If warn is True then an error will be raised if there were no keys remaining to break ties. This can be used if it was expected that there should be no ties between items that are not identical.

\section*{Examples}

The count_ops is not sufficient to break ties in this list and the first two items appear in their original order (i.e. the sorting is stable):
```

>>> list(ordered([y + 2, x + 2, x**2 + y + 3],
... count_ops, default=False, warn=False))
[y + 2, x + 2, x**2 + y + 3]

```

The default_sort_key allows the tie to be broken:
```

>>> list(ordered([y + 2, x + 2, x**2 + y + 3]))
[x + 2, y + 2, x**2 + y + 3]

```

Here, sequences are sorted by length, then sum:
```

>>> seq, keys = [[[1, 2, 1], [0, 3, 1], [1, 1, 3], [2], [1]],
\#." [lambda x: len(x), lambda x: sum(x)]]
>>> list(ordered(seq, keys, default=False, warn=False))
[[1], [2], [1, 2, 1], [0, 3, 1], [1, 1, 3]]

```

If warn is True, an error will be raised if there were not enough keys to break ties:
```

>>> list(ordered(seq, keys, default=False, warn=True))
Traceback (most recent call last):
ValueError: not enough keys to break ties

```

\section*{Notes}

The decorated sort is one of the fastest ways to sort a sequence for which special item comparison is desired: the sequence is decorated, sorted on the basis of the decoration (e.g. making all letters lower case) and then undecorated. If one wants to break ties for items that have the same decorated value, a second key can be used. But if the second key is expensive to compute then it is inefficient to decorate all items with both keys: only those items having identical first key values need to be decorated. This function applies keys successively only when needed to break ties. By yielding an iterator, use of the tie-breaker is delayed as long as possible.
This function is best used in cases when use of the first key is expected to be a good hashing function; if there are no unique hashes from application of a key then that key should not have been used. The exception, however, is that even if there are many collisions, if the first group is small and one does not need to process all items in the list then time will not be wasted sorting what one was not interested in. For example, if one were looking for the minimum in a list and there were several criteria used to define the sort order, then this function would be good at returning that quickly if the first group of candidates is small relative to the number of items being processed.
diofant.utilities.iterables.ordered_partitions( \(n, m=N o n e\), sort=True)
Generates ordered partitions of integer \(n\).

\section*{Parameters}
- "'m" (int or None, optional) - By default (None) gives partitions of all sizes, else only those with size \(m\). In addition, if \(m\) is not None then partitions are generated in place (see examples).
- "sort" (bool, optional) - Controls whether partitions are returned in sorted order (default) when m is not None; when False, the partitions are returned as fast as possible with elements sorted, but when m|n the partitions will not be in ascending lexicographical order.

\section*{Examples}

All partitions of 5 in ascending lexicographical:
```

>>> for p in ordered_partitions(5):
\#. print(p)
[1, 1, 1, 1, 1]
[1, 1, 1, 2]
[1, 1, 3]
[1, 2, 2]
[1, 4]
[2, 3]
[5]

```

Only partitions of 5 with two parts:
```

>>> for p in ordered_partitions(5, 2):
... print(p)
[1, 4]
[2, 3]

```

When \(m\) is given, a given list objects will be used more than once for speed reasons so you will not see the correct partitions unless you make a copy of each as it is generated:
```

>>> list(ordered_partitions(7, 3))
[[1, 1, 1], [1, 1, 1], [1, 1, 1], [2, 2, 2]]
>>> [list(p) for p in ordered_partitions(7, 3)]
[[1, 1, 5], [1, 2, 4], [1, 3, 3], [2, 2, 3]]

```

When \(n\) is a multiple of \(m\), the elements are still sorted but the partitions themselves will be unordered if sort is False; the default is to return them in ascending lexicographical order.
```

>>> for p in ordered_partitions(6, 2):
\#.. print(p)
[1, 5]
[2, 4]
[3, 3]

```

But if speed is more important than ordering, sort can be set to False:
```

>>> for p in ordered_partitions(6, 2, sort=False):
... print(p)
[1, 5]
[3, 3]
[2, 4]

```

\section*{References}
- Generating Integer Partitions, [online], Available: http://jeromekelleher.net/ generating-integer-partitions.html
- Jerome Kelleher and Barry O’Sullivan, "Generating All Partitions: A Comparison Of Two Encodings", [online], Available: https://arxiv.org/pdf/0909.2331v2.pdf
diofant.utilities.iterables.partitions( \(n, m=\) None, \(k=N o n e, ~ s i z e=F a l s e\) )
Generate all partitions of positive integer, n.

\section*{Parameters}
- " \(\mathbf{m}^{\prime}\) (integer (default gives partitions of all sizes)) - limits number of parts in partition (mnemonic: m, maximum parts). Default value, None, gives partitions from 1 through n.
- ‘’k" (integer (default gives partitions number from 1 through n)) - limits the numbers that are kept in the partition (mnemonic: \(k\), keys)
- "'size" (bool (default False, only partition is returned)) - when True then ( \(M, P\) ) is returned where \(M\) is the sum of the multiplicities and \(P\) is the generated partition.
- Each partition is represented as a dictionary, mapping an integer
- to the number of copies of that integer in the partition. For example,
- the first partition of 4 returned is \(\{4\) (1\}, "4: one of them".)

\section*{Examples}

The numbers appearing in the partition (the key of the returned dict) are limited with k :
```

>>> from diofant.utilities.iterables import partitions

```
```

>>> for p in partitions(6, k=2):
... print(p)
{2: 3}
{1: 2, 2: 2}
{1: 4, 2: 1}
{1: 6}

```

The maximum number of parts in the partition (the sum of the values in the returned dict) are limited with m :
```

>>> for p in partitions(6, m=2):
... print(p)
{6: 1}
{1: 1, 5: 1}
{2: 1, 4: 1}
{3: 2}

```

Note that the _same_ dictionary object is returned each time. This is for speed: generating each partition goes quickly, taking constant time, independent of \(n\).
```

>>> list(partitions(6, k=2))
[{1: 6}, {1: 6}, {1: 6}, {1: 6}]

```

If you want to build a list of the returned dictionaries then make a copy of them:
```

>>> [p.copy() for p in partitions(6, k=2)]
[{2: 3}, {1: 2, 2: 2}, {1: 4, 2: 1}, {1: 6}]
>>> [(M, p.copy()) for M, p in partitions(6, k=2, size=True)]
[(3, {2: 3}), (4, {1: 2, 2: 2}), (5, {1: 4, 2: 1}), (6, {1: 6})]

```

\section*{References}
- http://code.activestate.com/recipes/218332-generator-for-integer-partitions/

\section*{Notes}

Modified from Tim Peter's version to allow for k and m values.

\section*{See also:}
diofant. combinatorics.partitions.Partition (page 148), diofant. combinatorics.partitions.IntegerPartition (page 149)
diofant.utilities.iterables.permute_signs( \(t\) )
Return iterator in which the signs of non-zero elements of \(t\) are permuted.

\section*{Examples}
```

>>> list(permute_signs((0, 1, 2)))
[(0, 1, 2), (0, -1, 2), (0, 1, -2), (0, -1, -2)]

```
diofant.utilities.iterables.postfixes (seq)
Generate all postfixes of a sequence.

\section*{Examples}
```

>>> list(postfixes([1, 2, 3, 4]))
[[4], [3, 4], [2, 3, 4], [1, 2, 3, 4]]

```
diofant.utilities.iterables.postorder_traversal (node, keys=None)
Do a postorder traversal of a tree.
This generator recursively yields nodes that it has visited in a postorder fashion. That is, it descends through the tree depth-first to yield all of a node's children's postorder traversal before yielding the node itself.

\section*{Parameters}
- node (diofant expression) - The expression to traverse.
- keys ((default None) sort key(s)) - The key(s) used to sort args of Basic objects. When None, args of Basic objects are processed in arbitrary order. If key is defined, it will be passed along to ordered() as the only key(s) to use to sort the arguments; if key is simply True then the default keys of ordered will be used (node count and default_sort_key).

Yields subtree (diofant expression) - All of the subtrees in the tree.

\section*{Examples}
>>> from diofant.abc import w
The nodes are returned in the order that they are encountered unless key is given; simply passing key=True will guarantee that the traversal is unique.
```

>>> list(postorder_traversal(w + (x + y)*z, keys=True))

```
\(\left[w, z, x, y, x+y, z^{*}(x+y), w+z^{*}(x+y)\right]\)
diofant.utilities.iterables.prefixes(seq)
Generate all prefixes of a sequence.

\section*{Examples}
```

>>> list(prefixes([1, 2, 3, 4]))
[[1], [1, 2], [1, 2, 3], [1, 2, 3, 4]]

```
diofant.utilities.iterables.rotate_left( \(x, y\) )
Left rotates a list \(x\) by the number of steps specified in \(y\).

\section*{Examples}
>>> \(a=[0,1,2]\)
>>> rotate_left(a, 1)
[1, 2, 0]
diofant.utilities.iterables.rotate_right ( \(x, y\) )
Right rotates a list \(x\) by the number of steps specified in \(y\).

\section*{Examples}
```

>>> a = [0, 1, 2]
>>> rotate_right(a, 1)
[2, 0, 1]

```
diofant.utilities.iterables.runs (seq, op=<built-in function gt>)
Group the sequence into lists in which successive elements all compare the same with the comparison operator, op: op(seq[i+1], seq[i]) is True from all elements in a run.

\section*{Examples}
```

>>> import operator
>>> runs([0, 1, 2, 2, 1, 4, 3, 2, 2])
[[0, 1, 2], [2], [1, 4], [3], [2], [2]]
>> runs([0, 1, 2, 2, 1, 4, 3, 2, 2], op=operator.ge)
[[0, 1, 2, 2], [1, 4], [3], [2, 2]]

```
diofant.utilities.iterables.sift(seq, keyfunc)
Sift the sequence, seq into a dictionary according to keyfunc.
OUTPUT: each element in expr is stored in a list keyed to the value of keyfunc for the element.

Examples
>>> from collections import defaultdict
>>> sift(range(5), lambda \(x: x \% 2)==\operatorname{defaultdict(int,~\{ 0:~[0,~2,~4],~1:~[1,~3]\} )~}\) True
sift() returns a defaultdict() object, so any key that has no matches will give [].
```

>>> dl = sift([x], lambda x: x.is_commutative)
>>> dl == defaultdict(list, {True: [x]})
True
>>> dl[False]
[]

```

Sometimes you won't know how many keys you will get:
```

>>> (sift([sqrt(x), exp(x), (y**x)**2],
... lambda x: x.as_base_exp()[0]) ==
\#. defaultdict(list, {\overline{E}: [e\overline{xp}(x)], x: [sqrt(x)], y: [y**(2*x)]}))
True

```

If you need to sort the sifted items it might be better to use ordered which can economically apply multiple sort keys to a squence while sorting.

\section*{See also:}
ordered (page 892)
diofant.utilities.iterables.signed_permutations( \(t\) )
Return iterator in which the signs of non-zero elements of \(t\) and the order of the elements are permuted.

\section*{Examples}
```

>>> list(signed_permutations((0, 1, 2)))
[(0, 1, 2), (0,-1, 2), (0, 1, -2), (0, -1, -2), (0, 2, 1),
(0, -2, 1), (0, 2, -1), (0, -2, -1), (1, 0, 2), (-1, 0, 2),
(1, 0, -2), (-1, 0, -2), (1, 2, 0), (-1, 2, 0), (1, -2, 0),
(-1, -2, 0), (2, 0, 1), (-2, 0, 1), (2, 0, -1), (-2, 0, -1),
(2, 1, 0), (-2, 1, 0), (2, -1, 0), (-2, -1, 0)]

```
diofant.utilities.iterables.subsets(seq, \(k=\) None, repetition=False)
Generates all k-subsets (combinations) from an n-element set, seq.
A k-subset of an \(n\)-element set is any subset of length exactly \(k\). The number of \(k\)-subsets of an \(n\)-element set is given by binomial( \(\mathrm{n}, \mathrm{k}\) ), whereas there are \(2^{* *}\) n subsets all together. If k is None then all \(2^{* *} \mathrm{n}\) subsets will be returned from shortest to longest.

\section*{Examples}
subsets(seq, \(k\) ) will return the \(n!/ k!/(n-k)!k\)-subsets (combinations) without repetition, i.e. once an item has been removed, it can no longer be "taken":
```

>>> from diofant.utilities.iterables import subsets

```
```

>>> list(subsets([1, 2], 2))
[(1, 2)]
>>> list(subsets([1, 2]))
[(), (1,), (2,), (1, 2)]
>> list(subsets([1, 2, 3], 2))
[(1, 2), (1, 3), (2, 3)]

```
subsets(seq, \(k\), repetition=True) will return the ( \(n-1+k\) )!/k!/(n-1)! combinations with repetition:
```

>>> list(subsets([1, 2], 2, repetition=True))
[(1, 1), (1, 2), (2, 2)]

```

If you ask for more items than are in the set you get the empty set unless you allow repetitions:
```

>>> list(subsets([0, 1], 3, repetition=False))
[]
>>> list(subsets([0, 1], 3, repetition=True))
[(0, 0, 0), (0, 0, 1), (0, 1, 1), (1, 1, 1)]

```
diofant.utilities.iterables.topological_sort(graph, key=None)

Topological sort of graph's vertices.

\section*{Parameters}
- "graph" (tuple[list, list[tuple[T, T]])-A tuple consisting of a list of vertices and a list of edges of a graph to be sorted topologically.
- " \(k e y `\) ` (callable[T] (optional)) - Ordering key for vertices on the same level. By default the natural (e.g. lexicographic) ordering is used (in this case the base type must implement ordering relations).

\section*{Examples}

Consider a graph:

(continued from previous page)

where vertices are integers. This graph can be encoded using elementary Python's data structures as follows:
```

>>> V = [2, 3, 5, 7, 8, 9, 10, 11]
>> E = [(7, 11), (7, 8), (5, 11), (3, 8), (3, 10),
···.. (11, 2), (11, 9), (11, 10), (8, 9)]

```

To compute a topological sort for graph (V, E) issue:
```

>>> topological_sort((V, E))
[3, 5, 7, 8, 11, 2, 9, 10]

```

If specific tie breaking approach is needed, use key parameter:
```

>>> topological_sort((V, E), key=lambda v: -v)
[7, 5, 11, 3, 10, 8, 9, 2]

```

Only acyclic graphs can be sorted. If the input graph has a cycle, then ValueError will be raised:
```

>>> topological_sort((V, E + [(10, 7)]))
Traceback (most recent call last):
ValueError: cycle detected

```

\section*{References}
- https://en.wikipedia.org/wiki/Topological_sorting
diofant.utilities.iterables.unflatten(iter, \(n=2\) )
Group iter into tuples of length n . Raise an error if the length of iter is not a multiple of \(n\).
diofant.utilities.iterables.uniq(seq, result=None)
Yield unique elements from seq as an iterator. The second parameter result is used internally; it is not necessary to pass anything for this.

\section*{Examples}
```

>>> dat = [1, 4, 1, 5, 4, 2, 1, 2]
>>> type(uniq(dat)) in (list, tuple)
False

```
```

>>> list(uniq(dat))

```
>>> list(uniq(dat))
[1, 4, 5, 2]
[1, 4, 5, 2]
>>> list(uniq(x for x in dat))
>>> list(uniq(x for x in dat))
[1, 4, 5, 2]
[1, 4, 5, 2]
>> list(uniq([[1], [2, 1], [1]]))
>> list(uniq([[1], [2, 1], [1]]))
[[1], [2, 1]]
```

[[1], [2, 1]]

```
diofant.utilities.iterables.variations(seq, n, repetition=False)
Returns a generator of the \(n\)-sized variations of seq (size N). repetition controls whether items in seq can appear more than once;

\section*{Examples}
variations(seq, n) will return N ! / ( \(\mathrm{N}-\mathrm{n}\) )! permutations without repetition of seq's elements:
```

>>> list(variations([1, 2], 2))

```
\([(1,2),(2,1)]\)
variations(seq, n , True) will return the \(\mathrm{N}^{* *} \mathrm{n}\) permutations obtained by allowing repetition of elements:
```

>>> list(variations([1, 2], 2, repetition=True))
[(1, 1), (1, 2), (2, 1), (2, 2)]

```

If you ask for more items than are in the set you get the empty set unless you allow repetitions:
```

>>> list(variations([0, 1], 3, repetition=False))
[]
>>> list(variations([0, 1], 3, repetition=True))[:4]
[(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1)]

```

\subsection*{4.22.6 Lambdify}

This module provides convenient functions to transform diofant expressions to lambda functions which can be used to calculate numerical values very fast.
diofant.utilities.lambdify.implemented_function(symfunc, implementation)
Add numerical implementation to function symfunc.
symfunc can be an UndefinedFunction instance, or a name string. In the latter case we create an UndefinedFunction instance with that name.
Be aware that this is a quick workaround, not a general method to create special symbolic functions. If you want to create a symbolic function to be used by all the machinery of Diofant you should subclass the Function class.

\section*{Parameters}
- symfunc (str or UndefinedFunction instance) - If str, then create new UndefinedFunction with this as name. If symfunc is a diofant function, attach implementation to it.
- implementation (callable) - numerical implementation to be called by evalf() or lambdify
Returns afunc (diofant.FunctionClass instance) - function with attached implementation

\section*{Examples}
```

>>> f = implemented_function(Function('f'), lambda x: x+1)
>>> lam_f = lambdif}\overline{y}(x,f(x)
>>> lam_f(4)
5

```
diofant.utilities.lambdify.lambdastr(args, expr, printer=None, dummify=False) Returns a string that can be evaluated to a lambda function.

\section*{Examples}
```

>>> lambdastr(x, x**2)
'lambda x: (x**2)'
>>> lambdastr((x, y, z), [z, y, x])
'lambda x,y,z: ([z, y, x])'

```

Although tuples may not appear as arguments to lambda in Python 3, lambdastr will create a lambda function that will unpack the original arguments so that nested arguments can be handled:
```

>>> lambdastr((x, (y, z)), x + y)
'lambda _0,_1: (lambda x,y,z: (x + y))(*list(__flatten_args__([_0,_1])))'

```
diofant.utilities.lambdify.lambdify (args, expr, modules=None, printer=None, use_imps=True, dummify=True)
Returns a lambda function for fast calculation of numerical values.
If not specified differently by the user, modules defaults to ["numpy"] if NumPy is installed, and ["math", "mpmath", "sympy"] if it isn't, that is, Diofant functions are replaced as far as possible by either numpy functions if available, and Python's standard library math, or mpmath functions otherwise. To change this behavior, the "modules" argument can be used. It accepts:
- the strings "math", "mpmath", "numpy", "diofant"
- any modules (e.g. math)
- dictionaries that map names of diofant functions to arbitrary functions
- lists that contain a mix of the arguments above, with higher priority given to entries appearing first.

The default behavior is to substitute all arguments in the provided expression with dummy symbols. This allows for applied functions (e.g. f(t)) to be supplied as arguments. Call the function with dummify=False if dummy substitution is unwanted (and args is not a string). If you want to view the lambdified function or provide "diofant" as the module, you should probably set dummify=False.
In previous releases lambdify replaced Matrix with numpy.matrix by default. As of release 0.7.7 numpy. array is the default. To get the old default behavior you must pass in [\{'ImmutableMatrix': numpy.matrix\}, 'numpy'] to the modules kwarg.
(1) Use one of the provided modules:
```

>>> f = lambdify(x, sin(x), 'math')

```

Attention: Functions that are not in the math module will throw a name error when the lambda function is evaluated! So this would be better:
```

>>> f = lambdify(x, sin(x)*gamma(x), ('math', 'mpmath', 'diofant'))

```
(2) Use some other module:
```

>>> import numpy
>>> f = lambdify((x, y), tan(x*y), numpy)

```

Attention: There are naming differences between numpy and diofant. So if you simply take the numpy module, e.g. diofant.atan will not be translated to numpy.arctan. Use the modified module instead by passing the string "numpy":
```

>>> f = lambdify((x, y), tan(x*y), 'numpy')
>>> f(1, 2)
-2.18503986326
>>> from numpy import array
>> f(array([1, 2, 3]), array([2, 3, 5]))
[-2.18503986-0.29100619-0.8559934]

```
(3) Use a dictionary defining custom functions:
```

>>> def my_cool_function(x):
\#.. return \overline{f'sin({x}) is cool'}
>>> myfuncs = {'sin': my_cool_function}
>>> f = lambdify(x, sin(x), myfuncs)
>>> f(1)
'sin(1) is cool'

```

\section*{Examples}
```

>>> from diofant.abc import w
>>> f = lambdify(x, x**2)
>>> f(2)
4
>>> f = lambdify((x, y, z), [z, y, x])
>>> f(1, 2, 3)
[3, 2, 1]
>>> f = lambdify(x, sqrt(x))
>>> f(4)
2.0
>>> f = lambdify((x, y), sin(x*y)**2)
>>> f(0, 5)
0.0
>>> row = lambdify((x, y), Matrix((x, x + y)).T, modules='diofant')
>>> row(1, 2)
Matrix([[1, 3]])

```

Tuple arguments are handled and the lambdified function should be called with the same type of arguments as were used to create the function.:
```

>>> f = lambdify((x, (y, z)), x + y)
>>> f(1, (2, 4))
3

```

A more robust way of handling this is to always work with flattened arguments:
```

>>> args = w, (x, (y, z))
>>> vals = 1, (2, (3, 4))
>>> f = lambdify(flatten(args), w + x + y + z)
>>> f(*flatten(vals))
10

```

Functions present in expr can also carry their own numerical implementations, in a callable attached to the _imp_ attribute. Usually you attach this using the implemented_function factory:
```

>>> f = implemented_function(Function('f'), lambda x: x+1)
>>> func = lambdify(x, f(x))
>>> func(4)
5

```
lambdify always prefers _imp_implementations to implementations in other namespaces, unless the use_imps input parameter is False.

\subsection*{4.22.7 Memoization}
diofant.utilities.memoization.recurrence_memo(initial)
Memo decorator for sequences defined by recurrence
See usage examples e.g. in the specfun/combinatorial module

\subsection*{4.22.8 Miscellaneous}

Miscellaneous stuff that doesn't really fit anywhere else.
diofant.utilities.misc.filldedent(s, \(w=70\) )
Strips leading and trailing empty lines from a copy of \(s\), then dedents, fills and returns it.
Empty line stripping serves to deal with docstrings like this one that start with a newline after the initial triple quote, inserting an empty line at the beginning of the string.

\subsection*{4.22.9 Randomised Testing}

Helpers for randomized testing.
diofant.utilities.randtest.random_complex_number \((a=2, b=-1, c=3, d=1\),
rational \(=\) True \()\)
Return a random complex number.
To reduce chance of hitting branch cuts or anything, we guarantee \(\mathrm{b}<=\operatorname{Im} \mathrm{z}<=\mathrm{d}\), a \(<=\operatorname{Re} \mathrm{z}<=\mathrm{c}\)
diofant.utilities.randtest.verify_derivative_numerically (f,z,tol=1e-06, \(a=2, b=-\) \(1, c=3, d=1\) )
Test numerically that the symbolically computed derivative of \(f\) with respect to \(z\) is correct.

This routine does not test whether there are Floats present with precision higher than
15 digits so if there are, your results may not be what you expect due to round-off errors.

\section*{Examples}
>>> verify_derivative_numerically(sin(x), x)
true
diofant.utilities.randtest.verify_numerically \((f, g, z=\) None, tol \(=1 e-06, a=2, b=-1\), \(c=3, d=1\) )
Test numerically that f and g agree when evaluated in the argument z .
If z is None, all symbols will be tested. This routine does not test whether there are Floats present with precision higher than 15 digits so if there are, your results may not be what you expect due to round- off errors.

\section*{Examples}
```

>>> verify_numerically(sin(x)**2 + cos(x)**2, 1, x)
true

```

\subsection*{4.23 Parsing}

\subsection*{4.23.1 Parsing Functions Reference}
```

diofant.parsing.sympy_parser.parse_expr(s,local_dict=None,
transformations=(<function
 lambda_notation>, <function auto_symbol>,
<function auto_number>),
global_dict=None, evaluate=True)

```

Converts the string s to a Diofant expression, in \(\overline{\text { local_dict }}\)

\section*{Parameters}
- s (str) - The string to parse.
- local_dict (dict, optional) - A dictionary of local variables to use when parsing.
- global_dict (dict, optional) - A dictionary of global variables. By default, this is initialized with from diofant import *; provide this parameter to override this behavior (for instance, to parse "Q \& S").
- transformations (tuple, optional) - A tuple of transformation functions used to modify the tokens of the parsed expression before evaluation. The default transformations convert numeric literals into their Diofant equivalents, convert undefined variables into Diofant symbols.
- evaluate (bool, optional) - When False, the order of the arguments will remain as they were in the string and automatic simplification that would normally occur is suppressed. (see examples)

\section*{Examples}
```

>>> parse_expr('1/2')
1/2
>>> type()
<class 'diofant.core.numbers.Half'>
>>> transformations = (standard transformations +
... (implici\overline{t}multiplication_application,))
>>> parse_expr('2x', transformations=transformations)
2*x

```

When evaluate=False, some automatic simplifications will not occur:
```

>>> parse_expr('2**3'), parse_expr('2**3', evaluate=False)
(8, 2**3)

```

In addition the order of the arguments will not be made canonical. This feature allows one to tell exactly how the expression was entered:
```

>>> a = parse_expr('1 + x', evaluate=False)
>>> b = parse_expr('x + 1', evaluate=0)
>>> a == b
False
>>> a.args
(1, x)
>>> b.args
(x, 1)

```

\section*{See also:}
diofant.parsing.sympy parser.stringify_expr (page 906), diofant.parsing. sympy_parser.eval_expr (page 906), diofant.parsing.sympy_parser. standard_transformations (page 906), diofant.parsing.sympy_parser. implicit_multiplication_application (page 908)
diofant.parsing.sympy_parser.stringify_expr(s,local_dict, global_dict, transformations)
Converts the string s to Python code, in local_dict
Generally, parse_expr should be used.
diofant.parsing.sympy_parser.eval_expr(code, local_dict, global_dict)
Evaluate Python code generated by stringify_expr.
Generally, parse_expr should be used.
diofant.parsing.maxima.parse_maxima(str, globals=None, name_dict=\{\})
diofant.parsing.mathematica.mathematica(s)

\subsection*{4.23.2 Parsing Transformations Reference}

A transformation is a function that accepts the arguments tokens, local_dict, global_dict and returns a list of transformed tokens. They can be used by passing a list of functions to parse_expr() (page 905) and are applied in the order given.
```

diofant.parsing.sympy_parser.standard_transformations = (<function

```
lambda_notation>, <function auto_symbol>, <function auto_number>)

Standard transformations for parse_expr() (page 905). Inserts calls to Symbol (page 82), Integer (page 91), and other Diofant datatypes.
diofant.parsing.sympy_parser.split_symbols(tokens, local_dict, global_dict)
Splits symbol names for implicit multiplication.
Intended to let expressions like \(x y z\) be parsed as \(x^{*} y * z\). Does not split Greek character names, so theta will not become \(\mathrm{t}^{*} \mathrm{~h}^{*} \mathrm{e}^{*} \mathrm{t}\) *a. Generally this should be used with implicit_multiplication.
diofant.parsing.sympy parser.split_symbols_custom (predicate)
Creates a transformation that splits symbol names.
predicate should return True if the symbol name is to be split.
For instance, to retain the default behavior but avoid splitting certain symbol names, a predicate like this would work:
```

>>> def can_split(symbol):
... if symbol not in ('list', 'of', 'unsplittable', 'names'):
... return _token_splittable(symbol)
... return False
...
>>> transformation = split_symbols_custom(can_split)
>>> parse expr('unsplittable', transformations=standard transformations +
... (transformation, implicit_multiplication))
unsplittable

```
diofant.parsing.sympy_parser.implicit_multiplication(result,local_dict, global_dict)
Makes the multiplication operator optional in most cases.
Use this before implicit_application() (page 907), otherwise expressions like sin \(2 x\) will be parsed as \(x{ }^{*} \sin (2)\) rather than \(\sin \left(2^{*} x\right)\).

\section*{Examples}
```

>>> transformations = standard_transformations + (implicit_multiplication,)
>>> parse expr('3 x y', transfórmations=transformations)
3*x*y

```
diofant.parsing.sympy_parser.implicit_application (result,local_dict, global_dict) Makes parentheses optional in some cases for function calls.
Use this after implicit_multiplication() (page 907), otherwise expressions like sin \(2 x\) will be parsed as \(x * \sin (2)\) rather than \(\sin \left(2^{*} x\right)\).

\section*{Examples}
```

>>> transformations = standard transformations + (implicit application,)
>>> parse_expr('cot z + csc z', transformations=transformations)
cot(z) + csc(z)

```
diofant.parsing.sympy_parser.function_exponentiation(tokens, local_dict, global_dict)
Allows functions to be exponentiated, e.g. \(\cos ^{* *} 2(x)\).

\section*{Examples}
```

>>> transformations = standard_transformations + (function_exponentiation,)

```
>>> parse_expr('sin**4(x)', trānsformations=transformations)
\(\sin (x) * * 4\)
diofant.parsing.sympy_parser.implicit_multiplication_application(result, local_dict, global_dict)
Allows a slightly relaxed syntax.
- Parentheses for single-argument method calls are optional.
- Multiplication is implicit.
- Symbol names can be split (i.e. spaces are not needed between symbols).
- Functions can be exponentiated.

\section*{Examples}
```

>>> parse_expr('10sin**2 x**2 + 3xyz + tan theta',
\#." transformations=(standard_transformations +
\#. (implici\overline{t_multiplication_application,)))}
3*x*y*z + 10*sin(x**2)**2 + tan(theta)

```
diofant.parsing.sympy_parser.rationalize(tokens, local_dict, global_dict)
Converts floats into Rational. Run AFTER auto_number.
diofant.parsing.sympy_parser.convert_xor(tokens, local_dict, global_dict)
Treats XOR, \({ }^{\wedge}\), as exponentiation, **.
These are included in :data:diofant.parsing.sympy_parser.standard_transformations and generally don't need to be manually added by the user.
diofant.parsing.sympy_parser.auto_symbol(tokens, local_dict, global_dict)
Inserts calls to Symbol/Function for undefined variables.
diofant.parsing.sympy_parser.auto_number(tokens, local_dict, global_dict)
Converts numeric literals to use Diofant equivalents.
Complex numbers use I; integer literals use Integer, float literals use Float, and repeating decimals use Rational.

\subsection*{4.24 Calculus}

Some calculus-related methods waiting to find a better place in the Diofant modules tree.
diofant.calculus.euler.euler_equations(L, funcs=(), vars=())
Find the Euler-Lagrange equations for a given Lagrangian.

\section*{Parameters}
- L (Expr) - The Lagrangian that should be a function of the functions listed in the second argument and their derivatives.
For example, in the case of two functions \(f(x, y), g(x, y)\) and two independent variables \(x, y\) the Lagrangian would have the form:
\[
L\left(f(x, y), g(x, y), \frac{\partial f(x, y)}{\partial x}, \frac{\partial f(x, y)}{\partial y}, \frac{\partial g(x, y)}{\partial x}, \frac{\partial g(x, y)}{\partial y}, x, y\right)
\]

In many cases it is not necessary to provide anything, except the Lagrangian, it will be auto-detected (and an error raised if this couldn't be done).
- funcs (Function or an iterable of Functions) - The functions that the Lagrangian depends on. The Euler equations are differential equations for each of these functions.
- vars (Symbol or an iterable of Symbols) - The Symbols that are the independent variables of the functions.
Returns eqns (list of \(E q\) ) - The list of differential equations, one for each function.

\section*{Examples}
```

>>> L = (f(t).diff(t))**2/2 - f(t)**2/2
>> euler_equations(L, f(t), t)
[Eq(-f(t)--Derivative(f(t), t, t), 0)]
>>> L = (f(t, x).diff(t))**2/2 - (f(t, x).diff(x))**2/2
>>> euler equations(L, f(t, x), [t, x])
[Eq(-Derivative(f(t, x), t, t) + Derivative(f(t, x), x, x), 0)]

```

\section*{References}
- https://en.wikipedia.org/wiki/Euler\%E2\%80\%93Lagrange_equation
diofant. calculus.singularities.singularities \((f, x)\)
Find singularities of real-valued function \(f\) with respect to \(x\).

\section*{Examples}
```

>>> singularities(1/(1 + x), x)
{-1}

```
```

>>> singularities(exp(1/x) + log(x + 1), x)

```
\(\{-1,0\}\)
>>> singularities \((\exp (1 / \log (x+1)), x)\)
\{0\}

\section*{Notes}

Removable singularities are not supported now.

\section*{References}
- https://en.wikipedia.org/wiki/Mathematical_singularity
diofant. calculus.optimization.maximize \(\left(f, *_{v}\right)\)
Maximizes \(f\) with respect to given variables \(v\).

\section*{See also:}
minimize (page 910)
diofant.calculus.optimization.minimize \(\left(f,{ }^{*} v\right)\)
Minimizes \(f\) with respect to given variables \(v\).

\section*{Examples}
```

>>> minimize(x**2, x)
(0, {x: 0})

```
```

>>> minimize([x**2, x >= 1], x)
(1, {x: 1})
>>> minimize([-x**2, x >= -2, x <= 1], x)
(-4, {x: -2})

```

\section*{See also:}
maximize (page 910)

\subsection*{4.24.1 Finite difference weights}

This module implements an algorithm for efficient generation of finite difference weights for ordinary differentials of functions for derivatives from 0 (interpolation) up to arbitrary order.
The core algorithm is provided in the finite difference weight generating function (finite_diff_weights), and two convenience functions are provided for:
- estimating a derivative (or interpolate) directly from a series of points is also provided (apply_finite_diff).
- making a finite difference approximation of a Derivative instance (as_finite_diff).
diofant.calculus.finite_diff.apply_finite_diff(order, x_list, y_list, x \(0=\operatorname{Integer}(0)\) )
Calculates the finite difference approximation of the derivative of requested order at \(x 0\) from points provided in \(x_{-}\)list and \(y_{-}\)list.

\section*{Parameters}
- order (int) - order of derivative to approximate. 0 corresponds to interpolation.
- x_list (sequence) - Sequence of (unique) values for the independent variable.
- y_list (sequence) - The function value at corresponding values for the independent variable in x_list.
- \(\mathbf{x 0}\) (Number or Symbol) - At what value of the independent variable the derivative should be evaluated. Defaults to Integer(0).
Returns diofant.core.add.Add or diofant.core.numbers.Number - The finite difference expression approximating the requested derivative order at x 0 .

\section*{Examples}
```

>>> def cube(arg):
\#. return (1.0*arg)**3
>>> xlist = range(-3, 4)
>>> apply finite_diff(2, xlist, list(map(cube, xlist)), 2) - 12
-3.552713\overline{6}788005\overline{0}e-15

```
we see that the example above only contain rounding errors. apply_finite_diff can also be used on more abstract objects:
```

>>> x, y = map(IndexedBase, 'xy')
>>> i = Idx('i')
>>> x_list, y_list = zip(*[(x[i + j], y[i + j]) for j in range(-1, 2)])
>> apply_finite_diff(1, x_list, y_list, x[i])
(-1 + (x[\overline{i}+1] - x[i])/(-\overline{x}[i - l] + x[i]))*y[i]/(x[i + 1] - x[i]) +
(-x[i - 1] + x[i])*y[i + 1]/((-x[i - 1] + x[i + 1])*(x[i + 1] - x[i])) -
(x[i + 1] - x[i])*y[i - 1]/((-x[i - 1] + x[i + 1])*(-x[i - 1] + x[i]))

```

\section*{Notes}

Order \(=0\) corresponds to interpolation. Only supply so many points you think makes sense to around x0 when extracting the derivative (the function need to be well behaved within that region). Also beware of Runge's phenomenon.

\section*{See also:}
diofant.calculus.finite_diff.finite_diff_weights (page 912)

\section*{References}

Fortran 90 implementation with Python interface for numerics: finitediff diofant.calculus.finite_diff.as_finite_diff(derivative, points \(=1, x 0=\) None, \(w r t=\) None \()\)
Returns an approximation of a derivative of a function in the form of a finite difference formula. The expression is a weighted sum of the function at a number of discrete values of (one of) the independent variable(s).

\section*{Parameters}
- derivative (a Derivative instance (needs to have an variables) - and expr attribute).
- points (sequence or coefficient, optional) - If sequence: discrete values (length \(>=\) order +1 ) of the independent variable used for generating the
finite difference weights. If it is a coefficient, it will be used as the stepsize for generating an equidistant sequence of length order +1 centered around x0. default: 1 (step-size 1)
- x0 (number or Symbol, optional) - the value of the independent variable (wrt) at which the derivative is to be approximated. default: same as wrt
- wrt (Symbol, optional) - "with respect to" the variable for which the (partial) derivative is to be approximated for. If not provided it is required that the Derivative is ordinary. default: None

\section*{Examples}
```

>>> h = symbols('h')
>>> as_finite_diff(f(x).diff(x))
-f(x - - 1/2) + 'f(x + 1/2)

```

The default step size and number of points are 1 and order +1 respectively. We can change the step size by passing a symbol as a parameter:
```

>>> as finite_diff(f(x).diff(x), h)
-f(-h/\overline{2}+x)/\overline{h}+f(h/2+x)/h

```

We can also specify the discretized values to be used in a sequence:
```

>>> as_finite_diff(f(x).diff(x), [x, x+h, x+2*h])
-3*f(x)/(2*h)

```

The algorithm is not restricted to use equidistant spacing, nor do we need to make the approximation around \(x 0\), but we can get an expression estimating the derivative at an offset:
```

>>> e, sq2 = exp(1), sqrt(2)
>>> xl = [x-h, x+h, x+e*h]
>>> as finite_diff(f(x).diff((x, 1)), xl, x+h*sq2)
2*h*f(\overline{E}*h + x)*((h + sqrt(2)*h)/(2*h) -
(-sqrt(2)*h + h)/(2*h))/((-h + E*h)*(h + E*h)) +
f(-h + x)*(-(-sqrt(2)*h + h)/(2*h) - (-sqrt(2)*h + E*h)/(2*h))/(h +
E*h) + f(h + x)*(-(h + sqrt(2)*h)/(2*h) + (-sqrt(2)*h +
E*h)/(2*h))/(-h + E*h)

```

Partial derivatives are also supported:
```

>>> d2fdxdy = f(x, y).diff(x, y)
>>> as_finite_diff(d2fdxdy, wrt=x)
-f(x - - 1/2, y) + f(x + 1/2, y)

```

\section*{See also:}
diofant.calculus.finite_diff.apply_finite_diff (page 910), diofant.calculus. finite_diff.finite_diff_weights (page 912)
diofant.calculus.finite_diff.finite_diff_weights (order, \(x_{-}\)list, \(x 0=\operatorname{Integer}(0)\) )
Calculates the finite difference weights for an arbitrarily spaced one-dimensional grid (x_list) for derivatives at ' \(x 0\) ' of order \(0,1, \ldots\), up to 'order' using a recursive formula. Order of accuracy is at least len(x_list) - order, if \(\mathrm{x}_{-}\)list is defined accurately.

\section*{Parameters}
- order (int) - Up to what derivative order weights should be calculated. 0 corresponds to interpolation.
- x_list (sequence) - Sequence of (unique) values for the independent variable. It is useful (but not necessary) to order x_list from nearest to furthest from x0; see examples below.
- x0 (Number or Symbol) - Root or value of the independent variable for which the finite difference weights should be generated. Defaults to Integer (0).
Returns list - A list of sublists, each corresponding to coefficients for increasing derivative order, and each containing lists of coefficients for increasing subsets of \(x\) _list.

\section*{Examples}
```

>>> res = finite_diff_weights(1, [-Rational(1, 2), Rational(1, 2),
\#. - Rational(3, 2), Rational(5, 2)], 0)
>>> res
[[[1, 0, 0, 0],
[1/2, 1/2, 0, 0],
[3/8, 3/4, -1/8, 0],
[5/16, 15/16, -5/16, 1/16]],
[[0, 0, 0, 0],
[-1, 1, 0, 0],
[-1, 1, 0, 0],
[-23/24, 7/8, 1/8, -1/24]]]
>> res[0][-1] \# FD weights for 0th derivative, using full x_list
[5/16, 15/16, -5/16, 1/16]
>>> res[1][-1] \# FD weights for 1st derivative
[-23/24, 7/8, 1/8, -1/24]
>>> res[1][-2] \# FD weights for 1st derivative, using x_list[:-1]
[-1, 1, 0, 0]
>>> res[1][-1][0] \# FD weight for 1st deriv. for x_list[0]
-23/24
>>> res[1][-1][1] \# FD weight for 1st deriv. for x_list[1], etc.
7/8

```

Each sublist contains the most accurate formula at the end. Note, that in the above example res[1][1] is the same as res[1][2]. Since res[1][2] has an order of accuracy of len(x_list[:3]) - order = 3-1 = 2 , the same is true for res[1][1]!
```

>>> res = finite_diff_weights(1, [Integer(0), Integer(1), -Integer(1),
\#.. Integer(2), -Integer(2)], 0)[1]
>>> res
[[0, 0, 0, 0, 0],
[-1, 1, 0, 0, 0],
[0, 1/2, -1/2, 0, 0],
[-1/2, 1, -1/3, -1/6, 0],
[0, 2/3, -2/3, -1/12, 1/12]]
>> res[0] \# no approximation possible, using x_list[0] only
[0, 0, 0, 0, 0]
>>> res[1] \# classic forward step approximation
[-1, 1, 0, 0, 0]
>>> res[2] \# classic centered approximation
[0, 1/2, -1/2, 0, 0]
>>> res[3:] \# higher order approximations
[[-1/2, 1, -1/3, -1/6, 0], [0, 2/3, -2/3, -1/12, 1/12]]

```

Let us compare this to a differently defined \(x_{-}\)list. Pay attention to foo[i][k] corresponding to the gridpoint defined by \(x_{-}\)list[ \(k\) ].
```

>>> foo = finite_diff_weights(1, [-Integer(2), -Integer(1), Integer(0),
\#. - - Integer(1), Integer(2)], 0)[1]
>>> foo
[[0, 0, 0, 0, 0],
[-1, 1, 0, 0, 0],
[1/2, -2, 3/2, 0, 0],
[1/6, -1, 1/2, 1/3, 0],
[1/12, -2/3, 0, 2/3, -1/12]]
>> foo[1] \# not the same and of lower accuracy as res[1]!
[-1, 1, 0, 0, 0]
>>> foo[2] \# classic double backward step approximation
[1/2, -2, 3/2, 0, 0]
>> foo[4] \# the same as res[4]
[1/12, -2/3, 0, 2/3, -1/12]

```

Note that, unless you plan on using approximations based on subsets of \(x_{-}\)list, the order of gridpoints does not matter.
The capability to generate weights at arbitrary points can be used e.g. to minimize Runge's phenomenon by using Chebyshev nodes:
```

>> N, h = 4, symbols('h')
>>> x_list = [x + h* cos(i*pi/(N)) for i in range(N, -1, -1)] \# chebyshev nodes
>>> x_list
[-h +-x, -sqrt(2)*h/2 + x, x, sqrt(2)*h/2 + x, h + x]
>>> mycoeffs = finite_diff_weights(1, x_list, 0)[1][4]
>> [simplify(c) for c in mycoeffs]
[(h**3/2 + h**2*x - 3*h*x**2 - 4*x**3)/h**4,
(-sqrt(2)*h**3 - 4*h**2*x + 3*sqrt(2)*h*x**2 + 8*x**3)/h**4,
6*x/h**2 - 8*x**3/h**4,
(sqrt(2)*h**3 - 4*h**2*x - 3*sqrt(2)*h*x**2 + 8*x**3)/h**4,
(-h**3/2 + h**2*x + 3*h*x**2 - 4*x**3)/h**4]

```

\section*{Notes}

If weights for a finite difference approximation of 3rd order derivative is wanted, weights for 0th, 1st and 2nd order are calculated "for free", so are formulae using subsets of x_list. This is something one can take advantage of to save computational cost. Be aware that one should define \(x\) list from nearest to farest from \(x\) list. If not, subsets of x_list will yield poorer approximations, which might not grand an order of accuracy of len(x_list) - order.

\section*{See also:}
diofant.calculus.finite_diff.apply_finite_diff(page 910)

\section*{References}
- Generation of Finite Difference Formulas on Arbitrarily Spaced Grids, Bengt Fornberg; Mathematics of computation; 51; 184; (1988); 699-706; doi:10.1090/S0025-5718-1988-0935077-0

\subsection*{4.25 Differential Geometry}

\subsection*{4.25.1 Introduction}

\subsection*{4.25.2 Base Class Reference}
class diofant.diffgeom. Manifold(name, dim)
Object representing a mathematical manifold.
The only role that this object plays is to keep a list of all patches defined on the manifold. It does not provide any means to study the topological characteristics of the manifold that it represents.
class diofant.diffgeom. Patch (name, manifold)
Object representing a patch on a manifold.
On a manifold one can have many patches that do not always include the whole manifold. On these patches coordinate charts can be defined that permit the parameterization of any point on the patch in terms of a tuple of real numbers (the coordinates).
This object serves as a container/parent for all coordinate system charts that can be defined on the patch it represents.

\section*{Examples}

Define a Manifold and a Patch on that Manifold:
```

>>> m = Manifold('M', 3)
>>> p = Patch('P', m)
>>> p in m.patches
True

```
class diofant.diffgeom. CoordSystem(name, patch, names=None)
Contains all coordinate transformation logic.

\section*{Examples}

Define a Manifold and a Patch, and then define two coord systems on that patch:
```

>>> r, theta = symbols('r, theta')
>>> m = Manifold('M', 2)
>>> patch = Patch('P', m)
>>> rect = CoordSystem('rect', patch)
>>> polar = CoordSystem('polar', patch)
>>> rect in patch.coord_systems
True

```

Connect the coordinate systems. An inverse transformation is automatically found by solve when possible:
```

>>> polar.connect to(rect, [r, theta], [r* cos(theta), r*sin(theta)])
>>> polar.coord_tuple_transform_to(rect, [0, 2])
Matrix([
[0],
[0]])
>>> polar.coord_tuple_transform_to(rect, [2, pi/2])
Matrix([
[0],
[2]])
>>> rect.coord_tuple_transform_to(polar, [1, 1]).applyfunc(simplify)
Matrix([
[sqrt(2)],
[pi/4]])

```

Calculate the jacobian of the polar to cartesian transformation:
```

>>> polar.jacobian(rect, [r, theta])
Matrix([
[cos(theta), -r*sin(theta)],
[sin(theta), r**os(theta)]])

```

Define a point using coordinates in one of the coordinate systems:
```

>>> p = polar.point([1, 3*pi/4])
>>> rect.point_to_coords(p)
Matrix([
[-sqrt(2)/2],
[sqrt(2)/2]])

```

Define a basis scalar field (i.e. a coordinate function), that takes a point and returns its coordinates. It is an instance of BaseScalarField.
```

>>> rect.coord_function(0)(p)
-sqrt(2)/2
>>> rect.coord_function(1)(p)
sqrt(2)/2

```

Define a basis vector field (i.e. a unit vector field along the coordinate line). Vectors are also differential operators on scalar fields. It is an instance of BaseVectorField.
```

>>> v_x = rect.base_vector(0)
>>> x-= rect.coord_function(0)
>>> v_x(x)
1
>>> v_x(v_x(x))
0

```

Define a basis oneform field:
```

>>> dx = rect.base_oneform(0)
>>> dx(v_x)
1

```

If you provide a list of names the fields will print nicely: - without provided names:
```

>>> x, v_x, dx
(rect_0, e_rect_0, drect_0)

```
- with provided names
```

>>> rect = CoordSystem('rect', patch, ['x', 'y'])
>>> rect.coord_function(0), rect.base_vector(0), rect.base_oneform(0)
(x, e_x, dx)

```
base_oneform(coord_index)

Return a basis 1 -form field.
The basis one-form field for this coordinate system. It is also an operator on vector fields.

\section*{See also:}

CoordSystem (page 915)
base_oneforms()
Returns a list of all base oneforms.
For more details see the base_oneform method of this class.
base_vector (coord_index)
Return a basis vector field.
The basis vector field for this coordinate system. It is also an operator on scalar fields.

\section*{See also:}

CoordSystem (page 915)
base_vectors()
Returns a list of all base vectors.
For more details see the base_vector method of this class.
connect_to (to_sys, from_coords, to_exprs, inverse=True, fill_in_gaps=False)
Register the transformation used to switch to another coordinate system.

\section*{Parameters}
- to_sys - another instance of CoordSystem
- from_coords - list of symbols in terms of which to_exprs is given
- to_exprs - list of the expressions of the new coordinate tuple
- inverse - try to deduce and register the inverse transformation
- fill_in_gaps - try to deduce other transformation that are made possible by composing the present transformation with other already registered transformation
coord_function(coord_index)
Return a BaseScalarField that takes a point and returns one of the coords.
Takes a point and returns its coordinate in this coordinate system.

\section*{See also:}

CoordSystem (page 915)
coord_functions()
Returns a list of all coordinate functions.
For more details see the coord_function method of this class.
coord_tuple_transform_to(to_sys, coords)
Transform coords to coord system to_sys.
See also:
CoordSystem (page 915)
jacobian(to_sys, coords)
Return the jacobian matrix of a transformation.
point (coords)
Create a Point with coordinates given in this coord system.

\section*{See also:}

CoordSystem (page 915)
point_to_coords(point)
Calculate the coordinates of a point in this coord system.
See also:
CoordSystem (page 915)
class diofant.diffgeom. Point(*args)
Point in a Manifold object.
To define a point you must supply coordinates and a coordinate system.
The usage of this object after its definition is independent of the coordinate system that was used in order to define it, however due to limitations in the simplification routines you can arrive at complicated expressions if you use inappropriate coordinate systems.

\section*{Examples}

Define the boilerplate Manifold, Patch and coordinate systems:
```

>>> from diofant.diffgeom import Point
>>> r, theta = symbols('r, theta')
>>> m = Manifold('M', 2)
>>> p = Patch('P', m)
>>> rect = CoordSystem('rect', p)
>>> polar = CoordSystem('polar', p)
>>> polar.connect_to(rect, [r, theta], [r*cos(theta), r*sin(theta)])

```

Define a point using coordinates from one of the coordinate systems:
```

>>> p = Point(polar, [r, 3*pi/4])
>> p.coords()
Matrix([
[r],
[3*pi/4]])
>>> p.coords(rect)
Matrix([
[-sqrt(2)*r/2],
[sqrt(2)*r/2]])

```

\section*{coords (to sys=None)}

Coordinates of the point in a given coordinate system.
If to_sys is None it returns the coordinates in the system in which the point was defined.
class diofant.diffgeom. BaseScalarField(coord_sys, index)
Base Scalar Field over a Manifold for a given Coordinate System.
A scalar field takes a point as an argument and returns a scalar.
A base scalar field of a coordinate system takes a point and returns one of the coordinates of that point in the coordinate system in question.

To define a scalar field you need to choose the coordinate system and the index of the coordinate.

The use of the scalar field after its definition is independent of the coordinate system in which it was defined, however due to limitations in the simplification routines you may arrive at more complicated expression if you use inappropriate coordinate systems.

You can build complicated scalar fields by just building up Diofant expressions containing BaseScalarField instances.

\section*{Examples}

Define boilerplate Manifold, Patch and coordinate systems:
```

>>> r0, theta0 = symbols('r0, theta0')
>>> m = Manifold('M', 2)
>>> p = Patch('P', m)
>>> rect = CoordSystem('rect', p)
>> polar = CoordSystem('polar', p)
>>> polar.connect to(rect, [r0, theta0], [r0*\operatorname{cos(theta0), r0*sin(theta0)])}

```

Point to be used as an argument for the filed:
```

>>> point = polar.point([r0, 0])

```

Examples of fields:
```

>>> fx = BaseScalarField(rect, 0)
>>> fy = BaseScalarField(rect, 1)
>>> (fx**2+fy**2).rcall(point)
r0**2

```
```

>>> g = Function('g')
>>> ftheta = BaseScalarField(polar, 1)
>>> fg = g(ftheta-pi)
>>> fg.rcall(point)
g(-pi)

```
class diofant.diffgeom. BaseVectorField(coord_sys, index) Vector Field over a Manifold.

A vector field is an operator taking a scalar field and returning a directional derivative (which is also a scalar field).

A base vector field is the same type of operator, however the derivation is specifically done with respect to a chosen coordinate.
To define a base vector field you need to choose the coordinate system and the index of the coordinate.
The use of the vector field after its definition is independent of the coordinate system in which it was defined, however due to limitations in the simplification routines you may arrive at more complicated expression if you use inappropriate coordinate systems.

\section*{Examples}

Use the predefined R2 manifold, setup some boilerplate.
```

>>> from diofant.diffgeom.rn import R2, R2_p, R2_r
>>> x0, y0, r0, theta0 = symbols('x0, y0, r0, theta0')

```

Points to be used as arguments for the field:
```

>>> point_p = R2_p.point([r0, theta0])
>>> point_r = R2_r.point([x0, y0])

```

Scalar field to operate on:
```

>>> g = Function('g')
>> s_field = g(R2.x, R2.y)
>>> s_field.rcall(point_r)
g(x0, y0)
>>> s field.rcall(point p)
g(r0*cos(theta0), r0*sin(theta0))

```

Vector field:
```

>>> v = BaseVectorField(R2_r, 1)
>>> pprint(v(s_field), use_unicode=False)
/ d ---(g(x, xi_2))|
\dxi_2 /|xi_2=y
>>> pprint(v(s_field).\overline{rcall(point_r).doit(), use_unicode=False)}
d
---(g(x0, y0))
dy0
>>> pprint(v(s_field).rcall(point_p).doit(), use_unicode=False)
/ d---(g(r0*\operatorname{cos}(theta0), xi_2))||
\dxi_2 /|xi_2=r0*sin(theta0)

```
class diofant.diffgeom. Commutator(v1, v2)
Commutator of two vector fields.
The commutator of two vector fields \(v_{1}\) and \(v_{2}\) is defined as the vector field \(\left[v_{1}, v_{2}\right]\) that evaluated on each scalar field \(f\) is equal to \(v_{1}\left(v_{2}(f)\right)-v_{2}\left(v_{1}(f)\right)\).

\section*{Examples}

Use the predefined R2 manifold, setup some boilerplate.
>>> from diofant.diffgeom.rn import R2
Vector fields:
```

>>> e_x, e_y, e_r = R2.e_x, R2.e_y, R2.e_r
>> c-xy =-Commütator(e \overline{x}, e y)
>>> c_xr = Commutator(e_x, e_r)
>>> c_xy
0

```

Unfortunately, the current code is not able to compute everything:
```

>> C xr
Commutator(e_x, e_r)

```
>>> simplify(c_xr(R2.y**2).doit())
\(-2 * \cos (\) theta \() * \bar{y} * * 2 /(x * * 2+y * * 2)\)
class diofant.diffgeom. Differential(form field)
Return the differential (exterior derivative) of a form field.
The differential of a form (i.e. the exterior derivative) has a complicated definition in the general case.
The differential \(d f\) of the 0 -form \(f\) is defined for any vector field \(v\) as \(d f(v)=v(f)\).

\section*{Examples}

Use the predefined R2 manifold, setup some boilerplate.
>>> from diofant.diffgeom.rn import R2
Scalar field (0-forms):
```

>>> g = Function('g')
>>> s_field = g(R2.x, R2.y)

```

Vector fields:
```

>>> e_x, e_y, = R2.e_x, R2.e_y

```

Differentials:
```

>>> dg = Differential(s_field)
>>> dg
d(g(x, y))
>>> pprint(dg(e_x), use_unicode=False)
/ d---(g(xi_1, y))|
\dxi_1 /|xi_1=x
>>> pprint(dg(e_y), use_unicode=False)
/ d |---(g(x, xi_2))||
\dxi_2 //xi_2=y

```

Applying the exterior derivative operator twice always results in:
```

>>> Differential(dg)

```
0
class diofant.diffgeom. TensorProduct(*args)
Tensor product of forms.
The tensor product permits the creation of multilinear functionals (i.e. higher order tensors) out of lower order forms (e.g. 1-forms). However, the higher tensors thus created lack the interesting features provided by the other type of product, the wedge product, namely they are not antisymmetric and hence are not form fields.

\section*{Examples}

Use the predefined R2 manifold, setup some boilerplate.
```

>>> from diofant.diffgeom.rn import R2

```
```

>>> TensorProduct(R2.dx, R2.dy)(R2.e_x, R2.e_y)
1
>>> TensorProduct(R2.dx, R2.dy)(R2.e_y, R2.e_x)
>> TensorProduct(R2.dx, R2.x*R2.dy)(R2.x*R2.e_x, R2.e_y)
x**2

```

You can nest tensor products.
```

>>> tp1 = TensorProduct(R2.dx, R2.dy)
>>> TensorProduct(tp1, R2.dx)(R2.e_x, R2.e_y, R2.e_x)
1

```

You can make partial contraction for instance when 'raising an index'. Putting None in the second argument of rcall means that the respective position in the tensor product is left as it is.
```

>>> TP = TensorProduct
>>> metric = TP(R2.dx, R2.dx) + 3*TP(R2.dy, R2.dy)
>>> metric.rcall(R2.e_y, None)
3*dy

```

Or automatically pad the args with None without specifying them.
```

>>> metric.rcall(R2.e_y)
3*dy

```
class diofant.diffgeom. WedgeProduct(*args)
Wedge product of forms.
In the context of integration only completely antisymmetric forms make sense. The wedge product permits the creation of such forms.

\section*{Examples}

Use the predefined R2 manifold, setup some boilerplate.
```

>>> from diofant.diffgeom.rn import R2

```
```

>>> WedgeProduct(R2.dx, R2.dy)(R2.e_x, R2.e_y)
1
>>> WedgeProduct(R2.dx, R2.dy)(R2.e_y, R2.e_x)
-1
>>> WedgeProduct(R2.dx, R2.x*R2.dy)(R2.x*R2.e_x, R2.e_y)
x**2

```

You can nest wedge products.
```

>>> wp1 = WedgeProduct(R2.dx, R2.dy)
>>> WedgeProduct(wp1, R2.dx)(R2.e_x, R2.e_y, R2.e_x)
0

```
class diofant.diffgeom. LieDerivative(v field, expr)
Lie derivative with respect to a vector field.

The transport operator that defines the Lie derivative is the pushforward of the field to be derived along the integral curve of the field with respect to which one derives.

\section*{Examples}
```

>>> from diofant.diffgeom.rn import R2
>>> LieDerivative(R2.e_x, R2.y)
0
>>> LieDerivative(R2.e_x, R2.x)
1
>>> LieDerivative(R2.e_x, R2.e_x)
0

```

The Lie derivative of a tensor field by another tensor field is equal to their commutator:
```

>>> LieDerivative(R2.e_x, R2.e_r)
Commutator(e x, e r)
>>> LieDerivātive(R2.e_x + R2.e_y, R2.x)
1
>>> tp = TensorProduct(R2.dx, R2.dy)
>>> LieDerivative(R2.e_x, tp)
LieDerivative(e_x, TensorProduct(dx, dy))
>>> LieDerivative(R2.e_x, tp).doit()
LieDerivative(e x, TensorProduct(dx, dy))

```
class diofant.diffgeom.BaseCovarDerivativeOp(*args)
Covariant derivative operator with respect to a base vector.

\section*{Examples}
```

>>> from diofant.diffgeom.rn import R2, R2_r
>>> TP = TensorProduct
>>> ch = metric_to_Christoffel_2nd(TP(R2.dx, R2.dx) + TP(R2.dy, R2.dy))
>>> ch
[[[0, 0], [0, 0]], [[0, 0], [0, 0]]]
>>> cvd = BaseCovarDerivativeOp(R2_r, 0, ch)
>>> cvd(R2.x)
1
>>> Cvd(R2.x*R2.e_x)
e x

```
class diofant.diffgeom.CovarDerivative0p(*args)
Covariant derivative operator.

\section*{Examples}
```

>>> from diofant.diffgeom.rn import R2
>>> TP = TensorProduct
>>> ch = metric_to_Christoffel_2nd(TP(R2.dx, R2.dx) + TP(R2.dy, R2.dy))
>>> ch
[[[0, 0], [0, 0]], [[0, 0], [0, 0]]]
>>> cvd = CovarDerivativeOp(R2.x*R2.e_x, ch)
>>> cvd(R2.x)
x
>>> cvd(R2.x*R2.e_x)
x*e x

```
diofant.diffgeom.intcurve_series(vector_field, param, start_point, \(n=6\), coord_sys=None, coeffs=False)
Return the series expansion for an integral curve of the field.
Integral curve is a function \(\gamma\) taking a parameter in \(R\) to a point in the manifold. It verifies the equation:
\(V(f)(\gamma(t))=\frac{d}{d t} f(\gamma(t))\)
where the given vector_field is denoted as \(V\). This holds for any value \(t\) for the parameter and any scalar field \(f\).
This equation can also be decomposed of a basis of coordinate functions
\(V\left(f_{i}\right)(\gamma(t))=\frac{d}{d t} f_{i}(\gamma(t)) \quad \forall i\)
This function returns a series expansion of \(\gamma(t)\) in terms of the coordinate system coord_sys. The equations and expansions are necessarily done in coordinate-systemdependent way as there is no other way to represent movement between points on the manifold (i.e. there is no such thing as a difference of points for a general manifold).

\section*{See also:}

\section*{intcurve_diffequ (page 925)}

\section*{Parameters}
- vector_field - the vector field for which an integral curve will be given
- param - the argument of the function \(\gamma\) from R to the curve
- start_point - the point which corresponds to \(\gamma(0)\)
- \(\mathbf{n}\) - the order to which to expand
- coord_sys - the coordinate system in which to expand coeffs (default False) - if True return a list of elements of the expansion

\section*{Examples}

Use the predefined R2 manifold:
```

>>> from diofant.diffgeom.rn import R2_p, R2_r

```

Specify a starting point and a vector field:
```

>>> start_point = R2_r.point([x, y])
>>> vecto\overline{r}_field = R\overline{2}_r.e_x

```

Calculate the series:
```

>>> intcurve_series(vector_field, t, start_point, n=3)
Matrix([
[t + x],
[y]])

```

Or get the elements of the expansion in a list:
```

>>> series = intcurve_series(vector_field, t, start_point, n=3, coeffs=True)
>>> series[0]
Matrix([

```
(continues on next page)
```

[x],
[y]])
>>> series[1]
Matrix([
[t],
[0]])
>>> series[2]
Matrix([
[0],
[0]])

```

The series in the polar coordinate system:
```

>>> series = intcurve_series(vector_field, t, start_point,
\#. n=3, coord_sys=R2_p, coeffs=True)
>>> series[0]
Matrix([
[sqrt(x**2 + y**2)],
[atan2(y, x)]])
>>> series[1]
Matrix([
[t*x/sqrt(x**2 + y**2)],
[-t*y/(x**2 + y**2)]])
>>> series[2]
Matrix([
[t**2*(-x**2/(x**2 + y**2)**(3/2) + 1/sqrt(x**2 + y**2))/2],
[t**2*x*y/(x**2 + y**2)**2]])

```
diofant.diffgeom.intcurve_diffequ(vector_field, param, start_point, coord_sys=None) Return the differential equation for an integral curve of the field.

Integral curve is a function \(\gamma\) taking a parameter in \(R\) to a point in the manifold. It verifies the equation:
\[
V(f)(\gamma(t))=\frac{d}{d t} f(\gamma(t))
\]
where the given vector_field is denoted as \(V\). This holds for any value \(t\) for the parameter and any scalar field \(f\).
This function returns the differential equation of \(\gamma(t)\) in terms of the coordinate system coord_sys. The equations and expansions are necessarily done in coordinate-systemdependent way as there is no other way to represent movement between points on the manifold (i.e. there is no such thing as a difference of points for a general manifold).

\section*{See also:}
```

intcurve_series(page 923)

```

\section*{Parameters}
- vector_field - the vector field for which an integral curve will be given
- param - the argument of the function \(\gamma\) from R to the curve
- start_point - the point which corresponds to \(\gamma(0)\)
- coord_sys - the coordinate system in which to give the equations

Returns a tuple of (equations, initial conditions)

\section*{Examples}

Use the predefined R2 manifold:
```

>>> from diofant.diffgeom.rn import R2, R2_p, R2_r

```

Specify a starting point and a vector field:
```

>>> start_point = R2_r.point([0, 1])
>>> vecto\overline{r_field = -\overline{R}2.y*R2.e_x + R2.x*R2.e_y}

```

Get the equation:
```

>>> equations, init_cond = intcurve_diffequ(vector_field, t, start_point)
>>> equations
[f_1(t) + Derivative(f_0(t), t), -f_0(t) + Derivative(f_1(t), t)]
>>> init_cond
[f_0(0),-'f_1(0) - 1]

```

The series in the polar coordinate system:
```

>>> equations, init_cond = intcurve_diffequ(vector_field, t, start_point, R2_p)
>>> equations
[Derivative(f_0(t), t), Derivative(f_1(t), t) - 1]
>>> init_cond
[f_0(0) - 1, f_1(0) - pi/2]

```
diofant.diffgeom.vectors_in_basis(expr, to_sys)
Transform all base vectors in base vectors of a specified coord basis.
While the new base vectors are in the new coordinate system basis, any coefficients are kept in the old system.

\section*{Examples}
```

>>> from diofant.diffgeom.rn import R2_r, R2_p
>>> vectors_in_basis(R2_r.e_x, R2_p)
-y*e_theta/(x*\overline{*}2+y**2) + \overline{x}*e_r/sqrt(x**2 + y**2)
>>> vectors_in_basis(R2_p.e_r, R2_r)
sin(theta)*\overline{e}_\mp@subsup{y}{}{-}+\operatorname{cos(theta)}\mp@subsup{}{}{\overline{F}}\mp@subsup{e}{-}{\prime}x

```
diofant.diffgeom.twoform_to_matrix(expr)
Return the matrix representing the twoform.
For the twoform \(w\) return the matrix \(M\) such that \(M[i, j]=w\left(e_{i}, e_{j}\right)\), where \(e_{i}\) is the i-th base vector field for the coordinate system in which the expression of \(w\) is given.

\section*{Examples}
```

>>> from diofant.diffgeom.rn import R2
>>> TP = TensorProduct
>>> twoform_to_matrix(TP(R2.dx, R2.dx) + TP(R2.dy, R2.dy))
Matrix([
[1, 0],
[0, 1]])
>>> twoform_to_matrix(R2.x*TP(R2.dx, R2.dx) + TP(R2.dy, R2.dy))
Matrix([

```
```

[x, 0],
[0, 1]])
>>> twoform_to_matrix(TP(R2.dx, R2.dx) + TP(R2.dy, R2.dy) - TP(R2.dx, R2.dy)/2)
Matrix([
[1, 0],
[-1/2, 1]])

```
diofant.diffgeom.metric_to_Christoffel_1st (expr)
Return the nested list of Christoffel symbols for the given metric.
This returns the Christoffel symbol of first kind that represents the Levi-Civita connection for the given metric.

\section*{Examples}
```

>>> from diofant.diffgeom.rn import R2
>>> TP = TensorProduct
>> metric to Christoffel 1st(TP(R2.dx, R2.dx) + TP(R2.dy, R2.dy))
[[[0, 0], [0, 0]], [[0, 0], [0, 0]]]
>>> metric_to_Christoffel_1st(R2.x*TP(R2.dx, R2.dx) + TP(R2.dy, R2.dy))
[[[1/2, 0], [0, 0]], [[0, 0], [0, 0]]]

```
diofant.diffgeom.metric_to_Christoffel_2nd (expr)
Return the nested list of Christoffel symbols for the given metric.
This returns the Christoffel symbol of second kind that represents the Levi-Civita connection for the given metric.

\section*{Examples}
```

>>> from diofant.diffgeom.rn import R2
>>> TP = TensorProduct
>>> metric_to_Christoffel_2nd(TP(R2.dx, R2.dx) + TP(R2.dy, R2.dy))
[[[0, 0], [0, 0]], [[0, 0], [0, 0]]]
>> metric_to_Christoffel_2nd(R2.x*TP(R2.dx, R2.dx) + TP(R2.dy, R2.dy))
[[[1/(2*x), 0], [0, 0]], [[0, 0], [0, 0]]]

```
diofant.diffgeom.metric_to_Riemann_components(expr)
Return the components of the Riemann tensor expressed in a given basis.
Given a metric it calculates the components of the Riemann tensor in the canonical basis of the coordinate system in which the metric expression is given.

\section*{Examples}
```

>>> from diofant.diffgeom.rn import R2
>>> TP = TensorProduct
>>> metric_to_Riemann_components(TP(R2.dx, R2.dx) + TP(R2.dy, R2.dy))
[[[[0, 0], [0, 0]], [[0, 0], [0, 0]]], [[[0, 0], [0, 0]], [[0, 0], [0, 0]]]]

```
```

>>> non_trivial_metric = (exp(2*R2.r)*TP(R2.dr, R2.dr) +
\#". R2.r**2*TP(R2.dtheta, R2.dtheta))
>>> non trivial metric
E**(2*r)*Tensor\overline{P}roduct(dr, dr) + r**2*TensorProduct(dtheta, dtheta)

```
(continues on next page)
(continued from previous page)
```

>>> riemann = metric_to_Riemann_components(non_trivial_metric)
>>> riemann[0, :, :, :]
[[[0, 0], [0, 0]], [[0, E**(-2*r)*r], [-E**(-2*r)*r, 0]]]
>>> riemann[1, :, :, :]
[[[0, -1/r], [1/r, 0]], [[0, 0], [0, 0]]]

```
diofant.diffgeom.metric_to_Ricci_components(expr)
Return the components of the Ricci tensor expressed in a given basis.
Given a metric it calculates the components of the Ricci tensor in the canonical basis of the coordinate system in which the metric expression is given.

\section*{Examples}
```

>>> from diofant.diffgeom.rn import R2
>>> TP = TensorProduct
>> metric_to_Ricci_components(TP(R2.dx, R2.dx) + TP(R2.dy, R2.dy))
[[0, 0], [\overline{0}, \overline{0}]]

```
```

>>> non_trivial_metric = (exp(2*R2.r)*TP(R2.dr, R2.dr) +
\#. R2.r**2*TP(R2.dtheta, R2.dtheta))
>>> non trivial metric
E**(2*r)*Tensor\overline{Product(dr, dr) + r**2*TensorProduct(dtheta, dtheta)}
>>> metric_to_Ricci_components(non_trivial_metric)
[[1/r, 0], [0, E**(-2*r)*r]]

```

\subsection*{4.26 Vectors}

The vector module provides tools for basic vector math and differential calculus with respect to 3D Cartesian coordinate systems. This documentation provides an overview of all the features offered, and relevant API.

\subsection*{4.26.1 Guide to Vector}

\section*{Introduction}

This page gives a brief conceptual overview of the functionality present in diofant. vector (page 930).

\section*{Vectors and Scalars}

In vector math, we deal with two kinds of quantities - scalars and vectors.
A scalar is an entity which only has a magnitude - no direction. Examples of scalar quantities include mass, electric charge, temperature, distance, etc.
A vector, on the other hand, is an entity that is characterized by a magnitude and a direction. Examples of vector quantities are displacement, velocity, magnetic field, etc.
A scalar can be depicted just by a number, for e.g. a temperature of 300 K . On the other hand, vectorial quantities like acceleration are usually denoted by a vector. Given a vector
\(\mathbf{V}\), the magnitude of the corresponding quantity can be calculated as the magnitude of the vector itself \(\|\mathbf{V}\|\), while the direction would be specified by a unit vector in the direction of the original vector, \(\hat{\mathbf{V}}=\frac{\mathbf{V}}{\|\mathbf{V}\|}\).
For example, consider a displacement of \((3 \hat{\mathbf{i}}+4 \widehat{\mathbf{j}}+5 \hat{\mathbf{k}}) \mathrm{m}\), where, as per standard convention, \(\hat{\mathbf{i}}, \hat{\mathbf{j}}\) and \(\hat{\mathbf{k}}\) represent unit vectors along the \(\mathbf{X}, \mathbf{Y}\) and \(\mathbf{Z}\) axes respectively. Therefore, it can be concluded that the distance traveled is \(\|3 \mathbf{i}+4 \widehat{\mathbf{j}}+5 \widehat{\mathbf{k}}\| \mathrm{m}=5 \sqrt{2} \mathrm{~m}\). The direction of travel is given by the unit vector \(\frac{3}{5 \sqrt{2}} \hat{\mathbf{i}}+\frac{4}{5 \sqrt{2}} \hat{\mathbf{j}}+\frac{5}{5 \sqrt{2}} \widehat{\mathbf{k}}\).

\section*{Coordinate Systems}

A coordinate system is an abstract mathematical entity used to define the notion of directions and locations in n-dimensional spaces. This module deals with 3 -dimensional spaces, with the conventional \(X, Y\) and \(Z\) axes defined with respect to each coordinate system.
Each coordinate system also has a special reference point called the 'origin' defined for it. This point is used either while referring to locations in 3D space, or while calculating the coordinates of pre-defined points with respect to the system.

It is a pretty well-known concept that there is no absolute notion of location or orientation in space. Any given coordinate system defines a unique 'perspective' of quantifying positions and directions. Therefore, even if we assume that all systems deal with the same units of measurement, the expression of vectorial and scalar quantities differs according to the coordinate system a certain observer deals with.
Consider two points \(P\) and \(Q\) in space. Assuming units to be common throughtout, the distance between these points remains the same regardless of the coordinate system in which the measurements are being made. However, the 3-D coordinates of each of the two points, as well as the position vector of any of the points with respect to the other, do not. In fact, these two quantities don't make sense at all, unless they are being measured keeping in mind a certain location and orientation of the measurer (essentially the coordinate system).

Therefore, it is quite clear that the orientation and location (of the origin) of a coordinate system define the way different quantities will be expressed with respect to it. Neither of the two properties can be measured on an absolute scale, but rather with respect to another coordinate system. The orientation of one system with respect to another is measured using the the rotation matrix, while the relative position can be quantified via the position vector of one system's origin with respect to the other.

\section*{Fields}

A field is a vector or scalar quantity that can be specified everywhere in space as a function of position (Note that in general a field may also be dependent on time and other custom variables). Since we only deal with 3D spaces in this module, a field is defined as a function of the \(x, y\) and \(z\) coordinates corresponding to a location in the coordinate system. Here, \(x, y\) and \(z\) act as scalar variables defining the position of a general point.
For example, temperature in 3 dimensional space (a temperature field) can be written as \(T(x, y, z)\) - a scalar function of the position. An example of a scalar field in electromagnetism is the electric potential.
In a similar manner, a vector field can be defined as a vectorial function of the location ( \(x, y, z\) ) of any point in space.

For instance, every point on the earth may be considered to be in the gravitational force field of the earth. We may specify the field by the magnitude and the direction of acceleration due to gravity (i.e. force per unit mass ) \(\vec{g}(x, y, z)\) at every point in space.
To give an example from electromagnetism, consider an electric potential of form \(2 x^{2} y\), a scalar field in 3D space. The corresponding conservative electric field can be computed as the gradient of the electric potential function, and expressed as \(4 x y \hat{\mathbf{i}}+2 x^{2} \hat{\mathbf{j}}\). The magnitude of this electric field can in turn be expressed as a scalar field of the form \(\sqrt{4 x^{4}+16 x^{2} y^{2}}\).

\section*{Basic Implementation details}

Package for symbolic vector algebra in 3D.

\section*{Coordinate Systems and Vectors}

As of now, diofant. vector (page 930) only deals with the Cartesian (also called rectangular) coordinate systems. A 3D Cartesian coordinate system can be initialized in diofant.vector (page 930) as
```

>>> from diofant.vector import CoordSysCartesian
>>> N = CoordSysCartesian('N')

```

The string parameter to the constructor denotes the name assigned to the system, and will primarily be used for printing purposes.

Once a coordinate system (in essence, a CoordSysCartesian instance) has been defined, we can access the orthonormal unit vectors (i.e. the \(\hat{\mathbf{i}}, \hat{\mathbf{j}}\) and \(\widehat{\mathbf{k}}\) vectors) and coordinate variables/base scalars (i.e. the \(\mathbf{x}, \mathbf{y}\) and \(\mathbf{z}\) variables) corresponding to it. We will talk about coordinate variables in the later sections.
The basis vectors for the \(X, Y\) and \(Z\) axes can be accessed using the i, j and k properties respectively.
```

>>> N.i
N.i
>>> type(N.i)
<class 'diofant.vector.vector.BaseVector'>

```

As seen above, the basis vectors are all instances of a class called BaseVector.
When a BaseVector is multiplied by a scalar (essentially any Diofant Expr), we get a VectorMul - the product of a base vector and a scalar.
```

>>> 3*N.i
3*N.i
>>> type(3*N.i)
<class 'diofant.vector.vector.VectorMul'>

```

Addition of VectorMul and BaseVectors gives rise to formation of VectorAdd - except for special cases, ofcourse.
```

>>> v = 2*N.i + N.j
>>> type(v)
<class 'diofant.vector.vector.VectorAdd'>
>>> v - N.j
2*N.i
>>> type(v - N.j)
<class 'diofant.vector.vector.VectorMul'>

```

What about a zero vector? It can be accessed using the zero attribute assigned to class Vector. Since the notion of a zero vector remains the same regardless of the coordinate system in consideration, we use Vector. zero wherever such a quantity is required.
```

>>> from diofant.vector import Vector
>>> Vector.zero
0
>>> type(Vector.zero)
<class 'diofant.vector.vector.VectorZero'>
>>> N.i + Vector.zero
N.i
>>> Vector.zero == 2*Vector.zero
True

```

All the classes shown above - BaseVector, VectorMul, VectorAdd and VectorZero are subclasses of Vector.

You should never have to instantiate objects of any of the subclasses of Vector. Using the BaseVector instances assigned to a CoordSysCartesian instance and (if needed) Vector. zero as building blocks, any sort of vectorial expression can be constructed with the basic mathematical operators,,\(+- *\). and /.
```

>>> v = N.i - 2*N.j
>>> v/3
1/3*N.i + (-2/3)*N.j
>>> v + N.k
N.i + (-2)*N.j + N.k
>>> Vector.zero/2
0
>>> (v/3)*4
4/3*N.i + (-8/3)*N.j

```

In addition to the elementary mathematical operations, the vector operations of dot and cross can also be performed on Vector.
```

>>> v1 = 2*N.i + 3*N.j - N.k
>>> v2 = N.i - 4*N.j + N.k
>>> v1.dot(v2)
-11
>>> v1.cross(v2)
(-1)*N.i + (-3)*N.j + (-11)*N.k
>>> v2.cross(v1)
N.i + 3*N.j + 11*N.k

```

The \(\&\) and \({ }^{\wedge}\) operators have been overloaded for the dot and cross methods respectively.
```

>>> v1 \& v2
-11
>>> v1 ^ v2
(-1)*N.i + (-3)*N.j + (-11)*N.k

```

However, this is not the recommended way of performing these operations. Using the original methods makes the code clearer and easier to follow.

In addition to these operations, it is also possible to compute the outer products of Vector instances in diofant. vector (page 930). More on that in a little bit.

\section*{Diofant operations on Vectors}

The Diofant operations of simplify, trigsimp, diff, and factor work on Vector objects, with the standard Diofant API.

In essence, the methods work on the measure numbers(The coefficients of the basis vectors) present in the provided vectorial expression.
```

>>> v = (a*b + a*c + b**2 + b*c)*N.i + N.j
>>> v.factor()
((a + b)*(b + c))*N.i + N.j
>>> v = (sin(a)**2 + cos(a)**2)*N.i - (2*\operatorname{cos}(b)**2 - 1)*N.k
>>> trigsimp(v)
N.i + (-cos(2*b))*N.k
>>> v.simplify()
N.i + (-cos(2*b))*N.k
>>> diff(v, b)
(4*sin(b)*\operatorname{cos(b))*N.k}
>>> Derivative(v, b).doit()
(4*\operatorname{sin}(\textrm{b})*\operatorname{cos}(\textrm{b}))*N.k

```

Integral also works with Vector instances, similar to Derivative.
```

>>> v1 = a*N.i + sin(a)*N.j - N.k
>>> Integral(v1, a)
(Integral(a, a))*N.i + (Integral(sin(a), a))*N.j + (Integral(-1, a))*N.k
>>> Integral(v1, a).doit()
a**2/2*N.i + (-cos(a))*N.j + (-a)*N.k

```

\section*{Points}

As mentioned before, every coordinate system corresponds to a unique origin point. Points, in general, have been implemented in diofant. vector (page 930) in the form of the Point class.

To access the origin of system, use the origin property of the CoordSysCartesian class.
```

>>> from diofant.vector import CoordSysCartesian
>>> N = CoordSysCartesian('N')
>>> N.origin
N.origin
>>> type(N.origin)
<class 'diofant.vector.point.Point'>

```

You can instantiate new points in space using the locate_new method of Point. The arguments include the name(string) of the new Point, and its position vector with respect to the 'parent' Point.
```

>>> P = N.origin.locate_new('P', a*N.i + b*N.j + c*N.k)
>>> Q = P.locate_new('Q', -b*N.j)

```

Like Vector, a user never has to expressly instantiate an object of Point. This is because any location in space (albeit relative) can be pointed at by using the origin of a CoordSysCartesian as the reference, and then using locate_new on it and subsequent Point instances.

The position vector of a Point with respect to another Point can be computed using the position_wrt method.
```

>>> P.position wrt(Q)
b*N.j
>>> Q.position_wrt(N.origin)
a*N.i + c*N.k

```

Additionally, it is possible to obtain the \(X, Y\) and \(Z\) coordinates of a Point with respect to a CoordSysCartesian in the form of a tuple. This is done using the express_coordinates method.
```

>>> Q.express_coordinates(N)
(a, 0, c)

```

\section*{Dyadics}

A dyadic, or dyadic tensor, is a second-order tensor formed by the juxtaposition of pairs of vectors. Therefore, the outer products of vectors give rise to the formation of dyadics. Dyadic tensors have been implemented in diofant. vector (page 930) in the Dyadic class.
Once again, you never have to instantiate objects of Dyadic. The outer products of vectors can be computed using the outer method of Vector. The | operator has been overloaded for outer.
```

>>> from diofant.vector import CoordSysCartesian
>>> N = CoordSysCartesian('N')
>>> N.i.outer(N.j)
(N.i|N.j)
>>> N.i | N.j
(N.i|N.j)

```

Similar to Vector, Dyadic also has subsequent subclasses like BaseDyadic, DyadicMul, DyadicAdd. As with Vector, a zero dyadic can be accessed from Dyadic.zero.

All basic mathematical operations work with Dyadic too.
```

>>> dyad = N.i.outer(N.k)
>>> dyad*3
3*(N.i|N.k)
>>> dyad - dyad
0
>>> dyad + 2*(N.j | N.i)
(N.i|N.k) + 2*(N.j|N.i)

```
dot and cross also work among Dyadic instances as well as between a Dyadic and Vector (and also vice versa) - as per the respective mathematical definitions. As with Vector, \& and \({ }^{\wedge}\) have been overloaded for dot and cross.
```

>>> d = N.i.outer(N.j)
>>> d.dot(N.j | N.j)
(N.i|N.j)
>>> d.dot(N.i)
0
>>> d.dot(N.j)
N.i
>>> N.i.dot(d)
N.j
>>> N.k ^ d
(N.j|N.j)

```

\section*{More about Coordinate Systems}

We will now look at how we can initialize new coordinate systems in diofant.vector (page 930), positioned and oriented in user-defined ways with respect to already-existing systems.

\section*{Locating new systems}

We already know that the origin property of a CoordSysCartesian corresponds to the Point instance denoting its origin reference point.

Consider a coordinate system \(N\). Suppose we want to define a new system \(M\), whose origin is located at \(\mathbf{3} \hat{\mathbf{i}}+\mathbf{4} \hat{\mathbf{j}}+\mathbf{5} \mathbf{k}\) from \(N\) 's origin. In other words, the coordinates of \(M\) 's origin from N 's perspective happen to be \((3,4,5)\). Moreover, this would also mean that the coordinates of \(N\) 's origin with respect to \(M\) would be \((-3,-4,-5)\).

This can be achieved programmatically as follows -
```

>>> from diofant.vector import CoordSysCartesian
>>> N = CoordSysCartesian('N')
>>> M = N.locate_new('M', 3*N.i + 4*N.j + 5*N.k)
>>> M.position_wr
3*N.i + 4*N.j + 5*N.k
>>> N.origin.express_coordinates(M)
(-3, -4, -5)

```

It is worth noting that \(M\) 's orientation is the same as that of \(N\). This means that the rotation matrix of \(N\) with respect to \(M\), and also vice versa, is equal to the identity matrix of dimensions \(3 x 3\). The locate_new method initializes a CoordSysCartesian that is only translated in space, not re-oriented, relative to the 'parent' system.

\section*{Orienting new systems}

Similar to 'locating' new systems, diofant. vector (page 930) also allows for initialization of new CoordSysCartesian instances that are oriented in user-defined ways with respect to existing systems.
Suppose you have a coordinate system \(A\).
>>> from diofant.vector import CoordSysCartesian
>>> A = CoordSysCartesian('A')
You want to initialize a new coordinate system \(B\), that is rotated with respect to \(A\) 's Z-axis by an angle \(\theta\).
```

>>> theta = Symbol('theta')

```

There are two ways to achieve this.

\section*{Using a method of CoordSysCartesian directly}

This is the easiest, cleanest, and hence the recommended way of doing it.
```

>>> B = A.orient_new_axis('B', theta, A.k)

```

This initializes \(B\) with the required orientation information with respect to \(A\).
CoordSysCartesian provides the following direct orientation methods in its API-
1. orient_new_axis
2. orient_new_body
3. orient_new_space
4. orient_new_quaternion

Please look at the CoordSysCartesian class API given in the docs of this module, to know their functionality and required arguments in detail.

\section*{Using Orienter(s) and the orient_new method}

You would first have to initialize an AxisOrienter instance for storing the rotation information.
```

>>> from diofant.vector import AxisOrienter
>>> axis_orienter = AxisOrienter(theta, A.k)

```

And then apply it using the orient_new method, to obtain \(B\).
>>> B = A.orient_new('B', axis_orienter)
orient_new also lets you orient new systems using multiple Orienter instances, provided in an iterable. The rotations/orientations are applied to the new system in the order the Orienter instances appear in the iterable.
```

>>> from diofant.vector import BodyOrienter
>>> body_orienter = BodyOrienter(a, b, c, 'XYZ')
>>> C = \overline{A}.orient_new('C', (axis_orienter, body_orienter))

```

The diofant.vector (page 930) API provides the following four Orienter classes for orientation purposes-
1. AxisOrienter
2. BodyOrienter
3. SpaceOrienter
4. Quaternion0rienter

Please refer to the API of the respective classes in the docs of this module to know more.
In each of the above examples, the origin of the new coordinate system coincides with the origin of the 'parent' system.
```

>>> B.position_wrt(A)
0

```

To compute the rotation matrix of any coordinate system with respect to another one, use the rotation_matrix method.
```

>>> B = A.orient new axis('B', a, A.k)
>>> B.rotation_mātri\overline{x}(A)
Matrix([
[cos(a), sin(a), 0],
[-sin(a), cos(a), 0],
[0, 0, 1]])
>>> B.rotation_matrix(B)
Matrix([
[1, 0, 0],
[0, 1, 0],
[0, 0, 1]])

```

\section*{Orienting AND Locating new systems}

What if you want to initialize a new system that is not only oriented in a pre-defined way, but also translated with respect to the parent?

Each of the orient_new_<method of orientation> methods, as well as the orient_new method, support a location keyword argument.
If a Vector is supplied as the value for this kwarg, the new system's origin is automatically defined to be located at that position vector with respect to the parent coordinate system.
Thus, the orientation methods also act as methods to support orientation+ location of the new systems.
```

>>> C = A.orient_new_axis('C', a, A.k, location=2*A.j)
>>> C.position_wr
2*A.j
>>> from diofant.vector import express
>>> express(A.position_wrt(C), C)
(-2*\operatorname{sin}(\textrm{a}))*C.i}+(-2*\overline{cos}(\textrm{a}))*C.

```

More on the express function in a bit.

\section*{Expression of quantities in different coordinate systems}

\section*{Vectors and Dyadics}

As mentioned earlier, the same vector attains different expressions in different coordinate systems. In general, the same is true for scalar expressions and dyadic tensors.
diofant. vector (page 930) supports the expression of vector/scalar quantities in different coordinate systems using the express function.
For purposes of this section, assume the following initializations-
```

>>> from diofant.vector import CoordSysCartesian, express
>>> N = CoordSysCartesian('N')
>>> M = N.orient_new_axis('M', a, N.k)

```

Vector instances can be expressed in user defined systems using express.
```

>>> v1 = N.i + N.j + N.k
>>> express(v1,M)
(sin(a) + cos(a))*M.i + (-sin(a) + cos(a))*M.j + M.k
>>> v2 = N.i + M.j

```
```

>>> express(v2, N)
(-sin(a) + 1)*N.i + (cos(a))*N.j

```

Apart from Vector instances, express also supports reexpression of scalars (general Diofant Expr) and Dyadic objects.
express also accepts a second coordinate system for re-expressing Dyadic instances.
```

>>> d = 2*(M.i | N.j) + 3*(M.j | N.k)
>>> express(d, M)
(2*sin(a))*(M.i|M.i) + (2*cos(a))*(M.i|M.j) + 3*(M.j|M.k)
>> express(d, M, N)
2*(M.i|N.j) + 3*(M.j|N.k)

```

\section*{Coordinate Variables}

The location of a coordinate system's origin does not affect the re-expression of BaseVector instances. However, it does affect the way BaseScalar instances are expressed in different systems.

BaseScalar instances, are coordinate 'symbols' meant to denote the variables used in the definition of vector/scalar fields in diofant. vector (page 930).

For example, consider the scalar field \(\mathbf{T}_{\mathbf{N}}(\mathbf{x}, \mathbf{y}, \mathbf{z})=\mathbf{x}+\mathbf{y}+\mathbf{z}\) defined in system \(N\). Thus, at a point with coordinates ( \(a, b, c\) ), the value of the field would be \(a+b+c\). Now consider system \(R\), whose origin is located at \((1,2,3)\) with respect to \(N\) (no change of orientation). A point with coordinates ( \(a, b, c\) ) in \(R\) has coordinates \((a+1, b+2, c+3)\) in \(N\). Therefore, the expression for \(\mathbf{T}_{\mathbf{N}}\) in \(R\) becomes \(\mathbf{T}_{\mathbf{R}}(x, y, z)=x+y+z+6\).
Coordinate variables, if present in a vector/scalar/dyadic expression, can also be re-expressed in a given coordinate system, by setting the variables keyword argument of express to True.
The above mentioned example, done programmatically, would look like this -
```

>>> R = N.locate_new('R', N.i + 2*N.j + 3*N.k)
>>> T_N = N.x + N. .y + N.z
>>> e\overline{xpress(T N, R, variables=True)}
R.x + R.y + R.z + 6

```

\section*{Other expression-dependent methods}

The to_matrix method of Vector and express_coordinates method of Point also return different results depending on the coordinate system being provided.
```

>>> P = R.origin.locate_new('P', a*R.i + b*R.j + c*R.k)
>>> P.express coordinatēs(N)
(a + 1, b + 2, c + 3)
>>> P.express_coordinates(R)
(a, b, c)
>>> v = N.i + N.j + N.k
>>> v.to matrix(M)
Matrix([
[sin(a) + cos(a)],
[-\operatorname{sin}(a) + cos(a)],
[1]])

```
```

>>> v.to_matrix(N)
Matrix([
[1],
[1],
[1]])

```

\section*{Scalar and Vector Field Functionality}

Implementation in diofant.vector

\section*{Scalar and vector fields}

In diofant. vector (page 930), every CoordSysCartesian instance is assigned basis vectors corresponding to the \(X, Y\) and \(Z\) axes. These can be accessed using the properties named i, \(j\) and \(k\) respectively. Hence, to define a vector \(\mathbf{v}\) of the form \(3 \hat{\mathbf{i}}+4 \hat{\mathbf{j}}+5 \hat{\mathbf{k}}\) with respect to a given frame \(\mathbf{R}\), you would do
```

>>> from diofant.vector import CoordSysCartesian
>>> R = CoordSysCartesian('R')
>>> v = 3*R.i + 4*R.j + 5*R.k

```

Vector math and basic calculus operations with respect to vectors have already been elaborated upon in the earlier section of this module's documentation.

On the other hand, base scalars (or coordinate variables) are implemented in a special class called BaseScalar, and are assigned to every coordinate system, one for each axis from \(X, Y\) and \(Z\). These coordinate variables are used to form the expressions of vector or scalar fields in 3D space. For a system R, the \(X, Y\) and \(Z\) BaseScalars instances can be accessed using the R.x, R.y and R.z expressions respectively.
Therefore, to generate the expression for the aforementioned electric potential field \(2 x^{2} y\), you would have to do
```

>>> from diofant.vector import CoordSysCartesian
>>> R = CoordSysCartesian('R')
>>> electric_potential = 2*R.x**2*R.y
>>> electric_potential
2*R.x**2*R.y

```

It is to be noted that BaseScalar instances can be used just like any other Diofant Symbol, except that they store the information about the coordinate system and axis they correspond to.
Scalar fields can be treated just as any other Diofant expression, for any math/calculus functionality. Hence, to differentiate the above electric potential with respect to \(x\) (i.e. R.x), you would use the diff method.
```

>>> from diofant.vector import CoordSysCartesian
>>> R = CoordSysCartesian('R')
>>> electric_potential = 2*R.x**2*R.y
>>> diff(elec
4*R.x*R.y

```

It is worth noting that having a BaseScalar in the expression implies that a 'field' changes with position, in 3D space. Technically speaking, a simple Expr with no BaseScalar s is still a field, though constant.

Like scalar fields, vector fields that vary with position can also be constructed using BaseScalar s in the measure-number expressions.
```

>>> from diofant.vector import CoordSysCartesian
>>> R = CoordSysCartesian('R')
>> v = R.x**2*R.i + 2*R.x*R.z*R.k

```

\section*{The Del operator}

The Del, or 'Nabla' operator - written as \(\nabla\) is commonly known as the vector differential operator. Depending on its usage in a mathematical expression, it may denote the gradient of a scalar field, or the divergence of a vector field, or the curl of a vector field.

Essentially, \(\nabla\) is not technically an 'operator', but a convenient mathematical notation to denote any one of the aforementioned field operations.

In diofant.vector (page 930), \(\nabla\) has been implemented as the delop property of the CoordSysCartesian class. Hence, assuming \(C\) is a coordinate system, the \(\nabla\) operator corresponding to the vector differentials wrt C's coordinate variables and basis vectors would be accessible as C.delop.
Given below is an example of usage of the delop object.
```

>>> from diofant.vector import CoordSysCartesian
>>> C = CoordSysCartesian('C')
>>> gradient_field = C.delop(C.x*C.y*C.z)
>>> gradient field
(Derivative(\overline{C}.\mp@subsup{x}{}{*}C.y*C.z, C.x))*C.i + (Derivative(C.x*C.y*C.z, C.y))*C.j + +
(Derivative(C.x*C.y*C.z, C.z))*C.k

```

The above expression can be evaluated using the Diofant doit () routine.
```

>>> gradient_field.doit()
C.y*C.z*C.i 〒 C.x*C.z*C.j + C.x*C.y*C.k

```

Usage of the \(\nabla\) notation in diofant. vector (page 930) has been described in greater detail in the subsequent subsections.

\section*{Field operators and related functions}

Here we describe some basic field-related functionality implemented in diofant.vector (page 930).

\section*{Curl}

A curl is a mathematical operator that describes an infinitesimal rotation of a vector in 3D space. The direction is determined by the right-hand rule (along the axis of rotation), and the magnitude is given by the magnitude of rotation.
In the 3D Cartesian system, the curl of a 3D vector \(\mathbf{F}\), denoted by \(\nabla \times \mathbf{F}\) is given by:
\(\nabla \times \mathbf{F}=\left(\frac{\partial F_{z}}{\partial y}-\frac{\partial F_{y}}{\partial z}\right) \hat{\mathbf{i}}+\left(\frac{\partial F_{x}}{\partial z}-\frac{\partial F_{z}}{\partial x}\right) \hat{\mathbf{j}}+\left(\frac{\partial F_{y}}{\partial x}-\frac{\partial F_{x}}{\partial y}\right) \hat{\mathbf{k}}\)
where \(F_{x}\) denotes the \(X\) component of vector \(\mathbf{F}\).

Computing the curl of a vector field in diofant.vector (page 930) can be accomplished in two ways.
One, by using the delop property
```

>>> from diofant.vector import CoordSysCartesian
>>> C = CoordSysCartesian('C')
>>> C.delop.cross(C.x*C.y*C.z*C.i).doit()
C. x*C.y*C.j + (-C.x*C.z)*C.k
>>> (C.delop ^ C.x*C.y*C.z*C.i).doit()
C.x*C.y*C.j + (-C.x*C.z)*C.k

```

Or by using the dedicated function
```

>>> from diofant.vector import curl
>>> curl(C.x*C.y*C.z*C.i, C)
C.x*C.y*C.j + (-C.x*C.z)*C.k

```

\section*{Divergence}

Divergence is a vector operator that measures the magnitude of a vector field's source or sink at a given point, in terms of a signed scalar.
The divergence operator always returns a scalar after operating on a vector.
In the 3D Cartesian system, the divergence of a 3D vector \(\mathbf{F}\), denoted by \(\nabla \cdot \mathbf{F}\) is given by:
\(\nabla \cdot \mathbf{F}=\frac{\partial U}{\partial x}+\frac{\partial V}{\partial y}+\frac{\partial W}{\partial z}\)
where \(U, V\) and \(W\) denote the \(X, Y\) and \(Z\) components of \(\mathbf{F}\) respectively.
Computing the divergence of a vector field in diofant.vector (page 930) can be accomplished in two ways.
One, by using the delop property
```

>>> from diofant.vector import CoordSysCartesian
>>> C = CoordSysCartesian('C')
>>> C.delop.dot(C.x*C.y*C.z*(C.i + C.j + C.k)).doit()
C.x*C.y + C.x*C.z + C.y*C.z
>>> (C.delop \& C. x*C.y*C.z*(C.i + C.j + C.k)).doit()
C.x*C.y + C.x*C.z + C.y*C.z

```

Or by using the dedicated function
```

>>> from diofant.vector import divergence
>>> divergence(C.x*C.y*C.z*(C.i + C.j + C.k), C)
C.x*C.y + C.x*C.z + C.y*C.z

```

\section*{Gradient}

Consider a scalar field \(f(x, y, z)\) in 3D space. The gradient of this field is defined as the vector of the 3 partial derivatives of \(f\) with respect to \(x, y\) and \(z\) in the \(X, Y\) and \(Z\) axes respectively.
In the 3D Cartesian system, the divergence of a scalar field \(f\), denoted by \(\nabla f\) is given by -
\(\nabla f=\frac{\partial f}{\partial x} \mathbf{i}+\frac{\partial f}{\partial y} \mathbf{\mathbf { j }}+\frac{\partial f}{\partial z} \widehat{\mathbf{k}}\)
Computing the divergence of a vector field in diofant.vector (page 930) can be accomplished in two ways.
One, by using the delop property
```

>>> from diofant.vector import CoordSysCartesian
>>> C = CoordSysCartesian('C')
>>> C.delop.gradient(C.x*C.y*C.z).doit()
C.y*C.z*C.i + C. x*C.z*C.j + C.x*C.y*C.k
>> C.delop(C.x*C.y*C.z).doit()
C.y*C.z*C.i + C.x*C.z*C.j + C.x*C.y*C.k

```

Or by using the dedicated function
```

>>> from diofant.vector import gradient
>>> gradient(C.x*C.y*C.z, C)
C.y*C.z*C.i + C.x*C.z*C.j + C.x*C.y*C.k

```

\section*{Directional Derivative}

Apart from the above three common applications of \(\nabla\), it is also possible to compute the directional derivative of a field wrt a Vector in diofant. vector (page 930).
By definition, the directional derivative of a field \(\mathbf{F}\) along a vector \(v\) at point \(x\) represents the instantaneous rate of change of \(\mathbf{F}\) moving through \(x\) with the velocity \(v\). It is represented mathematically as: \((\vec{v} \cdot \nabla) \mathbf{F}(x)\).
Directional derivatives of vector and scalar fields can be computed in diofant.vector (page 930) using the delop property of CoordSysCartesian.
```

>>> from diofant.vector import CoordSysCartesian
>>> C = CoordSysCartesian('C')
>>> vel = C.i + C.j + C.k
>>> scalar_field = C.x*C.y*C.z
>>> vector_field = C.x*C.y*C.z*C.i
>>> (vel.dōt(C.delop))(scalar_field)
C.x*C.y + C.x*C.z + C.y*C.z
>>> (vel \& C.delop)(vector_field)
(C.x*C.y + C.x*C.z + C.y*C.z)*C.i

```

\section*{Conservative and Solenoidal fields}

In vector calculus, a conservative field is a field that is the gradient of some scalar field. Conservative fields have the property that their line integral over any path depends only on the end-points, and is independent of the path travelled. A conservative vector field is also said to be 'irrotational', since the curl of a conservative field is always zero.

In physics, conservative fields represent forces in physical systems where energy is conserved.

To check if a vector field is conservative in diofant. vector (page 930), the is_conservative function can be used.
```

>>> from diofant.vector import CoordSysCartesian, is_conservative
>> R = CoordSysCartesian('R')
>> field = R.y*R.z*R.i + R.x*R.z*R.j + R.x*R.y*R.k
>>> is_conservative(field)
True
>>> curl(field, R)
0

```

A solenoidal field, on the other hand, is a vector field whose divergence is zero at all points in space.
To check if a vector field is solenoidal in diofant.vector (page 930), the is_solenoidal function can be used.
```

>>> from diofant.vector import CoordSysCartesian, is_solenoidal
>>> R = CoordSysCartesian('R')
>>> field = R.y*R.z*R.i + R.x*R.z*R.j + R.x*R.y*R.k
>>> is solenoidal(field)
True
>>> divergence(field, R)
0

```

\section*{Scalar potential functions}

We have previously mentioned that every conservative field can be defined as the gradient of some scalar field. This scalar field is also called the 'scalar potential field' corresponding to the aforementioned conservative field.
The scalar_potential function in diofant.vector (page 930) calculates the scalar potential field corresponding to a given conservative vector field in 3D space - minus the extra constant of integration, of course.

Example of usage -
```

>>> from diofant.vector import CoordSysCartesian, scalar_potential
>>> R = CoordSysCartesian('R')
>>> conservative_field = 4*R.x*R.y*R.z*R.i + 2*R.x**2*R.z*R.j + 2*R.x**2*R.y*R.k
>>> scalar_potential(conservative_field, R)
2*R.x**2*R.y*R.z

```

Providing a non-conservative vector field as an argument to scalar_potential raises a ValueError.

The scalar potential difference, or simply 'potential difference', corresponding to a conservative vector field can be defined as the difference between the values of its scalar potential
function at two points in space. This is useful in calculating a line integral with respect to a conservative function, since it depends only on the endpoints of the path.
This computation is performed as follows in diofant. vector (page 930).
```

>>> from diofant.vector import CoordSysCartesian
>>> from diofant.vector import scalar_potential_difference
>>> R = CoordSysCartesian('R')
>> P = R.origin.locate new('P', 1*R.i + 2*R.j + 3*R.k)
>>> vectfield = 4*R.x*R.y*R.i + 2*R.x**2*R.j
>>> scalar_potential_difference(vectfield, R, R.origin, P)
4

```

If provided with a scalar expression instead of a vector field, scalar_potential_difference returns the difference between the values of that scalar field at the two given points in space.

\section*{General examples of usage}

This section details the solution of two basic problems in vector math/calculus using the diofant.vector (page 930) package.

\section*{Quadrilateral problem}

\section*{The Problem}
\(O A B C\) is any quadrilateral in \(3 D\) space. \(P\) is the midpoint of \(O A, Q\) is the midpoint of \(A B, R\) is the midpoint of \(B C\) and \(S\) is the midpoint of \(O C\). Prove that \(P Q\) is parallel to \(S R\)

\section*{Solution}

The solution to this problem demonstrates the usage of Point, and basic operations on Vector.

Define a coordinate system
```

>>> from diofant.vector import CoordSysCartesian
>>> Sys = CoordSysCartesian('Sys')

```

Define point O to be Sys' origin. We can do this without loss of generality
```

>>> 0 = Sys.origin

```

Define point A with respect to O
```

>>> a1, a2, a3 = symbols('a1 a2 a3')
>> A = 0.locate_new('A', a1*Sys.i + a2*Sys.j + a3*Sys.k)

```

Similarly define points B and C
```

>>> b1, b2, b3 = symbols('b1 b2 b3')
>>> B = 0.locate_new('B', b1*Sys.i + b2*Sys.j + b3*Sys.k)
>>> c1, c2, c3 = symbols('c1 c2 c3')
>>> C = 0.locate_new('C', c1*Sys.i + c2*Sys.j + c3*Sys.k)

```
\(P\) is the midpoint of OA. Lets locate it with respect to \(O\) (you could also define it with respect to A).
```

>>> P = 0.locate_new('P', A.position_wrt(0) + (0.position_wrt(A) / 2))

```

Similarly define points \(\mathrm{Q}, \mathrm{R}\) and S as per the problem definitions.
```

>>> Q = A.locate_new('Q', B.position_wrt(A) / 2)
>>> R = B.locate_new('R', C.position_wrt(B) / 2)
>>> S = 0.locate_new('R', C.position_wrt(0) / 2)

```

Now compute the vectors in the directions specified by PQ and SR.
```

>>> PQ = Q.position_wrt(P)
>>> SR = R.position_wrt(S)

```

Compute cross product
```

>>> PQ.cross(SR)
0

```

Since the cross product is a zero vector, the two vectors have to be parallel, thus proving that PQ || SR.

\section*{Third product rule for Del operator}

\section*{The Problem}

Prove the third rule \(-\nabla \cdot(f \vec{v})=f(\nabla \cdot \vec{v})+\vec{v} \cdot(\nabla f)\)

\section*{Solution}

Start with a coordinate system
```

>>> from diofant.vector import CoordSysCartesian
>>> C = CoordSysCartesian('C')

```

The scalar field \(f\) and the measure numbers of the vector field \(\vec{v}\) are all functions of the coordinate variables of the coordinate system in general. Hence, define Diofant functions that way.
```

>>> v1, v2, v3, f = symbols('v1 v2 v3 f', cls=Function)

```
\(\mathrm{v} 1, \mathrm{v} 2\) and v 3 are the \(X, Y\) and \(Z\) components of the vector field respectively.
Define the vector field as vfield and the scalar field as sfield.
```

>>> vfield = v1(C.x, C.y, C.z)*C.i + v2(C.x, C.y, C.z)*C.j + v3(C.x, C.y, C.z)*C.k
>>> ffield = f(C.x, C.y, C.z)

```

Construct the expression for the LHS of the equation using C. delop.
```

>>> lhs = (C.delop.dot(ffield * vfield)).doit()

```

Similarly, the RHS would be defined.
```

>>> rhs = ((vfield.dot(C.delop(ffield))) + (ffield * (C.delop.dot(vfield)))).doit()

```

Now, to prove the product rule, we would just need to equate the expanded and simplified versions of the lhs and the rhs, so that the Diofant expressions match.
```

>>> lhs.expand().simplify() == rhs.expand().doit().simplify()
True

```

Thus, the general form of the third product rule mentioned above can be proven using diofant. vector (page 930).

\subsection*{4.26.2 Vector API}

\section*{Essential Classes in diofant.vector (doctrings)}

\section*{CoordSysCartesian}
class diofant.vector.coordsysrect.CoordSysCartesian(name, location=None, rotation_matrix \(=\) None, parent \(=\) = None, vector names \(=\) None, variable_names=None)
Represents a coordinate system in 3-D space.
__init__(name, location=None, rotation_matrix=None, parent=None, vector_names=None, variable_names=None, latex_vects=None, pretty_vects=None, latex_scalars=None, pretty_scalars=None) The orientation/location parameters are necessary if this system is being defined at a certain orientation or location wrt another.

\section*{Parameters}
- name (str) - The name of the new CoordSysCartesian instance.
- location (Vector) - The position vector of the new system's origin wrt the parent instance.
- rotation_matrix (Diofant ImmutableMatrix) - The rotation matrix of the new coordinate system with respect to the parent. In other words, the output of new_system.rotation_matrix(parent).
- parent (CoordSysCartesian) - The coordinate system wrt which the orientation/location (or both) is being defined.
- vector_names, variable_names (iterable(optional)) - Iterables of 3 strings each, with custom names for base vectors and base scalars of the new system respectively. Used for simple str printing.
locate_new (name, position, vector_names=None, variable names=None)
Returns a CoordSysCartesian with its origin located at the given position wrt this coordinate system's origin.

\section*{Parameters}
- name (str) - The name of the new CoordSysCartesian instance.
- position (Vector) - The position vector of the new system's origin wrt this one.
- vector_names, variable_names (iterable(optional)) - Iterables of 3 strings each, with custom names for base vectors and base scalars of the new system respectively. Used for simple str printing.

\section*{Examples}
```

>>> A = CoordSysCartesian('A')
>>> B = A.locate new('B', 10 * A.i)
>>> B.origin.posītion_wrt(A.origin)
10*A.i

```
orient_new (name, orienters, location=None, vector_names=None, variable_names=None)
Creates a new CoordSysCartesian oriented in the user-specified way with respect to this system.
Please refer to the documentation of the orienter classes for more information about the orientation procedure.

\section*{Parameters}
- name (str) - The name of the new CoordSysCartesian instance.
- orienters (iterable/Orienter) - An Orienter or an iterable of Orienters for orienting the new coordinate system. If an Orienter is provided, it is applied to get the new system. If an iterable is provided, the orienters will be applied in the order in which they appear in the iterable.
- location (Vector(optional)) - The location of the new coordinate system's origin wrt this system's origin. If not specified, the origins are taken to be coincident.
- vector_names, variable_names (iterable(optional)) - Iterables of 3 strings each, with custom names for base vectors and base scalars of the new system respectively. Used for simple str printing.

\section*{Examples}
```

>>> q0, q1, q2, q3 = symbols('q0 q1 q2 q3')
>>> N = CoordSysCartesian('N')

```

Using an AxisOrienter
```

>>> axis orienter = AxisOrienter(q1, N.i + 2 * N.j)
>>> A = N

```

Using a BodyOrienter
```

>>> body_orienter = BodyOrienter(q1, q2, q3, '123')
>>> B = \overline{N}.orient_new('B', [body_orienter])

```

Using a SpaceOrienter
```

>>> space orienter = Space0rienter(q1, q2, q3, '312')
>>> C = N.orient_new('C', [space_orienter])

```

Using a QuaternionOrienter
```

>>> q_orienter = QuaternionOrienter(q0, q1, q2, q3)
>>> D'= N.orient_new('D', [q_orienter])

```
orient_new_axis(name, angle, axis, location=None, vector_names=None, variable_names=None)
Axis rotation is a rotation about an arbitrary axis by some angle. The angle is supplied as a Diofant expr scalar, and the axis is supplied as a Vector.

\section*{Parameters}
- name (string) - The name of the new coordinate system
- angle (Expr) - The angle by which the new system is to be rotated
- axis (Vector) - The axis around which the rotation has to be performed
- location (Vector(optional)) - The location of the new coordinate system's origin wrt this system's origin. If not specified, the origins are taken to be coincident.
- vector_names, variable_names (iterable(optional)) - Iterables of 3 strings each, with custom names for base vectors and base scalars of the new system respectively. Used for simple str printing.

\section*{Examples}
```

>>> q1 = symbols('q1')
>>> N = CoordSysCartesian('N')
>>> B = N.orient_new_axis('B', q1, N.i + 2 * N.j)

```
orient_new_body (name, angle1, angle2, angle3, rotation_order, location=None, vector_names=None, variable_names=None)
Body orientation takes this coordinate system through three successive simple rotations.
Body fixed rotations include both Euler Angles and Tait-Bryan Angles, see https: //en.wikipedia.org/wiki/Euler_angles.

\section*{Parameters}
- name (string) - The name of the new coordinate system
- angle1, angle2, angle3 (Expr) - Three successive angles to rotate the coordinate system by
- rotation_order (string) - String defining the order of axes for rotation
- location (Vector(optional)) - The location of the new coordinate system's origin wrt this system's origin. If not specified, the origins are taken to be coincident.
- vector_names, variable_names (iterable(optional)) - Iterables of 3 strings each, with custom names for base vectors and base scalars of the new system respectively. Used for simple str printing.

\section*{Examples}
```

>>> q1, q2, q3 = symbols('q1 q2 q3')
>>> N = CoordSysCartesian('N')

```

A 'Body' fixed rotation is described by three angles and three body-fixed rotation axes. To orient a coordinate system D with respect to N , each sequential rotation is always about the orthogonal unit vectors fixed to D. For example, a '123' rotation will specify rotations about N.i, then D.j, then D.k. (Initially, D.i is same as N.i) Therefore,
```

>>> D = N.orient_new_body('D', q1, q2, q3, '123')

```
is same as
```

>>> D = N.orient_new_axis('D', q1, N.i)
>>> D = D.orient_new_axis('D', q2, D.j)
>>> D = D.orient_new_axis('D', q3, D.k)

```

Acceptable rotation orders are of length 3, expressed in XYZ or 123, and cannot have a rotation about about an axis twice in a row.
```

>>> B = N.orient_new_body('B', q1, q2, q3, '123')
>>> B = N.orient_new_body('B', q1, q2, 0, 'ZXZ')
>>> B = N.orient_new_body('B', 0, 0, 0, 'XYX')

```
orient_new_quaternion (name, q0, q1, q2, q3, location=None, vector_names=None, variable_names=None)
Quaternion orientation orients the new CoordSysCartesian with Quaternions, defined as a finite rotation about lambda, a unit vector, by some amount theta.
This orientation is described by four parameters:
q0 \(=\cos (\) theta/2)
q1 = lambda_x \(\sin (\) theta/2)
q2 = lambda_y \(\sin (\) theta/2)
q3 = lambda_z \(\sin (\) theta/2)
Quaternion does not take in a rotation order.

\section*{Parameters}
- name (string) - The name of the new coordinate system
- q0, q1, q2, q3 (Expr) - The quaternions to rotate the coordinate system by
- location (Vector(optional)) - The location of the new coordinate system's origin wrt this system's origin. If not specified, the origins are taken to be coincident.
- vector_names, variable_names (iterable(optional)) - Iterables of 3 strings each, with custom names for base vectors and base scalars of the new system respectively. Used for simple str printing.

\section*{Examples}
```

>>> q0, q1, q2, q3 = symbols('q0 q1 q2 q3')
>>> N = CoordSysCartesian('N')
>>> B = N.orient_new_quaternion('B', q0, q1, q2, q3)

```
orient_new_space (name, angle1, angle2, angle3, rotation_order, location=None, vector_names=None, variable_names=None)
Space rotation is similar to Body rotation, but the rotations are applied in the opposite order.

\section*{Parameters}
- name (string) - The name of the new coordinate system
- angle1, angle2, angle3 (Expr) - Three successive angles to rotate the coordinate system by
- rotation_order (string) - String defining the order of axes for rotation
- location (Vector(optional)) - The location of the new coordinate system's origin wrt this system's origin. If not specified, the origins are taken to be coincident.
- vector_names, variable_names (iterable(optional)) - Iterables of 3 strings each, with custom names for base vectors and base scalars of the new system respectively. Used for simple str printing.

\section*{See also:}
diofant.vector.coordsysrect.CoordSysCartesian.orient_new_body (page 947) method to orient via Euler angles

\section*{Examples}
```

>>> q1, q2, q3 = symbols('q1 q2 q3')
>>> N = CoordSysCartesian('N')

```

To orient a coordinate system D with respect to N , each sequential rotation is always about N's orthogonal unit vectors. For example, a '123' rotation will specify rotations about N.i, then N.j, then N.k. Therefore,
```

>>> D = N.orient_new_space('D', q1, q2, q3, '312')

```
is same as
```

>>> B = N.orient_new axis('B', q1, N.i)
>>> C = B.orient_new_axis('C', q2, N.j)
>>> D = C.orient_new_axis('D', q3, N.k)

```
position_wrt (other)
Returns the position vector of the origin of this coordinate system with respect to another Point/CoordSysCartesian.

Parameters other (Point/CoordSysCartesian) - If other is a Point, the position of this system's origin wrt it is returned. If its an instance of CoordSyRect, the position wrt its origin is returned.

\section*{Examples}
```

>>> N = CoordSysCartesian('N')
>>> N1 = N.locate_new('N1', 10 * N.i)
>>> N.position_wr\overline{t}(N1)
(-10)*N.i

```
rotation_matrix(other)
Returns the direction cosine matrix(DCM), also known as the 'rotation matrix' of this coordinate system with respect to another system.
If \(v \_a\) is a vector defined in system ' \(A\) ' (in matrix format) and \(v_{-} b\) is the same vector defined in system 'B', then v_a = A.rotation_matrix(B) * v_b.
A Diofant Matrix is returned.
Parameters other (CoordSysCartesian) - The system which the DCM is generated to.

\section*{Examples}
```

>>> q1 = symbols('q1')
>>> N = CoordSysCartesian('N')
>>> A = N.orient_new_axis('A', q1, N.i)
>>> N.rotation mātri\overline{x}(A)
Matrix([
[1, 0, 0],
[0, cos(q1), -sin(q1)],
[0, sin(q1), cos(q1)]])

```
scalar_map(other)
Returns a dictionary which expresses the coordinate variables (base scalars) of this frame in terms of the variables of otherframe.

Parameters otherframe (CoordSysCartesian) - The other system to map the variables to.

\section*{Examples}
```

>>> A = CoordSysCartesian('A')
>>> q = Symbol('q')
>> B = A.orient_new_axis('B', q, A.k)
>>> A.scalar_map(B)
{A.x: - sin(q)*B.y + cos(q)*B.x, A.y: sin(q)*B.x + cos(q)*B.y, A.z: B.z}

```

\section*{Vector}

\section*{class diofant.vector.vector. Vector(*args)}

Super class for all Vector classes. Ideally, neither this class nor any of its subclasses should be instantiated by the user.
property components
Returns the components of this vector in the form of a Python dictionary mapping BaseVector instances to the corresponding measure numbers.

\section*{Examples}
```

>>> C = CoordSysCartesian('C')
>> v = 3*C.i + 4*C.j + 5*C.k
>>> v.components
{C.i: 3, C.j: 4, C.k: 5}

```

\section*{cross (other)}

Returns the cross product of this Vector with another Vector or Dyadic instance. The cross product is a Vector, if 'other' is a Vector. If 'other' is a Dyadic, this returns a Dyadic instance.

Parameters other (Vector/Dyadic) - The Vector or Dyadic we are crossing with.

\section*{Examples}
```

>>> C = CoordSysCartesian('C')
>>> C.i.cross(C.j)
C.k
>>> C.i ^ C.i
0
>>> v = 3*C.i + 4*C.j + 5*C.k
>> v ^ C.i
5*C.j + (-4)*C.k
>>> d = C.i.outer(C.i)
>>> C.j.cross(d)
(-1)*(C.k|C.i)

```

\section*{\(\operatorname{dot}\) (other)}

Returns the dot product of this Vector, either with another Vector, or a Dyadic, or a Del operator. If 'other' is a Vector, returns the dot product scalar (Diofant expression). If 'other' is a Dyadic, the dot product is returned as a Vector. If 'other' is an instance of Del, returns the directional derivate operator as a Python function. If this function is applied to a scalar expression, it returns the directional derivative of the scalar field wrt this Vector.

Parameters other (Vector/Dyadic/Del) - The Vector or Dyadic we are dotting with, or a Del operator .

\section*{Examples}
```

>>> C = CoordSysCartesian('C')
>>> C.i.dot(C.j)
0
>>> C.i \& C.i
1
>>> v = 3*C.i + 4*C.j + 5*C.k
>>> v.dot(C.k)
5
>>> (C.i \& C.delop)(C.x*C.y*C.z)
C.y*C.z
>>> d = C.i.outer(C.i)
>>> C.i.dot(d)
C.i

```
magnitude()
Returns the magnitude of this vector.

\section*{normalize()}

Returns the normalized version of this vector.
outer(other)
Returns the outer product of this vector with another, in the form of a Dyadic instance.

Parameters other (Vector) - The Vector with respect to which the outer product is to be computed.

\section*{Examples}
```

>>> N = CoordSysCartesian('N')
>>> N.i.outer(N.j)
(N.i|N.j)

```
separate()

The constituents of this vector in different coordinate systems, as per its definition.
Returns a dict mapping each CoordSysCartesian to the corresponding constituent Vector.

\section*{Examples}
```

>>> R1 = CoordSysCartesian('R1')
>>> R2 = CoordSysCartesian('R2')
>>> v = R1.i + R2.i
>>> v.separate()
{R1: R1.i, R2: R2.i}

```
to_matrix(system)

Returns the matrix form of this vector with respect to the specified coordinate system.

Parameters system (CoordSysCartesian) - The system wrt which the matrix form is to be computed

\section*{Examples}
```

>>> C = CoordSysCartesian('C')
>>> v = a*C.i + b*C.j + c*C.k
>>> v.to_matrix(C)
Matrix([
[a],
[b],
[c]])

```

\section*{Dyadic}

\section*{class diofant.vector.dyadic.Dyadic(*args)}

Super class for all Dyadic-classes.

\section*{References}
- https://en.wikipedia.org/wiki/Dyadic_tensor
- Kane, T., Levinson, D. Dynamics Theory and Applications. 1985 McGraw-Hill
property components
Returns the components of this dyadic in the form of a Python dictionary mapping BaseDyadic instances to the corresponding measure numbers.
cross(other)
Returns the cross product between this Dyadic, and a Vector, as a Vector instance.
Parameters other (Vector) - The Vector that we are crossing this Dyadic with

\section*{Examples}
```

>>> from diofant.vector import CoordSysCartesian
>>> N = CoordSysCartesian('N')
>>> d = N.i.outer(N.i)
>>> d.cross(N.j)
(N.i|N.k)

```
    \(\operatorname{dot}\) (other)

Returns the dot product(also called inner product) of this Dyadic, with another Dyadic or Vector. If 'other' is a Dyadic, this returns a Dyadic. Else, it returns a Vector (unless an error is encountered).

Parameters other (Dyadic/Vector) - The other Dyadic or Vector to take the inner product with

\section*{Examples}
```

>>> from diofant.vector import CoordSysCartesian
>>> N = CoordSysCartesian('N')
>>> D1 = N.i.outer(N.j)
>>> D2 = N.j.outer(N.j)
>>> D1.dot(D2)
(N.i|N.j)
>>> D1.dot(N.j)
N.i

```
to_matrix(system, second_system=None)
Returns the matrix form of the dyadic with respect to one or two coordinate systems.

\section*{Parameters}
- system (CoordSysCartesian) - The coordinate system that the rows and columns of the matrix correspond to. If a second system is provided, this only corresponds to the rows of the matrix.
- second_system (CoordSysCartesian, optional, default=None) - The coordinate system that the columns of the matrix correspond to.

\section*{Examples}
```

>>> from diofant.vector import CoordSysCartesian
>>> N = CoordSysCartesian('N')
>>> v = N.i + 2*N.j
>>> d = v.outer(N.i)
>>> d.to_matrix(N)
Matrix([
[1, 0, 0],
[2, 0, 0],
[0, 0, 0]])
>>> q = Symbol('q')
>> P = N.orient new_axis('P', q, N.k)
>>> d.to_matrix(\overline{N}, P)
Matrix([
[cos(q), - sin(q), 0],
[2*\operatorname{cos(q),}

```

\section*{Del}
class diofant.vector. deloperator. Del(system)
Represents the vector differential operator, usually represented in mathematical expressions as the 'nabla' symbol.
cross (vect, doit=False)
Represents the cross product between this operator and a given vector - equal to the curl of the vector field.

\section*{Parameters}
- vect (Vector) - The vector whose curl is to be calculated.
- doit (bool) - If True, the result is returned after calling .doit() on each component. Else, the returned expression contains Derivative instances

\section*{Examples}
```

>>> C = CoordSysCartesian('C')
>>> v = C.x*C.y*C.z * (C.i + C.j + C.k)
>>> C.delop.cross(v, doit=True)
(-C.x*C.y + C.x*C.z)*C.i + (C.x*C.y - C.y*C.z)*C.j + (-C.x*C.z + C.y*C.z)*C.k
>>> (C.delop ^ C.i).doit()
0

```
\(\operatorname{dot}(v e c t\), doit=False)
Represents the dot product between this operator and a given vector - equal to the divergence of the vector field.

\section*{Parameters}
- vect (Vector) - The vector whose divergence is to be calculated.
- doit (bool) - If True, the result is returned after calling .doit() on each component. Else, the returned expression contains Derivative instances

\section*{Examples}
```

>>> C = CoordSysCartesian('C')
>>> C.delop.dot(C.x*C.i)
Derivative(C.x, C.x)
>>> v = C.x*C.y*C.z * (C.i + C.j + C.k)
>>> (C.delop \& v).doit()
C. x*C.y + C.x*C.z + C.y*C.z

```
gradient(scalar field, doit=False)
Returns the gradient of the given scalar field, as a Vector instance.

\section*{Parameters}
- scalar_field (Diofant expression) - The scalar field to calculate the gradient of.
- doit (bool) - If True, the result is returned after calling .doit() on each component. Else, the returned expression contains Derivative instances

\section*{Examples}
```

>>> C = CoordSysCartesian('C')
>>> C.delop.gradient(9)
(Derivative(9, C.x))*C.i + (Derivative(9, C.y))*C.j + (Derivative(9, C.z))*C.k
>>> C.delop(C.x*C.y*C.z).doit()
C.y*C.z*C.i + C.x*C.z*C.j + C.x*C.y*C.k

```

\section*{Orienter classes (docstrings)}

\section*{Orienter}
class diofant.vector.orienters.Orienter(*args)
Super-class for all orienter classes.
rotation_matrix()
The rotation matrix corresponding to this orienter instance.

\section*{AxisOrienter}
class diofant.vector.orienters.AxisOrienter(angle, axis)
Class to denote an axis orienter.
init__(angle, axis)
Axis rotation is a rotation about an arbitrary axis by some angle. The angle is supplied as a Diofant expr scalar, and the axis is supplied as a Vector.

\section*{Parameters}
- angle (Expr) - The angle by which the new system is to be rotated
- axis (Vector) - The axis around which the rotation has to be performed

\section*{Examples}
```

>>> from diofant.vector import CoordSysCartesian
>>> ql = symbols('ql')
>>> N = CoordSysCartesian('N')
>>> orienter = AxisOrienter(ql, N.i + 2 * N.j)
>>> B = N.orient_new('B', [orienter])

```
rotation_matrix(system)
The rotation matrix corresponding to this orienter instance.
Parameters system (CoordSysCartesian) - The coordinate system wrt which the rotation matrix is to be computed

\section*{BodyOrienter}
class diofant.vector.orienters.BodyOrienter(angle1, angle2, angle3, rot_order) Class to denote a body-orienter.
_init__(angle1, angle2, angle3, rot_order)
Body orientation takes this coordinate system through three successive simple rotations.

Body fixed rotations include both Euler Angles and Tait-Bryan Angles, see https: //en.wikipedia.org/wiki/Euler_angles.

\section*{Parameters}
- angle1, angle2, angle3 (Expr) - Three successive angles to rotate the coordinate system by
- rotation_order (string) - String defining the order of axes for rotation

\section*{Examples}
```

>>> from diofant.vector import CoordSysCartesian
>>> q1, q2, q3 = symbols('q1 q2 q3')
>> N = CoordSysCartesian('N')

```

A 'Body' fixed rotation is described by three angles and three body-fixed rotation axes. To orient a coordinate system D with respect to N , each sequential rotation is always about the orthogonal unit vectors fixed to D. For example, a '123' rotation will specify rotations about N.i, then D.j, then D.k. (Initially, D.i is same as N.i) Therefore,
```

>>> body_orienter = BodyOrienter(q1, q2, q3, '123')
>>> D = \overline{N}.orient_new('D', [body_orienter])

```
is same as
```

>>> axis orienter1 = AxisOrienter(q1, N.i)
>>> D = \overline{N}.orient_new('D', [axis_orienterl])
>>> axis oriente\overline{r}2 = AxisOrientēr(q2, D.j)
>>> D = D.orient_new('D', [axis_orienter2])
>>> axis orienter3 = AxisOrienter(q3, D.k)
>>> D = \overline{D}.orient_new('D', [axis_orienter3])

```

Acceptable rotation orders are of length 3, expressed in XYZ or 123, and cannot have a rotation about about an axis twice in a row.
```

>>> body_orienter1 = BodyOrienter(q1, q2, q3, '123')
>>> body_orienter2 = BodyOrienter(q1, q2, 0, 'ZXZ')
>>> body_orienter3 = BodyOrienter(0, 0, 0, 'XYX')

```

\section*{SpaceOrienter}
class diofant.vector.orienters.SpaceOrienter(angle1, angle2, angle3, rot_order) Class to denote a space-orienter.
_init__(angle1, angle2, angle3, rot_order)
Space rotation is similar to Body rotation, but the rotations are applied in the opposite order.

\section*{Parameters}
- angle1, angle2, angle3 (Expr) - Three successive angles to rotate the coordinate system by
- rotation_order (string) - String defining the order of axes for rotation

See also:
BodyOrienter (page 956) Orienter to orient systems wrt Euler angles.

\section*{Examples}
```

>>> from diofant.vector import CoordSysCartesian
>>> q1, q2, q3 = symbols('q1 q2 q3')
>>> N = CoordSysCartesian('N')

```

To orient a coordinate system D with respect to N , each sequential rotation is always about N's orthogonal unit vectors. For example, a '123' rotation will specify rotations about N.i, then N.j, then N.k. Therefore,
```

>>> space_orienter = SpaceOrienter(q1, q2, q3, '312')
>>> D = N.orient_new('D', [space_orienter])

```
is same as
```

>>> axis orienter1 = AxisOrienter(q1, N.i)
>>> B = \overline{N}.orient_new('B', [axis_orienterl])
>>> axis_oriente\overline{r}2 = AxisOrientēr(q2, N.j)
>>> C = \overline{B}.orient_new('C', [axis_orienter2])
>>> axis_orienter3 = AxisOrienter(q3, N.k)
>>> D = \overline{C}.orient_new('C', [axis_orienter3])

```

\section*{QuaternionOrienter}
class diofant.vector.orienters.QuaternionOrienter(q0, q1, q2, q3)
Class to denote a quaternion-orienter.
_init__(angle1, angle2, angle3, rot_order)
Quaternion orientation orients the new CoordSysCartesian with Quaternions, defined as a finite rotation about lambda, a unit vector, by some amount theta.
This orientation is described by four parameters:
\(\mathrm{q} 0=\cos (\) theta \(/ 2\) )
q1 = lambda_x \(\sin (\) theta/2)
q2 = lambda_y \(\sin (\) theta/2)
q3 = lambda_z sin(theta/2)
Quaternion does not take in a rotation order.
Parameters q0, q1, q2, q3 (Expr) - The quaternions to rotate the coordinate system by

\section*{Examples}
```

>>> from diofant.vector import CoordSysCartesian
>>> q0, q1, q2, q3 = symbols('q0 q1 q2 q3')
>>> N = CoordSysCartesian('N')
>>> q_orienter = QuaternionOrienter(q0, q1, q2, q3)
>>> B- = N.orient_new('B', [q_orienter])

```

\section*{Essential Functions in diofant.vector (docstrings)}
matrix_to_vector
diofant.vector.matrix_to_vector (matrix, system)
Converts a vector in matrix form to a Vector instance.
It is assumed that the elements of the Matrix represent the measure numbers of the components of the vector along basis vectors of 'system'.

\section*{Parameters}
- matrix (Diofant Matrix, Dimensions: \((3,1)\) ) - The matrix to be converted to a vector
- system (CoordSysCartesian) - The coordinate system the vector is to be defined in

\section*{Examples}
```

>> m = Matrix([1, 2, 3])
>>> C CoordSysCartesian('C')
>> v = matrix_to_vector(m, C)
>> v
C.i + 2*C.j + 3*C.k
>> v.to matrix(C) == m
True

```

\section*{express}
diofant.vector.express (expr, system, system \(2=\) None, variables \(=\) False \()\)
Global function for 'express' functionality.
Re-expresses a Vector, Dyadic or scalar(diofant-able) in the given coordinate system.
If 'variables' is True, then the coordinate variables (base scalars) of other coordinate systems present in the vector/scalar field or dyadic are also substituted in terms of the base scalars of the given system.

\section*{Parameters}
- expr (Vector/Dyadic/scalar(diofant-able)) - The expression to re-express in CoordSysCartesian 'system'
- system (CoordSysCartesian) - The coordinate system the expr is to be expressed in
- system2 (CoordSysCartesian) - The other coordinate system required for re-expression (only for a Dyadic Expr)
- variables (boolean) - Specifies whether to substitute the coordinate variables present in expr, in terms of those of parameter system

\section*{Examples}
```

>>> N = CoordSysCartesian('N')
>> q = Symbol('q')
>> = N.orient_new_axis('B', q, N.k)
>>> express(B.i, N)
(cos(q))*N.i + (sin(q))*N.j
>>> express(N.x, B, variables=True)
-sin(q)*B.y + cos(q)*B.x
| = N.i.outer(N.i)
>>> express(d, B, N)
(cos(q))*(B.i|N.i) + (-sin(q))*(B.j|N.i)

```
curl
diofant.vector.curl(vect, coord_sys)
Returns the curl of a vector field computed wrt the base scalars of the given coordinate system.

\section*{Parameters}
- vect (Vector) - The vector operand
- coord_sys (CoordSysCartesian) - The coordinate system to calculate the curl in

\section*{Examples}
```

>>> R = CoordSysCartesian('R')
>>> v1 = R.y*R.z*R.i + R.x*R.z*R.j + R.x*R.y*R.k
>>> curl(v1, R)
0
>>> v2 = R.x*R.y*R.z*R.i
>>> curl(v2, R)
R.x*R.y*R.j + (-R.x*R.z)*R.k

```

\section*{divergence}
diofant.vector.divergence(vect, coord_sys)
Returns the divergence of a vector field computed wrt the base scalars of the given coordinate system.

\section*{Parameters}
- vect (Vector) - The vector operand
- coord_sys (CoordSysCartesian) - The coordinate system to calculate the divergence in

\section*{Examples}
```

>>> R = CoordSysCartesian('R')
>> v1 = R.x*R.y*R.z * (R.i+R.j+R.k)
>> divergence(v1, R)
R.x*R.y + R.x*R.z + R.y*R.z
>> v2 = 2*R.y*R. z*R.j
>> divergence(v2, R)
2*R.z

```

\section*{gradient}
diofant.vector.gradient(scalar, coord_sys)
Returns the vector gradient of a scalar field computed wrt the base scalars of the given coordinate system.

Parameters
- scalar (Diofant Expr) - The scalar field to compute the gradient of
- coord_sys (CoordSysCartesian) - The coordinate system to calculate the gradient in

\section*{Examples}
```

>> R = CoordSysCartesian('R')
>> sl = R.x*R.y*R.z
>>> gradient(s1, R)
R.y*R.z*R.i + R.x*R.z*R.j + R. x*R.y*R.k
>> s2 = 5*R.x**2*R.z
>> gradient(s2, R)
10*R.x*R.z*R.i + 5*R.x**2*R.k

```
```

is_conservative

```
diofant.vector.is_conservative(field)

Checks if a field is conservative.
Parameters field (Vector) - The field to check for conservative property

\section*{Examples}
```

>>> R = CoordSysCartesian('R')
>>> is_conservative(R.y*R.z*R.i + R.x*R.z*R.j + R.x*R.y*R.k)
True
>>> is_conservative(R.z*R.j)
False

```
is_solenoidal
diofant.vector.is_solenoidal(field)
Checks if a field is solenoidal.
Parameters field (Vector) - The field to check for solenoidal property

\section*{Examples}
```

>>> R = CoordSysCartesian('R')
>>> is_solenoidal(R.y*R.z*R.i + R.x*R.z*R.j + R.x*R.y*R.k)
True
>>> is_solenoidal(R.y * R.j)
False

```
scalar_potential
diofant.vector.scalar_potential(field, coord_sys)
Returns the scalar potential function of a field in a given coordinate system (without the added integration constant).

\section*{Parameters}
- field (Vector) - The vector field whose scalar potential function is to be calculated
- coord_sys (CoordSysCartesian) - The coordinate system to do the calculation in

\section*{Examples}
```

>> R = CoordSysCartesian('R')
>>> scalar_potential(R.k, R) == R.z
True
>> scalar field = 2*R.x**2*R.y*R.z
>> grad_field = gradient(scalar_field, R)
>> scalar_potential(grad_field, R)
2*R.x**2*R.y*R.z

```

\section*{scalar_potential_difference}
diofant.vector.scalar_potential_difference(field, coord_sys, point1, point2)
Returns the scalar potential difference between two points in a certain coordinate system, wrt a given field.
If a scalar field is provided, its values at the two points are considered. If a conservative vector field is provided, the values of its scalar potential function at the two points are used.
Returns (potential at point2) - (potential at point1)
The position vectors of the two Points are calculated wrt the origin of the coordinate system provided.

\section*{Parameters}
- field (Vector/Expr) - The field to calculate wrt
- coord_sys (CoordSysCartesian) - The coordinate system to do the calculations in
- point1 (Point) - The initial Point in given coordinate system
- position2 (Point) - The second Point in the given coordinate system

\section*{Examples}
```

>>> R = CoordSysCartesian('R')
>>> P = R.origin.locate_new('P', R.x*R.i + R.y*R.j + R.z*R.k)
>>> vectfield = 4*R.x*R.y*R.i + 2*R.x**2*R.j
>>> scalar_potential_difference(vectfield, R, R.origin, P)
2*R.x**2*R.y
>>> Q = R.origin.locate_new('0', 3*R.i + R.j + 2*R.k)
>>> scalar_potential_difference(vectfield, R, P, Q)
-2*R.x**2*\overline{R}.y + 18

```

\section*{INTERNALS}

This section covers the developers-only documentation, i.e part of the API that may be changed anytime by anyone.

\subsection*{5.1 Internals of the Polynomial Manipulation Module}

All polynomial manipulations are relative to a ground domain. For example, when factoring a polynomial like \(x^{10}-1\), one has to decide what ring the coefficients are supposed to belong to, or less trivially, what coefficients are allowed to appear in the factorization. This choice of coefficients is called a ground domain. Typical choices include the integers \(\mathbb{Z}\), the rational numbers \(\mathbb{Q}\) or various related rings and fields. But it is perfectly legitimate (although in this case uninteresting) to factorize over polynomial rings such as \(k[Y]\), where \(k\) is some fixed field.
Thus the polynomial manipulation algorithms (both complicated ones like factoring, and simpler ones like addition or multiplication) have to rely on other code to manipulate the coefficients. In the polynomial manipulation module, such code is encapsulated in so-called domains (page 503). A domain is basically a factory object: it takes various representations of data, and converts them into objects with unified interface. Every object created by a domain has to implement the arithmetic operations,+- and \(\times\). Other operations are accessed through the domain, e.g. as in ZZ.quo(ZZ(4), ZZ(2)).

\subsection*{5.1.1 Manipulation of sparse, distributed polynomials}

Dense representations quickly require infeasible amounts of storage and computation time if the number of variables increases. For this reason, there is code to manipulate polynomials in a sparse representation.
Sparse polynomials are represented as dictionaries.
diofant.polys.rings.ring(symbols, domain, order=<diofant.polys.orderings.LexOrder object>)
Construct a polynomial ring returning (ring, x_1, ..., x_n).

\section*{Parameters}
- symbols (str, Symbol/Expr or sequence of str, Symbol/Expr (non-empty))
- domain (Domain (page 504) or coercible)
- order (Order (page 993) or coercible, optional, defaults to lex)

\section*{Examples}
```

>>> R, x, y, z = ring('x y z', ZZ)
>>> R
ZZ[x,y,z]
>>> x + y + z
x + y + z

```

\section*{class diofant.polys.rings.PolyElement}

Element of multivariate distributed polynomial ring.
Polynomial element is mutable, until the hash is computed, e.g. when the polynomial was added to the set.

If one is interested in preserving a polynomial, and one plans to use inplace operations, one can copy the polynomial first.

\section*{Examples}
```

>>> _, x, y = ring('x y', ZZ)

```
>>> \(\mathrm{p}=(\mathrm{x}+\mathrm{y})^{* * 2}\)
>> p1 = p.copy ()
>>> p2 = p
```

>>> p[(0, 0)] = 3
>>> p1
x**2 + 2*x*y + y**2
>>> p2
x**2 + 2*x*y + y**2 + 3

```
```

>>> _ = hash(p)
>> \overline{p}[(1, 1)] = 2
Traceback (most recent call last):
RuntimeError: ... Polynomial element ... can't be modified ...

```

\section*{See also:}

PolynomialRing (page 506)
_add__(other)
Add two polynomials.
__eq_(other)
Equality test for polynomials.

\section*{Examples}
```

>>> _, x, y = ring('x y', ZZ)
>>> \overline{p}1=(x+y)**2 + (x - y)**2
>>> p1 == 4* x*y
False
>> p1 == 2*(x**2 + y**2)
True

```
getitem_(element)
Returns the coefficient that stands next to the given monomial.
Parameters element (PolyElement (with is_monomial = True) or 1)

\section*{Examples}
```

>>> _, x, y, z = ring('x y z', ZZ)
>>> \overline{f}=3*x**2*y - x*y*z + 7*z**3 + 23

```
```

>>> f[x**2*y]
3
>>> f[x*y]
0
>>> f[1]
23

```
mul__(other)
Multiply two polynomials.
```

_pow__(n, mod=None)

```

Raise polynomial to power \(n\).
rmul__(other)
Multiply other to self with other in the coefficient domain of self.
_rsub__(other)
Substract self from other, with other convertible to the coefficient domain.
_sub__(other)
Subtract polynomial other from self.
weakref
list of weak references to the object (if defined)
cancel ( \(g\), include \(=\) True )
Cancel common factors in a rational function \(\mathrm{f} / \mathrm{g}\).

\section*{Examples}
\[
\ggg \text { _, } x, y=r i n g(' x y ', ~ Z Z)
\]
```

>>> (2*x**2 - 2).cancel(x**2 - 2*x + 1)
(2*x + 2, x - 1)

```
compose ( \(x, a=\) None)
Computes the functional composition.

\section*{Diofant Documentation, Release 0.13.0}
content()
Returns GCD of polynomial's coefficients.
copy ()
Return a shallow copy of self.
degree ( \(x=0\) )
The leading degree in \(x\) or the main variable.
Note that the degree of 0 is negative floating-point infinity.
\(\operatorname{diff}(x=0, m=1)\)
Computes partial derivative in x .

\section*{Examples}
```

>>> _, x, y = ring('x y', ZZ)
>>> \overline{p}=x+x**2*y**3
>>> p.diff(x)
2*x*y**3 + 1

```
discriminant()
    Computes discriminant of a polynomial.
\(\operatorname{div}(f v)\)

Division algorithm for multivariate polynomials.
Parameters fv (sequence of PolyElement's) - List of divsors.
Returns (qv, r) (tuple) - Where qv is the sequence of quotients and \(r\) is the remainder.

\section*{Notes}

For multivariate polynomials the remainder is not uniquely determined, unless divisors form a Gröbner basis.

\section*{Examples}
```

>>> _, x, y = ring('x y', ZZ)
>> f}=\mp@subsup{x}{}{**}2*
>>> f1, f2 = x**2 - y, x*y - 1
>>> f.div([f1, f2])
([y, 0], y**2)
>>> f.div([f2, f1])
([x, 0], x)

```
```

>>> g1, g2 = x - y**2, y**3 - 1
>>> f.div([g1, g2])[1] == f.div([g2, g1])[1]
True

```

\section*{References}
- [CLOShea15], p. 64.
gcdex (other)
Extended Euclidean algorithm in \(F[x]\).
Returns ( \(s, t, h\) ) such that \(h=g c d(s e l f, ~ o t h e r) ~ a n d ~ s * s e l f+t * o t h e r=h\).

\section*{Examples}
>>> _, \(x=\) ring('x', \(Q Q\) )
```

>>> f= x**4 - 2*x**3 - 6*x**2 + 12*x + 15
>>> g = x**3 + x**2 - 4*x - 4

```
```

>>> f.gcdex(g)
(-1/5*x + 3/5, 1/5*x**2 - 6/5*x + 2, x + 1)

```
integrate ( \(x=0, m=1\) )
Computes indefinite integral in \(x\).
leading_expv(order=None)
Leading monomial tuple according to the monomial ordering.

\section*{Examples}
```

>>> _, x, y, z = ring('x y z', ZZ)
>> \overline{p}}=\mp@subsup{\textrm{x}}{}{**4 + x**3*y + x**2*z***2 + z**7
>>> p.leading_expv()
(4, 0, 0)

```

\section*{leading_term(order=None)}

Leading term as a polynomial element.

\section*{Examples}
```

>>> _, x, y = ring('x y', ZZ)
>>> (3*x*y + y**2).leading_term()
3*x*y

```
monic()
Divides all coefficients by the leading coefficient.
prem (other)
Polynomial pseudo-remainder.

\section*{Examples}
>>> _, \(x, y=r i n g(' x y ', ~ Z Z)\)
```

>>> (x**2 + x*y).prem(2*x + 2)

```
\(-4 * y+4\)

\section*{References}
- [Knu85], p. 407.
primitive()
Returns content and a primitive polynomial.
resultant (other, includePRS=False)
Computes resultant of two polynomials in \(K[X]\).

\section*{Examples}
\[
\ggg \text { _, } x, y=r i n g(' x y ', ~ z Z)
\]
```

>>> f = 3*x**2*y - y**3 - 4
>>> g = x**2 + x*y**3 - 9

```
```

>>> f.resultant(g)
-3*y**10-12*y**7 + y**6 - 54*y**4 + 8*y**3 + 729*y**2 - 216*y + 16

```
subresultants(other)
Computes subresultant PRS of two polynomials in \(K[X]\).

\section*{Examples}
>>> _, x, y = ring('x y', zz)
```

>>> f = 3*x**2*y - y**3 - 4
>>> g = x**2 + x*y**3 - 9

```
```

>>> a = 3*x*y**4 + y**3 - 27*y + 4
>>>b=-3*y**10 - 12*y**7 + y**6 - 54*y**4 + 8*y**3 + 729*y**2 - 216*y + 16

```
```

>>> f.subresultants(g) == [f, g, a, b]

```
True
tail_degree ( \(x=0\) )
The tail degree in \(x\) or the main variable.
Note that the degree of 0 is negative floating-point infinity.
total_degree()
Returns the total degree.
class diofant. polys.univar.UnivarPolyElement
Element of univariate distributed polynomial ring.

\section*{decompose()}

Compute functional decomposition of \(f\) in \(\mathrm{K}[\mathrm{x}]\).
Given a univariate polynomial \(f\) with coefficients in a field of characteristic zero, returns list [f_1, f_2, ..., f_n], where:
\[
\mathrm{f}=\mathrm{f} \text { _1 } 0 \text { f_2 } 0 . \ldots \mathrm{f} \_\mathrm{n}=\mathrm{f} \_1\left(\mathrm{f} \_2\left(\ldots \mathrm{f} \_\mathrm{n}\right)\right)
\]
and f_2, ..., f_n are monic and homogeneous polynomials of at least second degree.

Unlike factorization, complete functional decompositions of polynomials are not unique, consider examples:
1. \(f o g=f(x+b) o(g-b)\)
2. \(x^{* *} n \circ x^{* *} m=x^{* *} \mathrm{~m} \circ \mathrm{x}^{* *} \mathrm{n}\)
3. \(T_{-} n \circ T_{-} m=T_{-} m \circ T_{-} n\)
where T_n and T_m are Chebyshev polynomials.

\section*{Examples}
>>> _, x = ring('x', zZ)
```

>>> (x**4 - 2*x**3 + x**2).decompose()

```
[x**2, \(\left.x^{* * 2}-x\right]\)

\section*{References}
- [KL89]

\section*{half_gcdex (other)}

Half extended Euclidean algorithm in \(F[x]\).
Returns ( \(\mathrm{s}, \mathrm{h}\) ) such that \(\mathrm{h}=\mathrm{gcd}(\mathrm{self}\), other) and \(\mathrm{s} *\) self \(=\mathrm{h}\) (mod other).

\section*{Examples}
```

>>> _, x = ring('x', QQ)

```
```

>>> f = x**4 - 2*x**3 - 6*x**2 + 12*x + 15
>>>g= x**3 + x**2 - 4*x - 4

```
l>> f.halfggcdex \((\mathrm{g})\)
\(\left(-1 / 5^{*} x+3 / 5, x+1\right)\)
sturm()

Computes the Sturm sequence of \(f\) in \(F[x]\).
Given a univariate, square-free polynomial \(f(x)\) returns the associated Sturm sequence (see e.g. [DST88]) f_0(x), ..., f_n(x) defined by:
```

f 0(x), f 1(x) = f(x), f'(x)
f_n = -rem(f_{n-2}(x), f_{n-1}(x))

```

\section*{Examples}
```

>>> _, x = ring('x', QQ)

```
```

>>> (x**3 - 2*x**2 + x - 3).sturm()
[x**3 - 2*x**2 + x - 3, 3*x**2 - 4*x + 1, 2/9*x + 25/9, -2079/4]

```

\subsection*{5.1.2 Polynomial factorization algorithms}

Many variants of Euclid's algorithm:

\section*{Classical remainder sequence}

Let \(K\) be a field, and consider the ring \(K[X]\) of polynomials in a single indeterminate \(X\) with coefficients in \(K\). Given two elements \(f\) and \(g\) of \(K[X]\) with \(g \neq 0\) there are unique polynomials \(q\) and \(r\) such that \(f=q g+r\) and \(\operatorname{deg}(r)<\operatorname{deg}(g)\) or \(r=0\). They are denoted by quo \((f, g)\) (quotient) and \(\operatorname{rem}(f, g)\) (remainder), so we have the division identity
\[
f=\operatorname{quo}(f, g) g+\operatorname{rem}(f, g) .
\]

It follows that every ideal \(I\) of \(K[X]\) is a principal ideal, generated by any element \(\neq 0\) of minimum degree (assuming \(I\) non-zero). In fact, if \(g\) is such a polynomial and \(f\) is any element of \(I\), \(\operatorname{rem}(f, g)\) belongs to \(I\) as a linear combination of \(f\) and \(g\), hence must be zero; therefore \(f\) is a multiple of \(g\).
Using this result it is possible to find a greatest common divisor (gcd) of any polynomials \(f, g, \ldots\) in \(K[X]\). If \(I\) is the ideal formed by all linear combinations of the given polynomials with coefficients in \(K[X]\), and \(d\) is its generator, then every common divisor of the polynomials also divides \(d\). On the other hand, the given polynomials are multiples of the generator \(d\); hence \(d\) is a gcd of the polynomials, denoted \(\operatorname{gcd}(f, g, \ldots)\).

An algorithm for the gcd of two polynomials \(f\) and \(g\) in \(K[X]\) can now be obtained as follows. By the division identity, \(r=\operatorname{rem}(f, g)\) is in the ideal generated by \(f\) and \(g\), as well as \(f\) is in the ideal generated by \(g\) and \(r\). Hence the ideals generated by the pairs \((f, g)\) and \((g, r)\) are the same. Set \(f_{0}=f, f_{1}=g\), and define recursively \(f_{i}=\operatorname{rem}\left(f_{i-2}, f_{i-1}\right)\) for \(i \geq 2\). The recursion ends after a finite number of steps with \(f_{k+1}=0\), since the degrees of the polynomials are strictly decreasing. By the above remark, all the pairs ( \(f_{i-1}, f_{i}\) ) generate the same ideal. In particular, the ideal generated by \(f\) and \(g\) is generated by \(f_{k}\) alone as \(f_{k+1}=0\). Hence \(d=f_{k}\) is a gcd of \(f\) and \(g\).
The sequence of polynomials \(f_{0}, f_{1}, \ldots, f_{k}\) is called the Euclidean polynomial remainder sequence determined by \((f, g)\) because of the analogy with the classical Euclidean algorithm for the gcd of natural numbers.

The algorithm may be extended to obtain an expression for \(d\) in terms of \(f\) and \(g\) by using the full division identities to write recursively each \(f_{i}\) as a linear combination of \(f\) and \(g\). This leads to an equation
\[
d=u f+v g \quad(u, v \in K[X])
\]
analogous to Bézout's identity in the case of integers.

\section*{Simplified remainder sequences}

Assume, as is usual, that the coefficient field \(K\) is the field of fractions of an integral domain \(A\). In this case the coefficients (numerators and denominators) of the polynomials in the Euclidean remainder sequence tend to grow very fast.
If \(A\) is a unique factorization domain, the coefficients may be reduced by cancelling common factors of numerators and denominators. Further reduction is possible noting that a gcd of polynomials in \(K[X]\) is not unique: it may be multiplied by any (non-zero) constant factor.
Any polynomial \(f\) in \(K[X]\) can be simplified by extracting the denominators and common factors of the numerators of its coefficients. This yields the representation \(f=c F\) where \(c \in K\) is the content of \(f\) and \(F\) is a primitive polynomial, i.e., a polynomial in \(A[X]\) with coprime coefficients.

It is possible to start the algorithm by replacing the given polynomials \(f\) and \(g\) with their primitive parts. This will only modify rem \((f, g)\) by a constant factor. Replacing it with its primitive part and continuing recursively we obtain all the primitive parts of the polynomials in the Euclidean remainder sequence, including the primitive \(\operatorname{gcd}(f, g)\).
This sequence is the primitive polynomial remainder sequence. It is an example of general polynomial remainder sequences where the computed remainders are modified by constant multipliers (or divisors) in order to simplify the results.

\section*{Subresultant sequence}

The coefficients of the primitive polynomial sequence do not grow exceedingly, but the computation of the primitive parts requires extra processing effort. Besides, the method only works with fraction fields of unique factorization domains, excluding, for example, the general number fields.

Collins [Col67] realized that the so-called subresultant polynomials of a pair of polynomials also form a generalized remainder sequence. The coefficients of these polynomials are expressible as determinants in the coefficients of the given polynomials. Hence (the logarithm of) their size only grows linearly. In addition, if the coefficients of the given polynomials are in the subdomain \(A\), so are those of the subresultant polynomials. This means that the subresultant sequence is comparable to the primitive remainder sequence without relying on unique factorization in \(A\).

To see how subresultants are associated with remainder sequences recall that all polynomials \(h\) in the sequence are linear combinations of the given polynomials \(f\) and \(g\)
\[
h=u f+v g
\]
with polynomials \(u\) and \(v\) in \(K[X]\). Moreover, as is seen from the extended Euclidean algorithm, the degrees of \(u\) and \(v\) are relatively low, with limited growth from step to step.
Let \(n=\operatorname{deg}(f)\), and \(m=\operatorname{deg}(g)\), and assume \(n \geq m\). If \(\operatorname{deg}(h)=j<m\), the coefficients of the powers \(X^{k}(k>j)\) in the products \(u f\) and \(v g\) cancel each other. In particular, the products must have the same degree, say, \(l\). Then \(\operatorname{deg}(u)=l-n\) and \(\operatorname{deg}(v)=l-m\) with a total of \(2 l-n-m+2\) coefficients to be determined.

On the other hand, the equality \(h=u f+v g\) implies that \(l-j\) linear combinations of the coefficients are zero, those associated with the powers \(X^{i}\) ( \(j<i \leq l\) ), and one has a given non-zero value, namely the leading coefficient of \(h\).

To satisfy these \(l-j+1\) linear equations the total number of coefficients to be determined cannot be lower than \(l-j+1\), in general. This leads to the inequality \(l \geq n+m-j-1\). Taking \(l=n+m-j-1\), we obtain \(\operatorname{deg}(u)=m-j-1\) and \(\operatorname{deg}(v)=n-j-1\).
In the case \(j=0\) the matrix of the resulting system of linear equations is the Sylvester matrix \(S(f, g)\) associated to \(f\) and \(g\), an \((n+m) \times(n+m)\) matrix with coefficients of \(f\) and \(g\) as entries. Its determinant is the resultant \(\operatorname{res}(f, g)\) of the pair \((f, g)\). It is non-zero if and only if \(f\) and \(g\) are relatively prime.

For any \(j\) in the interval from 0 to \(m\) the matrix of the linear system is an \((n+m-2 j) \times(n+m-2 j)\) submatrix of the Sylvester matrix. Its determinant \(s_{j}(f, g)\) is called the \(j\) th scalar subresultant of \(f\) and \(g\).

If \(s_{j}(f, g)\) is not zero, the associated equation \(h=u f+v g\) has a unique solution where \(\operatorname{deg}(h)=j\) and the leading coefficient of \(h\) has any given value; the one with leading coefficient \(s_{j}(f, g)\) is the \(j\) th subresultant polynomial or, briefly, subresultant of the pair \((f, g)\), and denoted \(S_{j}(f, g)\). This choice guarantees that the remainining coefficients are also certain subdeterminants of the Sylvester matrix. In particular, if \(f\) and \(g\) are in \(A[X]\), so is \(S_{j}(f, g)\) as well. This construction of subresultants applies to any \(j\) between 0 and \(m\) regardless of the value of \(s_{j}(f, g)\); if it is zero, then \(\operatorname{deg}\left(S_{j}(f, g)\right)<j\).
The properties of subresultants are as follows. Let \(n_{0}=\operatorname{deg}(f), n_{1}=\operatorname{deg}(g), n_{2}, \ldots, n_{k}\) be the decreasing sequence of degrees of polynomials in a remainder sequence. Let \(0 \leq j \leq n_{1}\); then
- \(s_{j}(f, g) \neq 0\) if and only if \(j=n_{i}\) for some \(i\).
- \(S_{j}(f, g) \neq 0\) if and only if \(j=n_{i}\) or \(j=n_{i}-1\) for some \(i\).

Normally, \(n_{i-1}-n_{i}=1\) for \(1<i \leq k\). If \(n_{i-1}-n_{i}>1\) for some \(i\) (the abnormal case), then \(S_{n_{i-1}-1}(f, g)\) and \(S_{n_{i}}(f, g)\) are constant multiples of each other. Hence either one could be included in the polynomial remainder sequence. The former is given by smaller determinants, so it is expected to have smaller coefficients.
Collins defined the subresultant remainder sequence by setting
\[
f_{i}=S_{n_{i-1}-1}(f, g) \quad(2 \leq i \leq k) .
\]

In the normal case, these are the same as the \(S_{n_{i}}(f, g)\). He also derived expressions for the constants \(\gamma_{i}\) in the remainder formulas
\[
\gamma_{i} f_{i}=\operatorname{rem}\left(f_{i-2}, f_{i-1}\right)
\]
in terms of the leading coefficients of \(f_{1}, \ldots, f_{i-1}\), working in the field \(K\).
Brown and Traub [BT71] later developed a recursive procedure for computing the coefficients \(\gamma_{i}\). Their algorithm deals with elements of the domain \(A\) exclusively (assuming \(f, g \in A[X]\) ). However, in the abnormal case there was a problem, a division in \(A\) which could only be conjectured to be exact.
This was subsequently justified by Brown [Bro78] who showed that the result of the division is, in fact, a scalar subresultant. More specifically, the constant appearing in the computation of \(f_{i}\) is \(s_{n_{i-2}}(f, g)\) (Theorem 3). The implication of this discovery is that the scalar subresultants are computed as by-products of the algorithm, all but \(s_{n_{k}}(f, g)\) which is not needed after finding \(f_{k+1}=0\). Completing the last step we obtain all non-zero scalar subresultants, including the last one which is the resultant if this does not vanish.

Polynomial factorization in characteristic zero:
Polynomial factorization routines in characteristic zero.

\subsection*{5.1.3 Gröbner basis algorithms}

Gröbner bases can be used to answer many problems in computational commutative algebra. Their computation in rather complicated, and very performance-sensitive. We present here various low-level implementations of Gröbner basis computation algorithms; please see the previous section of the manual for usage.
Gröbner bases algorithms.
diofant.polys.groebnertools.buchberger (f, ring)
Computes Gröbner basis for a set of polynomials in \(K[X]\).
Given a set of multivariate polynomials \(F\), finds another set \(G\), such that Ideal \(F=\) Ideal \(G\) and \(G\) is a reduced Gröbner basis.
The resulting basis is unique and has monic generators if the ground domains is a field. Otherwise the result is non-unique but Gröbner bases over e.g. integers can be computed (if the input polynomials are monic).
Gröbner bases can be used to choose specific generators for a polynomial ideal. Because these bases are unique you can check for ideal equality by comparing the Gröbner bases. To see if one polynomial lies in an ideal, divide by the elements in the base and see if the remainder vanishes.
They can also be used to solve systems of polynomial equations as, by choosing lexicographic ordering, you can eliminate one variable at a time, provided that the ideal is zero-dimensional (finite number of solutions).

\section*{References}
- [NKBG03]
- [GMN+91]
- [ALW95]
- [CLOShea15]
- [BW93], page 232

\section*{Notes}

Used an improved version of Buchberger's algorithm as presented in [BW93].
diofant.polys.groebnertools.cp_key (c, ring)
Key for comparing critical pairs.
diofant.polys.groebnertools.critical_pair (f, g, ring)
Compute the critical pair corresponding to two labeled polynomials.
A critical pair is a tuple ( \(u m, f, v m, g\) ), where \(u m\) and vm are terms such that \(u m * f-v m\) * g is the S-polynomial of f and g (so, wlog assume um \({ }^{*} \mathrm{f}>\mathrm{vm} * \mathrm{~g}\) ). For performance sake, a critical pair is represented as a tuple (Sign(um * f), um, f, Sign(vm * g), vm, g), since um * f creates a new, relatively expensive object in memory, whereas Sign(um * f) and um are lightweight and f (in the tuple) is a reference to an already existing object in memory.
diofant.polys.groebnertools.f5_reduce ( \(f, B\) )
F5-reduce a labeled polynomial \(f\) by B.
Continously searches for non-zero labeled polynomial \(h\) in \(B\), such that the leading term lt_h of \(h\) divides the leading term lt_f of \(f\) and \(\operatorname{Sign}\left(l t \_h * h\right)<\operatorname{Sign}(f)\). If such a labeled polynomial \(h\) is found, \(f\) gets replaced by \(f-1 t \_f / l t h^{*} h\). If no such \(h\) can be found or \(f\) is \(0, \mathrm{f}\) is no further F 5 -reducible and f gets returned.
A polynomial that is reducible in the usual sense need not be F5-reducible, e.g.:
>>> _, x, y, z = ring('x y z', QQ, lex)
```

>>> f = lbp(sig(Monomial((1, 1, 1)), 4), x, 3)

```
>> g = lbp(sig(Monomial((0, 0, 0)), 2), x, 2)
```

>>> Polyn(f).div([Polyn(g)])[1]

```
0
>> f5_reduce(f, [g])
(( (1, \(\overline{1}, 1), 4), ~ x, 3)\)
diofant.polys.groebnertools.f5b(F, ring)
Computes a reduced Gröbner basis for the ideal generated by F.
f5b is an implementation of the F5B algorithm by Yao Sun and Dingkang Wang. Similarly to Buchberger's algorithm, the algorithm proceeds by computing critical pairs, computing the S-polynomial, reducing it and adjoining the reduced S-polynomial if it is not 0 .
Unlike Buchberger's algorithm, each polynomial contains additional information, namely a signature and a number. The signature specifies the path of computation (i.e. from which polynomial in the original basis was it derived and how), the number says when the polynomial was added to the basis. With this information it is (often) possible to decide if an S-polynomial will reduce to 0 and can be discarded.

Optimizations include: Reducing the generators before computing a Gröbner basis, removing redundant critical pairs when a new polynomial enters the basis and sorting the critical pairs and the current basis.
Once a Gröbner basis has been found, it gets reduced.

\section*{References}
- [SW10]
- [BW93], pp. 203, 216.
diofant.polys.groebnertools.groebner(seq, ring, method=None)
Computes Gröbner basis for a set of polynomials in \(K[X]\).
Wrapper around the (default) improved Buchberger and the other algorithms for computing Gröbner bases. The choice of algorithm can be changed via method argument or setup() (page 41), where method can be either buchberger or f5b.
diofant.polys.groebnertools.groebner_gcd (f,g)
Computes GCD of two polynomials using Gröbner bases.
diofant.polys.groebnertools.groebner_lcm (f,g)
Computes LCM of two polynomials using Gröbner bases.

The LCM is computed as the unique generator of the intersection of the two ideals generated by \(f\) and \(g\). The approach is to compute a Gröbner basis with respect to lexicographic ordering of \(t * f\) and \((1-t) * g\), where \(t\) is an unrelated variable and then filtering out the solution that doesn't contain \(t\).

\section*{References}
- [CLOShea15]
diofant.polys.groebnertools.is_groebner(G)
Check if G is a Gröbner basis.
diofant.polys.groebnertools.is_minimal( \(G\), ring)
Checks if G is a minimal Gröbner basis.
diofant.polys.groebnertools.is_rewritable_or_comparable(sign, num, B)
Check if a labeled polynomial is redundant by checking if its signature and number imply rewritability or comparability.
(sign, num) is comparable if there exists a labeled polynomial \(h\) in \(B\), such that sign[1] (the index) is less than Sign(h)[1] and sign[0] is divisible by the leading monomial of \(h\).
(sign, num) is rewritable if there exists a labeled polynomial \(h\) in \(B\), such thatsign[1] is equal to \(\operatorname{Sign}(\mathrm{h})[1]\), num \(<\operatorname{Num}(\mathrm{h})\) and sign[0] is divisible by \(\operatorname{Sign(h)[0].~}\)
diofant.polys.groebnertools.lbp_cmp (f,g)
Compare two labeled polynomials.

\section*{\(\mathrm{f}<\mathbf{g}\) iff}
- Sign(f) \(<\operatorname{Sign}(\mathrm{g})\)
or
\[
\text { - } \operatorname{Sign}(\mathrm{f})==\operatorname{Sign}(\mathrm{g}) \text { and } \operatorname{Num}(\mathrm{f})>\operatorname{Num}(\mathrm{g})
\]
f \(>\mathrm{g}\) otherwise
diofant.polys.groebnertools.lbp_key(f)
Key for comparing two labeled polynomials.
diofant.polys.groebnertools.lbp_mul_term (f, cx)
Multiply a labeled polynomial with a term.
The product of a labeled polynomial ( \(\mathrm{s}, \mathrm{p}, \mathrm{k}\) ) by a monomial is defined as ( \(\mathrm{m} * \mathrm{~s}, \mathrm{~m} * \mathrm{p}\), k).
diofant.polys.groebnertools.lbp_sub( \(f, g\) )
Subtract labeled polynomial g from f.
The signature and number of the difference of \(f\) and \(g\) are signature and number of the maximum of \(f\) and \(g\), w.r.t. lbp_cmp.
diofant.polys.groebnertools.matrix_fglm ( \(F\), ring, \(O_{-}\)to)
Converts the reduced Gröbner basis \(F\) of a zero-dimensional ideal w.r.t. O_from to a reduced Gröbner basis w.r.t. 0_to.

\section*{References}
- [FaugereGLM93]
diofant.polys.groebnertools.red_groebner ( \(G\), ring)
Compute reduced Gröbner basis.
Selects a subset of generators, that already generate the ideal and computes a reduced Gröbner basis for them.

\section*{References}
- [BW93], page 216.
diofant.polys.groebnertools.s_poly( \(c p\) )
Compute the S-polynomial of a critical pair.
The S-polynomial of a critical pair cp is \(\mathrm{cp}[1] * \mathrm{cp}[2]-\mathrm{cp}[4] * \mathrm{cp}[5]\).
diofant.polys.groebnertools.sig_cmp (u, v, order)
Compare two signatures by extending the term order to \(\mathrm{K}[\mathrm{X}] \wedge\) n.

\section*{\(\mathbf{u}<\mathbf{v}\) iff}
- the index of \(v\) is greater than the index of \(u\)
or
- the index of \(v\) is equal to the index of \(u\) and \(u[0]<v[0]\) w.r.t. order
u > v otherwise
diofant.polys.groebnertools.sig_key(s, order)
Key for comparing two signatures.
\(\mathrm{s}=(\mathrm{m}, \mathrm{k}), \mathrm{t}=(\mathrm{n}, \mathrm{l})\)
\(\mathrm{s}<\mathrm{t}\) iff \([\mathrm{k}>\mathrm{l}]\) or \([\mathrm{k}==\mathrm{l}\) and \(\mathrm{m}<\mathrm{n}] \mathrm{s}>\mathrm{t}\) otherwise
```

diofant.polys.groebnertools.sig_mult(s,m)

```

Multiply a signature by a monomial.
The product of a signature ( \(\mathrm{m}, \mathrm{i}\) ) and a monomial n is defined as \((\mathrm{m} * \mathrm{t}, \mathrm{i})\).
diofant.polys.groebnertools.spoly(p1, p2)
Compute LCM(LM(p1), LM(p2))/LM(p1)*p1 - LCM(LM(p1), LM(p2))/LM(p2)*p2.
This is the S-poly, provided p1 and p2 are monic

\subsection*{5.1.4 Algebraic number fields}
diofant.polys.numberfields.minpoly_groebner(ex, \(x\), domain)
Computes the minimal polynomial of an algebraic number using Gröbner bases

\section*{Examples}
```

>>> minimal_polynomial(sqrt(2) + 1, method='groebner')(x)

```
\(x^{* * 2}\) - 2*x - 1

\section*{References}
- [AL94]

\subsection*{5.1.5 Factorization over algebraic number fields}
```

diofant.polys.factorization_alg_field._alpha_to_z(f,ring)

```

Change the representation of a polynomial over \(\mathbb{Q}(\alpha)\) by replacing the algebraic element \(\alpha\) by a new variable \(z\).

\section*{Parameters}
- f(PolyElement) - polynomial in \(\mathbb{Q}(\alpha)\left[x_{0}, \ldots, x_{n}\right]\)
- ring (PolynomialRing) - the polynomial ring \(\mathbb{Q}\left[x_{0}, \ldots, x_{n}, z\right]\)

Returns f_ (PolyElement) - polynomial in \(\mathbb{Q}\left[x_{0}, \ldots, x_{n}, z\right]\)
diofant.polys.factorization_alg_field._denominator \((f)\)
Compute the denominator \(\overline{d e n}(\bar{f})\) of a polynomial \(f\) over \(\mathbb{Q}\), i.e. the smallest integer such that \(\operatorname{den}(f) f\) is a polynomial over \(\mathbb{Z}\).
diofant.polys.factorization_alg_field._diophantine ( \(F, C, A, d\), minpoly, \(p\) )
Solve multivariate Diophantine equations over \(\mathbb{Z}_{p}[z] /(\mu(z))\).
diofant.polys.factorization_alg_field._diophantine_univariate ( \(F\), m, minpoly, \(p\) )
Solve univariate Diophantine equations of the form
\[
\sum_{f \in F}\left(h_{f}(x) \cdot \prod_{g \in F \backslash\{f\}} g(x)\right)=x^{m}
\]
over \(\mathbb{Z}_{p}[z] /(\mu(z))\).
diofant.polys.factorization_alg_field._distinct_prime_divisors(S, domain)
Try to find pairwise coprime divisors of all elements of a given list \(S\) of integers.
If this fails, None is returned.

\section*{References}
- [JM09]
diofant.polys.factorization_alg_field._div( \(f, g\), minpoly, \(p\) )
Division with remainder for univariate polynomials over \(\mathbb{Z}_{p}[z] /(\mu(z))\).
diofant.polys.factorization_alg_field._extended_euclidean_algorithm ( \(f, g\), minpoly, \(p\) )
Extended Euclidean Algorithm for univariate polynomials over \(\mathbb{Z}_{p}[z] /(\mu(z))\).
Returns \(s, t, h\), where \(h\) is the GCD of \(f\) and \(g\) and \(s f+t g=h\).
diofant.polys.factorization_alg_field._factor (f, save)
Factor a multivariate polynomial \(f\), which is squarefree and primitive in \(x_{0}\), in \(\mathbb{Q}(\alpha)\left[x_{0}, \ldots, x_{n}\right]\).

\section*{References}
- [JM09]
diofant.polys.factorization_alg_field._hensel_lift(f, H, LC, A, minpoly, p)
Parallel Hensel lifting algorithm over \(\mathbb{Z}_{p} \overline{[z]} /(\mu(z))\).

\section*{Parameters}
- \(\mathbf{f}\) (PolyElement) - squarefree polynomial in \(\mathbb{Z}\left[x_{0}, \ldots, x_{n}, z\right]\)
- H (list of PolyElement objects) - monic univariate factors of \(f\left(x_{0}, A\right)\) in \(\mathbb{Z}\left[x_{0}, z\right]\)
- LC (list of PolyElement objects) - true leading coefficients of the irreducible factors of \(f\)
- A (list of Integer objects) - the evaluation point \(\left[a_{1}, \ldots, a_{n}\right]\)
- p (Integer) - prime number

Returns pfactors (list of PolyElement objects) - irreducible factors of \(f\) modulo \(p\)
diofant.polys.factorization_alg_field._leading_coeffs ( \(f, U, \operatorname{lamma}\), lcfactors, \(A, D\), denoms, divisors)
Compute the true leading coefficients in \(x_{0}\) of the irreducible factors of a polynomial \(f\). If this fails, None is returned.

\section*{Parameters}
- f (PolyElement) - squarefree polynomial in \(Z\left[x_{0}, \ldots, x_{n}, z\right]\)
- U (list of PolyElement objects) - monic univariate factors of \(f\left(x_{0}, A\right)\) in \(\mathbb{Q}(\alpha)\left[x_{0}\right]\)
- gamma (Integer) - integer content of \(\mathrm{lc}_{x_{0}}(f)\)
- lcfactors (list of (PolyElement, Integer) objects) - factorization of \(\mathbf{l c}_{x_{0}}(f)\) in \(\mathbb{Z}\left[x_{1}, \ldots, x_{n}, z\right]\)
- A (list of Integer objects) - the evaluation point \(\left[a_{1}, \ldots, a_{n}\right]\)
- D (Integer) - integral multiple of the defect of \(\mathbb{Q}(\alpha)\)
- denoms (list of Integer objects) - denominators of \(\frac{1}{l(A)}\) for \(l\) in lcfactors
- divisors (list of Integer objects) - pairwise coprime divisors of all elements of denoms

\section*{Returns}
- f (PolyElement) - possibly updated polynomial \(f\)
- lcs (list of PolyElement objects) - true leading coefficients of the irreducible factors of \(f\)
- U_ (list of PolyElement objects) - list of possibly updated monic associates of the univariate factors \(U\)

\section*{References}
- [JM09]
diofant.polys.factorization_alg_field._monic_associate( \(f\), ring)
Compute the monic associate of a polynomial \(f\) over \(\mathbb{Q}(\alpha)\), which is defined as
\[
\operatorname{den}\left(\frac{1}{\operatorname{lc}(f)} f\right) \cdot \frac{1}{\operatorname{lc}(f)} f .
\]

The result is a polynomial in \(\mathbb{Z}\left[x_{0}, \ldots, x_{n}, z\right]\).

\section*{See also:}
_denominator (page 979), _alpha_to_z (page 979)
diofant.polys.factorization_alg_field._padic_lift(f, pfactors, lcs, B, minpoly, \(p\) )
Lift the factorization of a polynomial over \(\mathbb{Z}_{p}[z] /(\mu(z))\) to a factorization over \(\mathbb{Z}_{p^{m}}[z] /(\mu(z))\), where \(p^{m} \geq B\).
If this fails, None is returned.

\section*{Parameters}
- f (PolyElement) - squarefree polynomial in \(\mathbb{Z}\left[x_{0}, \ldots, x_{n}, z\right]\)
- pfactors (list of PolyElement objects) - irreducible factors of \(f\) modulo \(p\)
- lcs (list of PolyElement objects) - true leading coefficients in \(x_{0}\) of the irreducible factors of \(f\)
- B (Integer) - heuristic numerical bound on the size of the largest integer coefficient in the irreducible factors of \(f\)
- minpoly (PolyElement) - minimal polynomial \(\mu\) of \(\alpha\) over \(\mathbb{Q}\)
- \(\mathbf{p}\) (Integer) - prime number

Returns H (list of PolyElement objects) - factorization of \(f\) modulo \(p^{m}\), where \(p^{m} \geq B\)

\section*{References}
- [JM09]
diofant.polys.factorization_alg_field._sqf_p(f, minpoly, \(p\) )
Return True if \(f\) is square-free in \(\mathbb{Z}_{p}[z] /(\mu(z))[x]\).
diofant.polys.factorization_alg_field._subs_ground \((f, A)\)
Substitute variables in the coefficients of a polynomial \(f\) over a PolynomialRing.
diofant.polys.factorization_alg_field._test_evaluation_points(f,gamma, lcfactors, \(A, D\) )
Test if an evaluation point is suitable for _factor.
If it is not, None is returned.

\section*{Parameters}
- \(\mathbf{f}\) (PolyElement) - squarefree polynomial in \(\mathbb{Z}\left[x_{0}, \ldots, x_{n}, z\right]\)
- gamma (Integer) - leading coefficient of \(f\) in \(\mathbb{Z}\)
- lcfactors (list of (PolyElement, Integer) objects) - factorization of \(\operatorname{lc}_{x_{0}}(f)\) in \(\mathbb{Z}\left[x_{1}, \ldots, x_{n}, z\right]\)
- A (list of Integer objects) - the evaluation point \(\left[a_{1}, \ldots, a_{n}\right]\)
- D (Integer) - integral multiple of the defect of \(\mathbb{Q}(\alpha)\)

\section*{Returns}
- fA (PolyElement) - \(f\) evaluated at \(A\), i.e. \(f\left(x_{0}, A\right)\)
- denoms (list of Integer objects) - the denominators of \(\frac{1}{l(A)}\) for \(l\) in lcfactors
- divisors (list of Integer objects) - pairwise coprime divisors of all elements of denoms

\section*{References}
- [JM09]

\section*{See also:}
_factor (page 979)
diofant.polys.factorization_alg_field._test_prime(fA, \(D\), minpoly, \(p\), domain)
Test if a prime number is suitable for _factor.

\section*{See also:}
_factor (page 979)
diofant.polys.factorization_alg_field._z_to_alpha(f, ring)
Change the representation of a polynomial in \(\mathbb{Q}\left[x_{0}, \ldots, x_{n}, z\right]\) by replacing the variable \(z\) by the algebraic element \(\alpha\) of the given ring \(\mathbb{Q}(\alpha)\left[x_{0}, \ldots, x_{n}\right]\).

\section*{Parameters}
- f(PolyElement) - polynomial in \(\mathbb{Q}\left[x_{0}, \ldots, x_{n}, z\right]\)
- ring (PolynomialRing) - the polynomial ring \(\mathbb{Q}(\alpha)\left[x_{0}, \ldots, x_{n}\right]\)

Returns f_(PolyElement) - polynomial in \(\mathbb{Q}(\alpha)\left[x_{0}, \ldots, x_{n}\right]\)
diofant.polys.factorization_alg_field.efactor (f, save=True)
Factor a multivariate polynomial \(f\) in \(\mathbb{Q}(\alpha)\left[x_{0}, \ldots, x_{n}\right]\).
By default, an estimate of the defect of the algebraic field is included in all computations.
If save is set to False, the defect will be treated as one, thus computations are faster.
However, if the defect of \(\alpha\) is larger than one, this may lead to wrong results.

\section*{References}
- [JM09]

\subsection*{5.1.6 Modular GCD}
diofant.polys.modulargcd._chinese_remainder_reconstruction(hp, hq, \(p, q\) )
Construct a polynomial \(h_{p q}\) in \(\mathbb{Z}_{p q}\left[x_{0}, \ldots, x_{k-1}\right]\) such that
\[
\begin{aligned}
& h_{p q}=h_{p} \bmod p \\
& h_{p q}=h_{q} \bmod q
\end{aligned}
\]
for relatively prime integers \(p\) and \(q\) and polynomials \(h_{p}\) and \(h_{q}\) in \(\mathbb{Z}_{p}\left[x_{0}, \ldots, x_{k-1}\right]\) and \(\mathbb{Z}_{q}\left[x_{0}, \ldots, x_{k-1}\right]\) respectively.
The coefficients of the polynomial \(h_{p q}\) are computed with the Chinese Remainder Theorem. The symmetric representation in \(\mathbb{Z}_{p}\left[x_{0}, \ldots, x_{k-1}\right], \mathbb{Z}_{q}\left[x_{0}, \ldots, x_{k-1}\right]\) and \(\mathbb{Z}_{p q}\left[x_{0}, \ldots, x_{k-1}\right]\) is used.

\section*{Parameters}
- hp (PolyElement) - multivariate integer polynomial with coefficients in \(\mathbb{Z}_{p}\)
- hq (PolyElement) - multivariate integer polynomial with coefficients in \(\mathbb{Z}_{q}\)
- \(\mathbf{p}\) (Integer) - modulus of \(h_{p}\), relatively prime to \(q\)
- \(\mathbf{q}\) (Integer) - modulus of \(h_{q}\), relatively prime to \(p\)

\section*{Examples}
```

>>> _, x, y = ring('x y', zz)
>>p=3
>>> q=5

```
```

>>> hp = x**3*y - x**2 - 1
>>> hq = -x**3*y - 2*x*y**2 + 2

```
```

>>> hpq = _chinese_remainder_reconstruction(hp, hq, p, q)
>>> hpq
4*x**3*y + 5*x**2 + 3*x*y**2 + 2

```
```

>>> hpq.trunc_ground(p) == hp
True
>>> hpq.trunc_ground(q) == hq
True

```
```

>>> _, x, y, z = ring('x y z', ZZ)
>>p=6
>>> q = 5

```
```

>>> hp = 3*x**4 - y**3*z + z
>>> hq = -2*x**4 + z

```
```

>>> hpq = _chinese_remainder_reconstruction(hp, hq, p, q)
>>> hpq
3*x**4 + 5* y**3*z + z

```
```

>>> hpq.trunc_ground(p) == hp
True
>>> hpq.trunc_ground(q) == hq
True

```
diofant.polys.modulargcd._euclidean_algorithm ( \(f, g\), minpoly, \(p\) )
Compute the monic GCD of two univariate polynomials in \(\mathbb{Z}_{p}[z] /\left(\check{m}_{\alpha}(z)\right)[x]\) with the Euclidean Algorithm.
In general, \(\check{m}_{\alpha}(z)\) is not irreducible, so it is possible that some leading coefficient is not invertible modulo \(\check{m}_{\alpha}(z)\). In that case None is returned.

\section*{Parameters}
- f, \(\mathbf{g}\) (PolyElement) - polynomials in \(\mathbb{Z}[x, z]\)
- minpoly (PolyElement) - polynomial in \(\mathbb{Z}[z]\), not necessarily irreducible
- \(\mathbf{p}\) (Integer) - prime number, modulus of \(\mathbb{Z}_{p}\)

Returns \(\mathbf{h}\) (PolyElement) - GCD of \(f\) and \(g\) in \(\mathbb{Z}[z, x]\) or None, coefficients are in \(\left[-\frac{p-1}{2}, \frac{p-1}{2}\right]\)
diofant.polys.modulargcd._evaluate_ground (f,i,a)
Evaluate a polynomial \(f\) at \(a\) in the \(\bar{i}\)-th variable of the ground domain.
diofant.polys.modulargcd._func_field_modgcd_m ( \(f, g\), minpoly)
Compute the GCD of two polynomials in \(\mathbb{Q}\left(t_{1}, \ldots, t_{k}\right)[z] /\left(m_{\alpha}(z)\right)[x]\) using a modular algorithm.

The algorithm computes the GCD of two polynomials \(f\) and \(g\) by calculating the GCD in \(\mathbb{Z}_{p}\left(t_{1}, \ldots, t_{k}\right)[z] /\left(\check{m}_{\alpha}(z)\right)[x]\) for suitable primes \(p\) and the primitive associate \(\check{m}_{\alpha}(z)\) of \(m_{\alpha}(z)\). Then the coefficients are reconstructed with the Chinese Remainder Theorem and Rational Reconstruction. To compute the GCD over \(\mathbb{Z}_{p}\left(t_{1}, \ldots, t_{k}\right)[z] /\left(\check{m}_{\alpha}\right)[x]\), the recursive subroutine _func_field_modgcd_p is used. To verify the result in \(\mathbb{Q}\left(t_{1}, \ldots, t_{k}\right)[z] /\left(m_{\alpha}(z)\right)[x]\), a fraction free trial division is used.

\section*{Parameters}
- \(\mathbf{f}, \mathbf{g}\) (PolyElement) - polynomials in \(\mathbb{Z}\left[t_{1}, \ldots, t_{k}\right][x, z]\)
- minpoly (PolyElement) - irreducible polynomial in \(\mathbb{Z}\left[t_{1}, \ldots, t_{k}\right][z]\)

Returns \(\mathbf{h}\) (PolyElement) - the primitive associate in \(\mathbb{Z}\left[t_{1}, \ldots, t_{k}\right][x, z]\) of the GCD of \(f\) and \(g\)

\section*{Examples}
```

>>> _, x, z = ring('x z', ZZ)
>>> minpoly = (z**2 - 2).drop(0)

```
```

>>> f = x**2 + 2*x*z + 2
>>> g=x + z
>>> _func_field_modgcd_m(f, g, minpoly)
x + \overline{z}

```
```

>>> D, t = ring('t', ZZ)
>>> _, x, z = ring('x z', D)
>>> minpoly = (z**2-3).drop(0)

```
```

>>> f = x**2 + (t + 1)*x*z + 3*t
>>> g = x*z + 3*t
>>> func_field_modgcd_m(f, g, minpoly)
x + \overline{t}*z

```

\section*{References}
- [MvH04]

\section*{See also:}
_func_field_modgcd_p (page 985)
diofant.polys.modulargcd._func_field_modgcd_p( \(f, g\), minpoly, \(p\) )
Compute the GCD of two polynomials \(f\) and \(g\) in \(\mathbb{Z}_{p}\left(t_{1}, \ldots, t_{k}\right)[z] /\left(\check{m}_{\alpha}(z)\right)[x]\).
The algorithm reduces the problem step by step by evaluating the polynomials \(f\) and \(g\) at \(t_{k}=a\) for suitable \(a \in \mathbb{Z}_{p}\) and then calls itself recursively to compute the GCD in \(\mathbb{Z}_{p}\left(t_{1}, \ldots, t_{k-1}\right)[z] /\left(\check{m}_{\alpha}(z)\right)[x]\). If these recursive calls are successful, the GCD over \(k\) variables is interpolated, otherwise the algorithm returns None. After interpolation, Rational Function Reconstruction is used to obtain the correct coefficients. If this fails, a new evaluation point has to be chosen, otherwise the desired polynomial is obtained by clearing denominators. The result is verified with a fraction free trial division.

\section*{Parameters}
- \(\mathbf{f}, \mathbf{g}\) (PolyElement) - polynomials in \(\mathbb{Z}\left[t_{1}, \ldots, t_{k}\right][x, z]\)
- minpoly (PolyElement) - polynomial in \(\mathbb{Z}\left[t_{1}, \ldots, t_{k}\right][z]\), not necessarily irreducible
- \(\mathbf{p}\) (Integer) - prime number, modulus of \(\mathbb{Z}_{p}\)

Returns h(PolyElement) - primitive associate in \(\mathbb{Z}\left[t_{1}, \ldots, t_{k}\right][x, z]\) of the GCD of the polynomials \(f\) and \(g\) or None, coefficients are in \(\left[-\frac{p-1}{2}, \frac{p-1}{2}\right]\)

\section*{References}
- [MvH04]
diofant.polys.modulargcd._gf_gcdex (f,g, p)
Extended Euclidean Algorithm for two univariate polynomials over \(\mathbb{Z}_{p}\).
Returns polynomials \(s, t\) and \(h\), such that \(h\) is the GCD of \(f\) and \(g\) and \(s f+t g=h \bmod p\).
diofant.polys.modulargcd._interpolate(evalpoints, hpeval, ring, i, p, ground=False)
Reconstruct a polynomial \(h_{p}\) in \(\mathbb{Z}_{p}\left[x_{0}, \ldots, x_{k-1}\right]\) from a list of evaluation points in \(\mathbb{Z}_{p}\) and a list of polynomials in \(\mathbb{Z}_{p}\left[x_{0}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{k-1}\right]\), which are the images of \(h_{p}\) evaluated in the variable \(x_{i}\).
It is also possible to reconstruct a parameter of the ground domain, i.e. if \(h_{p}\) is a polynomial over \(\mathbb{Z}_{p}\left[x_{0}, \ldots, x_{k-1}\right]\). In this case, one has to set ground=True.

\section*{Parameters}
- evalpoints (list of Integer objects) - list of evaluation points in \(\mathbb{Z}_{p}\)
- hpeval (list of PolyElement objects) - list of polynomials in (resp. over) \(\mathbb{Z}_{p}\left[x_{0}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{k-1}\right]\), images of \(h_{p}\) evaluated in the variable \(x_{i}\)
- ring (PolynomialRing) - \(h_{p}\) will be an element of this ring
- i (Integer) - index of the variable which has to be reconstructed
- p (Integer) - prime number, modulus of \(h_{p}\)
- ground (Boolean) - indicates whether \(x_{i}\) is in the ground domain, default is False
Returns hp (PolyElement) - interpolated polynomial in (resp. over) \(\mathbb{Z}_{p}\left[x_{0}, \ldots, x_{k-1}\right]\)
diofant.polys.modulargcd._minpoly_from_dense( minpoly, ring)
Change representation of the minimal polynomial from Poly to PolyElement for a given ring.
diofant.polys.modulargcd._modgcd_p(f,g, degbound, contbound)
Compute the GCD of two polynomials in \(\mathbb{Z}_{p}\left[x_{0}, \ldots, x_{k-1}\right]\).
The algorithm reduces the problem step by step by evaluating the polynomials \(f\) and \(g\) at \(x_{k-1}=a\) for suitable \(a \in \mathbb{Z}_{p}\) and then calls itself recursively to compute the GCD in \(\mathbb{Z}_{p}\left[x_{0}, \ldots, x_{k-2}\right]\). If these recursive calls are successful for enough evaluation points, the GCD in \(k\) variables is interpolated, otherwise the algorithm returns None. Every time a GCD or a content is computed, their degrees are compared with the bounds. If a degree greater then the bound is encountered, then the current call returns None and a new evaluation point has to be chosen. If at some point the degree is smaller, the correspondent bound is updated and the algorithm fails.

\section*{Parameters}
- f (PolyElement) - multivariate polynomial with coefficients in \(\mathbb{Z}_{p}\)
- \(\mathbf{g}\) (PolyElement) - multivariate polynomial with coefficients in \(\mathbb{Z}_{p}\)
- degbound (list of Integer objects) - degbound [i] is an upper bound for the degree of the GCD of \(f\) and \(g\) in the variable \(x_{i}\)
- contbound (list of Integer objects) - contbound [i] is an upper bound for the degree of the content of the GCD in \(\mathbb{Z}_{p}\left[x_{i}\right]\left[x_{0}, \ldots, x_{i-1}\right]\), contbound [0] is not used can therefore be chosen arbitrarily.
Returns h (PolyElement) - GCD of the polynomials \(f\) and \(g\) or None

\section*{References}
- [MW00]
- [Bro71]
diofant.polys.modulargcd._primitive_in_x0(f)
Compute the content in \(x_{0}\) and the primitive part of a polynomial \(f\) in \(\mathbb{Q}(\alpha)\left[x_{0}, x_{1}, \ldots, x_{n-1}\right] \cong \mathbb{Q}(\alpha)\left[x_{1}, \ldots, x_{n-1}\right]\left[x_{0}\right]\).
diofant.polys.modulargcd._rational_function_reconstruction( \(c, p, m\) )
Reconstruct a rational function \(\frac{a}{b}\) in \(\mathbb{Z}_{p}(t)\) from
\[
c=\frac{a}{b} \bmod m,
\]
where \(c\) and \(m\) are polynomials in \(\mathbb{Z}_{p}[t]\) and \(m\) has positive degree.
The algorithm is based on the Euclidean Algorithm. In general, \(m\) is not irreducible, so it is possible that \(b\) is not invertible modulo \(m\). In that case None is returned.

\section*{Parameters}
- c (PolyElement) - univariate polynomial in \(\mathbb{Z}[t]\)
- p (Integer) - prime number
- m (PolyElement) - modulus, not necessarily irreducible

Returns frac (FracElement) - either \(\frac{a}{b}\) in \(\mathbb{Z}(t)\) or None

\section*{References}
- [MvH04]
diofant.polys.modulargcd._rational_reconstruction_func_coeffs(hm, \(p, m, r i n g, k)\)
Reconstruct every coefficient \(c_{h}\) of a polynomial \(h\) in \(\mathbb{Z}_{p}\left(t_{k}\right)\left[t_{1}, \ldots, t_{k-1}\right][x, z]\) from the corresponding coefficient \(c_{h_{m}}\) of a polynomial \(h_{m}\) in \(\mathbb{Z}_{p}\left[t_{1}, \ldots, t_{k}\right][x, z] \cong \mathbb{Z}_{p}\left[t_{k}\right]\left[t_{1}, \ldots, t_{k-1}\right][x, z]\) such that
\[
c_{h_{m}}=c_{h} \bmod m,
\]
where \(m \in \mathbb{Z}_{p}[t]\).
The reconstruction is based on the Euclidean Algorithm. In general, \(m\) is not irreducible, so it is possible that this fails for some coefficient. In that case None is returned.

\section*{Parameters}
- hm (PolyElement) - polynomial in \(\mathbb{Z}\left[t_{1}, \ldots, t_{k}\right][x, z]\)
- \(\mathbf{p}\) (Integer) - prime number, modulus of \(\mathbb{Z}_{p}\)
- m (PolyElement) - modulus, polynomial in \(\mathbb{Z}[t]\), not necessarily irreducible
- ring (PolynomialRing) \(-\mathbb{Z}\left(t_{k}\right)\left[t_{1}, \ldots, t_{k-1}\right][x, z], h\) will be an element of this ring
- \(\mathbf{k}\) (Integer) - index of the parameter \(t_{k}\) which will be reconstructed

Returns \(\mathbf{h}\) (PolyElement) - reconstructed polynomial in \(\mathbb{Z}\left(t_{k}\right)\left[t_{1}, \ldots, t_{k-1}\right][x, z]\) or None

\section*{See also:}
_rational_function_reconstruction (page 986)
diofant.polys.modulargcd._rational_reconstruction_int_coeffs(hm, m, ring)
Reconstruct every rational coefficient \(c_{h}\) of a polynomial \(h\) in \(\mathbb{Q}\left[t_{1}, \ldots, t_{k}\right][x, z]\) from the corresponding integer coefficient \(c_{h_{m}}\) of a polynomial \(h_{m}\) in \(\mathbb{Z}\left[t_{1}, \ldots, t_{k}\right][x, z]\) such that
\[
c_{h_{m}}=c_{h} \bmod m,
\]
where \(m \in \mathbb{Z}\).
The reconstruction is based on the Euclidean Algorithm. In general, \(m\) is not a prime number, so it is possible that this fails for some coefficient. In that case None is returned.

\section*{Parameters}
- hm (PolyElement) - polynomial in \(\mathbb{Z}\left[t_{1}, \ldots, t_{k}\right][x, z]\)
- m (Integer) - modulus, not necessarily prime
- ring (PolynomialRing) - \(\mathbb{Q}\left[t_{1}, \ldots, t_{k}\right][x, z], h\) will be an element of this ring

Returns \(\mathbf{h}\) (PolyElement) - reconstructed polynomial in \(\mathbb{Q}\left[t_{1}, \ldots, t_{k}\right][x, z]\) or None

\section*{See also:}
diofant.ntheory.modular.integer_rational_reconstruction (page 255)
diofant.polys.modulargcd._to_ANP_poly (f, ring)
Convert a polynomial \(f \in \mathbb{Z}\left[x_{1}, \ldots, x_{n-1}\right][z] /\left(\check{m}_{\alpha}(z)\right)\left[x_{0}\right]\) to a polynomial in \(\mathbb{Q}(\alpha)\left[x_{0}, \ldots, x_{n-1}\right]\), where \(\check{m}_{\alpha}(z) \in \mathbb{Z}[z]\) is the primitive associate of the minimal polynomial \(m_{\alpha}(z)\) of \(\alpha\) over \(\mathbb{Q}\).

\section*{Parameters}
- \(\mathbf{f}\) (PolyElement) - polynomial in \(\mathbb{Z}\left[x_{1}, \ldots, x_{n-1}\right]\left[x_{0}, z\right]\)
- ring (PolynomialRing) - \(\mathbb{Q}(\alpha)\left[x_{0}, \ldots, x_{n-1}\right]\)

Returns f_ (PolyElement) - polynomial in \(\mathbb{Q}(\alpha)\left[x_{0}, \ldots, x_{n-1}\right]\)
diofant.polys.modulargcd._to_ZZ_poly (f, ring)
Compute an associate of a polynomial \(f \in \mathbb{Q}(\alpha)\left[x_{0}, \ldots, x_{n-1}\right]\) in \(\mathbb{Z}\left[x_{1}, \ldots, x_{n-1}\right][z] /\left(\check{m}_{\alpha}(z)\right)\left[x_{0}\right]\), where \(\check{m}_{\alpha}(z) \in \mathbb{Z}[z]\) is the primitive associate of the minimal polynomial \(m_{\alpha}(z)\) of \(\alpha\) over \(\mathbb{Q}\).

\section*{Parameters}
- f(PolyElement) - polynomial in \(\mathbb{Q}(\alpha)\left[x_{0}, \ldots, x_{n-1}\right]\)
- ring (PolynomialRing) \(-\mathbb{Z}\left[x_{1}, \ldots, x_{n-1}\right]\left[x_{0}, z\right]\)

Returns f_(PolyElement) - associate of \(f\) in \(\mathbb{Z}\left[x_{1}, \ldots, x_{n-1}\right]\left[x_{0}, z\right]\)
diofant.polys.modulargcd._trunc ( \(f\), minpoly, \(p\) )
Compute the reduced representation of a polynomial \(f\) in \(\mathbb{Z}_{p}[z] /\left(\check{m}_{\alpha}(z)\right)[x]\)

\section*{Parameters}
- \(\mathbf{f}\) (PolyElement) - polynomial in \(\mathbb{Z}[x, z]\)
- minpoly (PolyElement) - polynomial \(\check{m}_{\alpha} \in \mathbb{Z}[z]\), not necessarily irreducible
- \(\mathbf{p}\) (Integer) - prime number, modulus of \(\mathbb{Z}_{p}\)

Returns ftrunc (PolyElement) - polynomial in \(\mathbb{Z}[x, z]\), reduced modulo \(\check{m}_{\alpha}(z)\) and \(p\)
diofant.polys.modulargcd.func_field_modgcd \((f, g)\)
Compute the GCD of two polynomials \(f\) and \(g\) in \(\mathbb{Q}(\alpha)\left[x_{0}, \ldots, x_{n-1}\right]\) using a modular algorithm.
The algorithm first computes the primitive associate \(\check{m}_{\alpha}(z)\) of the minimal polynomial \(m_{\alpha}\) in \(\mathbb{Z}[z]\) and the primitive associates of \(f\) and \(g\) in \(\mathbb{Z}\left[x_{1}, \ldots, x_{n-1}\right][z] /\left(\check{m}_{\alpha}\right)\left[x_{0}\right]\). Then it computes the GCD in \(\mathbb{Q}\left(x_{1}, \ldots, x_{n-1}\right)[z] /\left(m_{\alpha}(z)\right)\left[x_{0}\right]\). This is done by calculating the GCD in \(\mathbb{Z}_{p}\left(x_{1}, \ldots, x_{n-1}\right)[z] /\left(\check{m}_{\alpha}(z)\right)\left[x_{0}\right]\) for suitable primes \(p\) and then reconstructing the coefficients with the Chinese Remainder Theorem and Rational Reconstuction. The

GCD over \(\mathbb{Z}_{p}\left(x_{1}, \ldots, x_{n-1}\right)[z] /\left(\check{m}_{\alpha}(z)\right)\left[x_{0}\right]\) is computed with a recursive subroutine, which evaluates the polynomials at \(x_{n-1}=a\) for suitable evaluation points \(a \in \mathbb{Z}_{p}\) and then calls itself recursively until the ground domain does no longer contain any parameters. For \(\mathbb{Z}_{p}[z] /\left(\check{m}_{\alpha}(z)\right)\left[x_{0}\right]\) the Euclidean Algorithm is used. The results of those recursive calls are then interpolated and Rational Function Reconstruction is used to obtain the correct coefficients. The results, both in \(\mathbb{Q}\left(x_{1}, \ldots, x_{n-1}\right)[z] /\left(m_{\alpha}(z)\right)\left[x_{0}\right]\) and \(\mathbb{Z}_{p}\left(x_{1}, \ldots, x_{n-1}\right)[z] /\left(\check{m}_{\alpha}(z)\right)\left[x_{0}\right]\), are verified by a fraction free trial division.
Apart from the above GCD computation some GCDs in \(\mathbb{Q}(\alpha)\left[x_{1}, \ldots, x_{n-1}\right]\) have to be calculated, because treating the polynomials as univariate ones can result in a spurious content of the GCD. For this func_field_modgcd is called recursively.

Parameters f, \(\mathbf{g}\) (PolyElement) - polynomials in \(\mathbb{Q}(\alpha)\left[x_{0}, \ldots, x_{n-1}\right]\)
Returns h(PolyElement) - monic GCD of the polynomials \(f\) and \(g\)

\section*{Examples}
```

>>> A = QQ.algebraic_field(sqrt(2))
>>> _, x = ring('x', A)

```
```

>>> func_field_modgcd(x**2 - 2, x + sqrt(2))
x + sqrt(2)

```
>>> _, \(x, y=r i n g(' x y ', A)\)
>>> func_field_modgcd((x + sqrt(2)*y)**2, \(x+\operatorname{sqrt}(2) * y)\)
\(x+\operatorname{sqrt}(2) * y\)
>>> func_field_modgcd(x + sqrt(2)*y, \(x+y)\)
1

\section*{References}
- [MvH04]
diofant.polys.modulargcd.modgcd \((f, g)\)
Compute the GCD of two polynomials in \(\mathbb{Z}\left[x_{0}, \ldots, x_{k-1}\right]\) using a modular algorithm.
The algorithm computes the GCD of two multivariate integer polynomials \(f\) and \(g\) by calculating the GCD in \(\mathbb{Z}_{p}\left[x_{0}, \ldots, x_{k-1}\right]\) for suitable primes \(p\) and then reconstructing the coefficients with the Chinese Remainder Theorem. To compute the multivariate GCD over \(\mathbb{Z}_{p}\) the recursive subroutine _modgcd_p is used. To verify the result in \(\mathbb{Z}\left[x_{0}, \ldots, x_{k-1}\right]\), trial division is done, but only for candidates which are very likely the desired GCD.

\section*{Parameters}
- f (PolyElement) - multivariate integer polynomial
- g (PolyElement) - multivariate integer polynomial

Returns \(\mathbf{h}\) (PolyElement) - GCD of the polynomials \(f\) and \(g\)

Examples
>>> _, \(x, y=r i n g(' x y ', ~ Z Z)\)
>>> modgcd \(\left((x-y)^{*}(x+y),(x+y)^{* *} 2\right)\)
x + y
>>> _, \(x, y, z=r i n g(' x y z ', ~ Z Z)\)
>>> modgcd ((x-y)*z**2, (x**2 + 1)*z)
Z

\section*{References}
- [MW00]
- [Bro71]
diofant.polys.modulargcd.trial_division(f, h, minpoly, \(p=\) None \()\)
Check if \(h\) divides \(f\) in \(\mathbb{K}\left[t_{1}, \ldots, t_{k}\right][z] /\left(m_{\alpha}(z)\right)\), where \(\mathbb{K}\) is either \(\mathbb{Q}\) or \(\mathbb{Z}_{p}\).
This algorithm is based on pseudo division and does not use any fractions. By default \(\mathbb{K}\) is \(\mathbb{Q}\), if a prime number \(p\) is given, \(\mathbb{Z}_{p}\) is chosen instead.

Parameters
- f, h (PolyElement) - polynomials in \(\mathbb{Z}\left[t_{1}, \ldots, t_{k}\right][x, z]\)
- minpoly (PolyElement) - polynomial \(m_{\alpha}(z)\) in \(\mathbb{Z}\left[t_{1}, \ldots, t_{k}\right][z]\)
- \(\mathbf{p}\) (Integer or None) - if \(p\) is given, \(\mathbb{K}\) is set to \(\mathbb{Z}_{p}\) instead of \(\mathbb{Q}\), default is None
Returns rem (PolyElement) - remainder of \(\frac{f}{h}\)

\section*{References}
- [vHM02]

\subsection*{5.1.7 Heuristic GCD}
```

_GCD._zz_heu_gcd(f,g)

```

Heuristic polynomial GCD in \(\mathrm{Z}[\mathrm{X}]\).
Given univariate polynomials \(f\) and \(g\) in \(Z[X]\), returns their GCD, i.e. polynomial \(h\) :
\(h=\operatorname{gcd}(f, g)\)
The algorithm is purely heuristic which means it may fail to compute the GCD. This will be signaled by raising an exception. In this case you will need to switch to another GCD method.

The algorithm computes the polynomial GCD by evaluating polynomials \(f\) and \(g\) at certain points and computing (fast) integer GCD of those evaluations. The polynomial GCD is recovered from the integer image by interpolation. The evaluation proces reduces \(f\) and
g variable by variable into a large integer. The final step is to verify if the interpolated polynomial is the correct GCD.

\section*{References}
- [LF95]

\subsection*{5.1.8 Further tools}

Real and complex root isolation and refinement algorithms.
class diofant.polys.rootisolation. ComplexInterval ( \(a, b, I, Q, F 1, F 2, f 1, f 2\), conj=False)
A fully qualified representation of a complex isolation interval. The printed form is shown as \((\mathrm{x} 1, \mathrm{y} 1) \mathrm{x}(\mathrm{x} 2, \mathrm{y} 2)\) : the southwest x northeast coordinates of the interval's rectangle.

\section*{as_tuple()}

Return tuple representation of complex isolating interval.

\section*{property ax}

Return x coordinate of south-western corner.
property ay
Return y coordinate of south-western corner.
property bx
Return \(\times\) coordinate of north-eastern corner.
property by
Return y coordinate of north-eastern corner.
property center
Return the center of the complex isolating interval.

\section*{conjugate()}

Return conjugated isolating interval.
is_disjoint (other, check_re_refinement=False, re_disjoint=False)
Return True if two isolation intervals are disjoint.

\section*{Parameters}
- check_re_refinement (bool, optional) - If enabled, test that either real projections of isolation intervals are disjoint or roots share common real part.
- re_disjoint (bool, optional) - If enabled, return True only if real projections of isolation intervals are disjoint.
refine (vertical=False)
Perform one step of complex root refinement algorithm.
class diofant.polys. rootisolation.RealInterval(data,f)
A fully qualified representation of a real isolation interval.
property a
Return the position of the left end.
as_tuple()
Return tuple representation of real isolating interval.
```

property b
Return the position of the right end.
property center
Return the center of the real isolating interval.
is_disjoint (other)
Return True if two isolation intervals are disjoint.
refine()

```

Perform one step of real root refinement algorithm.
Square-free decomposition algorithms and related tools.

\subsection*{5.1.9 Undocumented}

Many parts of the polys module are still undocumented, and even where there is documentation it is scarce. Please contribute!

Options manager for Poly (page 588) and public API functions.
class diofant.polys.polyoptions.Options(gens, args, flags=None, strict=False)
Options manager for polynomial manipulation module.

\section*{Examples}
```

>>> Options((x, y, z), {'domain': 'ZZ'})
{'auto': False, 'domain': ZZ, 'gens': (x, y, z)}

```
```

>> build options((x, y, z), {'domain': 'ZZ'})
{'auto': F

```

\section*{Options}
- Expand - boolean option
- Gens - option
- Wrt - option
- Sort - option
- Order - option
- Field - boolean option
- Greedy - boolean option
- Domain - option
- Split - boolean option
- Gaussian - boolean option
- Extension - option
- Modulus - option
- Symmetric - boolean option
- Strict - boolean option

\section*{Flags}
- Auto - boolean flag
- Frac - boolean flag
- Formal - boolean flag
- Polys - boolean flag
- Include - boolean flag
- All - boolean flag
- Gen - flag
clone (updates \(=\{ \}\) )
Clone self and update specified options.
class diofant.polys.polyoptions.Order
order option to polynomial manipulation functions.
Definitions of common exceptions for polys (page 586) module.
exception diofant.polys.polyerrors.BasePolynomialError
Base class for polynomial related exceptions.
exception diofant.polys.polyerrors.CoercionFailed
Raised when a coercion is failed.
exception diofant.polys.polyerrors.ComputationFailed(func, nargs, exc)
Raised when polynomial computation failed.
exception diofant.polys.polyerrors.DomainError
Generic domain error.
exception diofant.polys.polyerrors.EvaluationFailed
Raised when a polynomial evaluation is failed.
exception diofant.polys.polyerrors.ExactQuotientFailed (f, g,dom=None)
Raised when exact quotient is failed.
exception diofant.polys.polyerrors.ExtraneousFactors
Raised when there are extraneous factors.
exception diofant.polys.polyerrors.FlagError
Generic flag error.
exception diofant.polys.polyerrors.GeneratorsError Raised when polynomial generators are unsuitable.
exception diofant.polys.polyerrors.GeneratorsNeeded Raised when more generators needed.
exception diofant.polys.polyerrors.HeuristicGCDFailed Raised when a heuristic GCD is failed.
exception diofant.polys.polyerrors.HomomorphismFailed Raised when a homomorphism is failed.
exception diofant.polys.polyerrors.IsomorphismFailed Raised when an isomprphism is failed.
exception diofant.polys.polyerrors.ModularGCDFailed Raised when a modular GCD is failed.
exception diofant.polys.polyerrors.MultivariatePolynomialError
Generic multivariate polynomial error.
exception diofant.polys.polyerrors.NotAlgebraic
Raised when a non algebraic element occurred.
exception diofant.polys.polyerrors.NotInvertible Raised when a element is not invertible.
exception diofant.polys.polyerrors.NotReversible
Raised when a element is not reversible.
exception diofant.polys.polyerrors.OperationNotSupported(poly, func)
Raised when an operation is not supported.
exception diofant.polys.polyerrors.OptionError
Generic option error.
exception diofant.polys.polyerrors.PolificationFailed(opt, origs, exprs, seq=False)
Raised if polunomial construction is failed.
exception diofant.polys.polyerrors.PolynomialDivisionFailed(f, g, domain)
Raised when polynomial division is failed.
exception diofant.polys.polyerrors.PolynomialError
Generic polynomial error.
exception diofant.polys.polyerrors.RefinementFailed
Raised when a root refinement is failed.
exception diofant.polys.polyerrors.UnificationFailed
Raised when domains unification failed.
exception diofant.polys.polyerrors.UnivariatePolynomialError Generic univariate polynomial error.
exception diofant.polys.polyerrors.UnluckyLeadingCoefficient
Raised when there are unlucky LC.
class diofant.polys.fields.FracElement(numer, denom=None)
Element of multivariate distributed rational function field.

\section*{See also:}

FractionField (page 508)
compose ( \(x, a=\) None)
Computes the functional composition.
diff( \(x\) )
Computes partial derivative in x .

\section*{Examples}
```

>>> , , x, y, z = field('x y z', ZZ)
>> (((x**2 + y)/(z + 1)).diff(x)
2*x/(z+1)

```

\subsection*{5.2 The Gruntz Algorithm}

This section explains the basics of the algorithm [Gru96] used for computing limits. Most of the time the limit() (page 662) function should just work. However it is still useful to keep in mind how it is implemented in case something does not work as expected.
First we define an ordering on functions of single variable \(x\) according to how rapidly varying they at infinity. Any two functions \(f(x)\) and \(g(x)\) can be compared using the properties of:
\[
L=\lim _{x \rightarrow \infty} \frac{\log |f(x)|}{\log |g(x)|}
\]

We shall say that \(f(x)\) dominates \(g(x)\), written \(f(x) \succ g(x)\), iff \(L= \pm \infty\). We also say that \(f(x)\) and \(g(x)\) are of the same comparability class if neither \(f(x) \succ g(x)\) nor \(g(x) \succ f(x)\) and shall denote it as \(f(x) \asymp g(x)\).
It is easy to show the following examples:
- \(e^{e^{x}} \succ e^{x^{2}} \succ e^{x} \succ x \succ 42\)
- \(2 \asymp 3 \asymp-5\)
- \(x \asymp x^{2} \asymp x^{3} \asymp-x\)
- \(e^{x} \asymp e^{-x} \asymp e^{2 x} \asymp e^{x+e^{-x}}\)
- \(f(x) \asymp 1 / f(x)\)

Using these definitions yields the following strategy for computing \(\lim _{x \rightarrow \infty} f(x)\) :
1. Given the function \(f(x)\), we find the set of most rapidly varying subexpressions (MRV set) of it. All items of this set belongs to the same comparability class. Let's say it is \(\left\{e^{x}, e^{2 x}\right\}\).
2. Choose an expression \(\omega\) which is positive and tends to zero and which is in the same comparability class as any element of the MRV set. Such element always exists. Then we rewrite the MRV set using \(\omega\), in our case \(\left\{\omega^{-1}, \omega^{-2}\right\}\), and substitute it into \(f(x)\).
3. Let \(f(\omega)\) be the function which is obtained from \(f(x)\) after the rewrite step above. Consider all expressions independent of \(\omega\) as constants and compute the leading term of the power series of \(f(\omega)\) around \(\omega=0^{+}\):
\[
f(\omega)=c_{0} \omega^{e_{0}}+c_{1} \omega^{e_{1}}+\ldots
\]
where \(e_{0}<e_{1}<e_{2} \ldots\)
4. If the leading exponent \(e_{0}>0\) then the limit is 0 . If \(e_{0}<0\), then the answer is \(\pm \infty\) (depends on sign of \(c_{0}\) ). Finally, if \(e_{0}=0\), the limit is the limit of the leading coefficient \(c_{0}\).

\section*{Notes}

This exposition glossed over several details. For example, limits could be computed recursively (steps 1 and 4). Please address to the Gruntz thesis [Gru96] for proof of the termination (pp. 52-60).
diofant.series.gruntz.compare ( \(a, b, x\) )
Determine order relation between two functons.
Returns \(\{1,0,-1\}\) - Respectively, if \(a(x) \succ b(x), a(x) \asymp b(x)\) or \(b(x) \succ a(x)\).

\section*{Examples}
>>> \(\mathrm{x}=\) Symbol('x', real=True, positive=True)
```

>>> compare(exp(x), x**5, x)

```
1
diofant.series.gruntz.limitinf \((e, x)\)
Compute limit of the expression at the infinity.

\section*{Examples}
>>> x = Symbol('x', real=True, positive=True)
```

>>> limitinf(exp(x)*(exp(1/x - exp(-x)) - exp(1/x)), x)

```
-1
diofant.series.gruntz.mrv (e, x)
Calculate the MRV set of expression.

\section*{Examples}
```

>>> x = Symbol('x', real=True, positive=True)

```
>>> mrv(log(x-2og(x))/log(x), x)
\{x\}
diofant.series.gruntz.mrv_leadterm ( \(e, x\) )
Compute the leading term of the series.
Returns tuple - The leading term \(c_{0} w^{e_{0}}\) of the series of \(e\) in terms of the most rapidly varying subexpression \(w\) in form of the pair (c0, e0) of Expr.

\section*{Examples}
>>> \(x\) = Symbol('x', real=True, positive=True)
>>> mrv_leadterm(1/exp(-x + exp(-x)) - exp(x), x)
(-1, 0)
diofant.series.gruntz.mrv_max \((f, g, x)\)
Computes the maximum of two MRV sets.
diofant.series.gruntz. rewrite(e, \(x, w)\)
Rewrites expression in terms of the most rapidly varying subexpression.

\section*{Parameters}
- e (Expr) - an expression
- \(\mathbf{x}\) (Symbol) - variable of the \(e\)
- w (Symbol) - The symbol which is going to be used for substitution in place of the most rapidly varying in \(x\) subexpression.

Returns tuple - A pair: rewritten (in \(w\) ) expression and \(\log (w)\).

\section*{Examples}
```

>>> x = Symbol('x', real=True, positive=True)

```
>>> m = Symbol('m', real=True, positive=True)
>>> rewrite \((\exp (x) * \log (\log (\exp (x))), x, m)\)
(log(x)/m, -x)
diofant.series.gruntz.signinf(e, x)
Determine a sign of an expression at infinity.

\section*{Returns}
\(\{1,0,-1\}\) - One or minus one, if \(e>0\) or \(e<0\) for \(x\) sufficiently large and zero if \(e\) is constantly zero for \(x \rightarrow \infty\).
The result of this function is currently undefined if \(e\) changes sign arbitrarily often at infinity (e.g. \(\sin (x)\) ).

\subsection*{5.3 Details on the Hypergeometric Function Expansion}

This page describes how the function hyperexpand() (page 702) and related code work. For usage, see the documentation of the symplify module.

\subsection*{5.3.1 Hypergeometric Function Expansion Algorithm}

This section describes the algorithm used to expand hypergeometric functions. Most of it is based on the papers [Roa96] and [Roa97].
Recall that the hypergeometric function is (initially) defined as
\[
{ }_{p} F_{q}\left(\left.\begin{array}{c}
a_{1}, \ldots, a_{p} \\
b_{1}, \ldots, b_{q}
\end{array} \right\rvert\, z\right)=\sum_{n=0}^{\infty} \frac{\left(a_{1}\right)_{n} \ldots\left(a_{p}\right)_{n}}{\left(b_{1}\right)_{n} \ldots\left(b_{q}\right)_{n}} \frac{z^{n}}{n!} .
\]

It turns out that there are certain differential operators that can change the \(a_{p}\) and \(p_{q}\) parameters by integers. If a sequence of such operators is known that converts the set of indices \(a_{r}^{0}\) and \(b_{s}^{0}\) into \(a_{p}\) and \(b_{q}\), then we shall say the pair \(a_{p}, b_{q}\) is reachable from \(a_{r}^{0}, b_{s}^{0}\). Our general strategy is thus as follows: given a set \(a_{p}, b_{q}\) of parameters, try to look up an origin \(a_{r}^{0}, b_{s}^{0}\) for which we know an expression, and then apply the sequence of differential operators to the known expression to find an expression for the Hypergeometric function we are interested in.

\section*{Notation}

In the following, the symbol \(a\) will always denote a numerator parameter and the symbol \(b\) will always denote a denominator parameter. The subscripts \(p, q, r, s\) denote vectors of that length, so e.g. \(a_{p}\) denotes a vector of \(p\) numerator parameters. The subscripts \(i\) and \(j\) denote "running indices", so they should usually be used in conjunction with a "for all \(i\) ". E.g. \(a_{i}<4\) for all \(i\). Uppercase subscripts \(I\) and \(J\) denote a chosen, fixed index. So for example \(a_{I}>0\) is true if the inequality holds for the one index \(I\) we are currently interested in.

\section*{Incrementing and decrementing indices}

Suppose \(a_{i} \neq 0\). Set \(A\left(a_{i}\right)=\frac{z}{a_{i}} \frac{d}{d z}+1\). It is then easy to show that \(A\left(a_{i}\right)_{p} F_{q}\left(\left.\begin{array}{c}a_{p} \\ b_{q}\end{array} \right\rvert\, z\right)={ }_{p} F_{q}\left(\left.\begin{array}{c}a_{p}+e_{i} \\ b_{q}\end{array} \right\rvert\, z\right)\), where \(e_{i}\) is the i-th unit vector. Similarly for \(b_{j} \neq 1\) we set \(B\left(b_{j}\right)=\frac{z}{b_{j}-1} \frac{\mathrm{~d}}{d z}+1\) and find \(B\left(b_{j}\right)_{p} F_{q}\left(\begin{array}{c}a_{p} \\ b_{q}\end{array} z\right)={ }_{p} F_{q}\left(\left.\begin{array}{c}a_{p} \\ b_{q}-e_{i}\end{array} \right\rvert\, z\right)\). Thus we can increment upper and decrement lower indices at will, as long as we don't go through zero. The \(A\left(a_{i}\right)\) and \(B\left(b_{j}\right)\) are called shift operators.
It is also easy to show that \(\frac{\mathrm{d}}{d z} p F_{q}\left(\left.\begin{array}{c}a_{p} \\ b_{q}\end{array} \right\rvert\, z\right)=\frac{a_{1} \ldots a_{p}}{b_{1} \ldots b_{q}} p_{q}\left(\left.\begin{array}{c}a_{p}+1 \\ b_{q}+1\end{array} \right\rvert\, z\right)\), where \(a_{p}+1\) is the vector \(a_{1}+1, a_{2}+\) \(1, \ldots\) and similarly for \(b_{q}+1\). Combining this with the shift operators, we arrive at one form of the Hypergeometric differential equation: \(\left[\frac{d}{d z} \prod_{j=1}^{q} B\left(b_{j}\right)-\frac{a_{1} \ldots a_{p}}{\left(b_{1}-1\right) \ldots\left(b_{q}-1\right)} \prod_{i=1}^{p} A\left(a_{i}\right)\right]{ }_{p} F_{q}\left(\left.\begin{array}{l}a_{p} \\ b_{q}\end{array} \right\rvert\, z\right)=\) 0 . This holds if all shift operators are defined, i.e. if no \(a_{i}=0\) and no \(b_{j}=1\). Clearing denominators and multiplying through by z we arrive at the following equation: \(\left[z \frac{\mathrm{~d}}{d z} \prod_{j=1}^{q}\left(z \frac{\mathrm{~d}}{d z}+b_{j}-1\right)-z \prod_{i=1}^{p}\left(z \frac{\mathrm{~d}}{\mathrm{~d} z}+a_{i}\right)\right]_{p} F_{q}\left(\left.\begin{array}{c}a_{p} \\ b_{q}\end{array} \right\rvert\, z\right)=0\). Even though our derivation does not show it, it can be checked that this equation holds whenever the \({ }_{p} F_{q}\) is defined.
Notice that, under suitable conditions on \(a_{I}, b_{J}\), each of the operators \(A\left(a_{i}\right), B\left(b_{j}\right)\) and \(z \frac{\mathrm{~d}}{\mathrm{~d} z}\) can be expressed in terms of \(A\left(a_{I}\right)\) or \(B\left(b_{J}\right)\). Our next aim is to write the Hypergeometric differential equation as follows: \(\left[X A\left(a_{I}\right)-r\right]_{p} F_{q}\left(\left.\begin{array}{l}a_{p} \\ b_{q}\end{array} \right\rvert\, z\right)=0\), for some operator \(X\) and some constant \(r\) to be determined. If \(r \neq 0\), then we can write this as \(\frac{-1}{r} X_{p} F_{q}\left(\left.\begin{array}{c}a_{p}+e_{I} \\ b_{q}\end{array} \right\rvert\, z\right)={ }_{p} F_{q}\left(\left.\begin{array}{l}a_{p} \\ b_{q}\end{array} \right\rvert\, z\right)\), and so \(\frac{-1}{r} X\) undoes the shifting of \(A\left(a_{I}\right)\), whence it will be called an inverse-shift operator.

Now \(A\left(a_{I}\right)\) exists if \(a_{I} \neq 0\), and then \(z \frac{\mathrm{~d}}{\mathrm{~d} z}=a_{I} A\left(a_{I}\right)-a_{I}\). Observe also that all the operators \(A\left(a_{i}\right), B\left(b_{j}\right)\) and \(z \frac{\mathrm{~d}}{\mathrm{~d} z}\) commute. We have \(\prod_{i=1}^{p}\left(z \frac{\mathrm{~d}}{\mathrm{~d} z}+a_{i}\right)=\left(\prod_{i=1, i \neq I}^{p}\left(z \frac{\mathrm{~d}}{\mathrm{~d} z}+a_{i}\right)\right) a_{I} A\left(a_{I}\right)\), so this gives us the first half of \(X\). The other half does not have such a nice expression. We find \(z \frac{\mathrm{~d}}{\mathrm{~d} z} \prod_{j=1}^{q}\left(z \frac{\mathrm{~d}}{\mathrm{~d} z}+b_{j}-1\right)=\left(a_{I} A\left(a_{I}\right)-a_{I}\right) \prod_{j=1}^{q}\left(a_{I} A\left(a_{I}\right)-a_{I}+b_{j}-1\right)\). Since the first half had no constant term, we infer \(r=-a_{I} \prod_{j=1}^{q}\left(b_{j}-1-a_{I}\right)\).
This tells us under which conditions we can "un-shift" \(A\left(a_{I}\right)\), namely when \(a_{I} \neq 0\) and \(r \neq 0\). Substituting \(a_{I}-1\) for \(a_{I}\) then tells us under what conditions we can decrement the index \(a_{I}\). Doing a similar analysis for \(B\left(a_{J}\right)\), we arrive at the following rules:
- An index \(a_{I}\) can be decremented if \(a_{I} \neq 1\) and \(a_{I} \neq b_{j}\) for all \(b_{j}\).
- An index \(b_{J}\) can be incremented if \(b_{J} \neq-1\) and \(b_{J} \neq a_{i}\) for all \(a_{i}\).

Combined with the conditions (stated above) for the existence of shift operators, we have thus established the rules of the game!

\section*{Reduction of Order}

Notice that, quite trivially, if \(a_{I}=b_{J}\), we have \({ }_{p} F_{q}\left(\left.\begin{array}{l}a_{p} \\ b_{q}\end{array} \right\rvert\, z\right)={ }_{p-1} F_{q-1}\left(\left.\begin{array}{l}a_{p}^{*} \\ b_{q}^{*}\end{array} \right\rvert\, z\right)\), where \(a_{p}^{*}\) means \(a_{p}\) with \(a_{I}\) omitted, and similarly for \(b_{q}^{*}\). We call this reduction of order.
In fact, we can do even better. If \(a_{I}-b_{J} \in \mathbb{Z}_{>0}\), then it is easy to see that \(\frac{\left(a_{I}\right)_{n}}{\left(b_{J}\right)_{n}}\) is actually a polynomial in \(n\). It is also easy to see that \(\left(z \frac{\mathrm{~d}}{\mathrm{~d} z}\right)^{k} z^{n}=n^{k} z^{n}\). Combining these two remarks we find:
\[
\begin{aligned}
& \text { If } a_{I}-b_{J} \in \mathbb{Z}_{>0} \text {, then there exists a polynomial } p(n)=p_{0}+p_{1} n+\ldots \text { (of degree } a_{I}-b_{J} \text { ) } \\
& \text { such that } \frac{\left(a_{I}\right)_{n}}{\left(b_{J}\right)_{n}}=p(n) \text { and }{ }_{p} F_{q}\left(\left.\begin{array}{c}
a_{p} \\
b_{q}
\end{array} \right\rvert\, z\right)=\left(p_{0}+p_{1} z \frac{\mathrm{~d}}{\mathrm{~d} z}+p_{2}\left(z \frac{\mathrm{~d}}{\mathrm{~d} z}\right)^{2}+\ldots\right){ }_{p-1} F_{q-1}\left(\left.\begin{array}{l}
a_{b}^{*} \\
b_{q}^{*}
\end{array} \right\rvert\, z\right) .
\end{aligned}
\]

Thus any set of parameters \(a_{p}, b_{q}\) is reachable from a set of parameters \(c_{r}, d_{s}\) where \(c_{i}-d_{j} \in \mathbb{Z}\) implies \(c_{i}<d_{j}\). Such a set of parameters \(c_{r}, d_{s}\) is called suitable. Our database of known formulae should only contain suitable origins. The reasons are twofold: firstly, working from suitable origins is easier, and secondly, a formula for a non-suitable origin can be deduced from a lower order formula, and we should put this one into the database instead.

\section*{Moving Around in the Parameter Space}

It remains to investigate the following question: suppose \(a_{p}, b_{q}\) and \(a_{p}^{0}, b_{q}^{0}\) are both suitable, and also \(a_{i}-a_{i}^{0} \in \mathbb{Z}, b_{j}-b_{j}^{0} \in \mathbb{Z}\). When is \(a_{p}, b_{q}\) reachable from \(a_{p}^{0}, b_{q}^{0}\) ? It is clear that we can treat all parameters independently that are incongruent mod 1. So assume that \(a_{i}\) and \(b_{j}\) are congruent to \(r \bmod 1\), for all \(i\) and \(j\). The same then follows for \(a_{i}^{0}\) and \(b_{j}^{0}\).
If \(r \neq 0\), then any such \(a_{p}, b_{q}\) is reachable from any \(a_{p}^{0}, b_{q}^{0}\). To see this notice that there exist constants \(c, c^{0}\), congruent mod 1 , such that \(a_{i}<c<b_{j}\) for all \(i\) and \(j\), and similarly \(a_{i}^{0}<c^{0}<b_{j}^{0}\). If \(n=c-c^{0}>0\) then we first inverse-shift all the \(b_{j}^{0} n\) times up, and then similarly shift up all the \(a_{i}^{0} n\) times. If \(n<0\) then we first inverse-shift down the \(a_{i}^{0}\) and then shift down the \(b_{j}^{0}\). This reduces to the case \(c=c^{0}\). But evidently we can now shift or inverse-shift around the \(a_{i}^{0}\) arbitrarily so long as we keep them less than \(c\), and similarly for the \(b_{j}^{0}\) so long as we keep them bigger than \(c\). Thus \(a_{p}, b_{q}\) is reachable from \(a_{p}^{0}, b_{q}^{0}\).
If \(r=0\) then the problem is slightly more involved. WLOG no parameter is zero. We now have one additional complication: no parameter can ever move through zero. Hence \(a_{p}, b_{q}\) is reachable from \(a_{p}^{0}, b_{q}^{0}\) if and only if the number of \(a_{i}<0\) equals the number of \(a_{i}^{0}<0\), and
similarly for the \(b_{i}\) and \(b_{i}^{0}\). But in a suitable set of parameters, all \(b_{j}>0\) ! This is because the Hypergeometric function is undefined if one of the \(b_{j}\) is a non-positive integer and all \(a_{i}\) are smaller than the \(b_{j}\). Hence the number of \(b_{j} \leq 0\) is always zero.
We can thus associate to every suitable set of parameters \(a_{p}, b_{q}\), where no \(a_{i}=0\), the following invariants:
- For every \(r \in[0,1)\) the number \(\alpha_{r}\) of parameters \(a_{i} \equiv r(\bmod 1)\), and similarly the number \(\beta_{r}\) of parameters \(b_{i} \equiv r(\bmod 1)\).
- The number \(\gamma\) of integers \(a_{i}\) with \(a_{i}<0\).

The above reasoning shows that \(a_{p}, b_{q}\) is reachable from \(a_{p}^{0}, b_{q}^{0}\) if and only if the invariants \(\alpha_{r}, \beta_{r}, \gamma\) all agree. Thus in particular "being reachable from" is a symmetric relation on suitable parameters without zeros.

\section*{Applying the Operators}

If all goes well then for a given set of parameters we find an origin in our database for which we have a nice formula. We now have to apply (potentially) many differential operators to it. If we do this blindly then the result will be very messy. This is because with Hypergeometric type functions, the derivative is usually expressed as a sum of two contiguous functions. Hence if we compute \(N\) derivatives, then the answer will involve \(2 N\) contiguous functions! This is clearly undesirable. In fact we know from the Hypergeometric differential equation that we need at most \(\max (p, q+1)\) contiguous functions to express all derivatives.
Hence instead of differentiating blindly, we will work with a \(\mathbb{C}(z)\)-module basis: for an origin \(a_{r}^{0}, b_{s}^{0}\) we either store (for particularly pretty answers) or compute a set of \(N\) functions (typically \(N=\max (r, s+1)\) ) with the property that the derivative of any of them is a \(\mathbb{C}(z)\)-linear combination of them. In formulae, we store a vector \(B\) of \(N\) functions, a matrix \(M\) and a vector \(C\) (the latter two with entries in \(\mathbb{C}(z)\) ), with the following properties:
- \({ }_{r} F_{s}\left(\left.\begin{array}{l}a_{r}^{0} \\ b_{s}^{0}\end{array} \right\rvert\, z\right)=C B\)
- \(z \frac{\mathrm{~d}}{\mathrm{~d} z} B=M B\).

Then we can compute as many derivatives as we want and we will always end up with \(\mathbb{C}(z)\) linear combination of at most \(N\) special functions.

As hinted above, \(B, M\) and \(C\) can either all be stored (for particularly pretty answers) or computed from a single \({ }_{p} F_{q}\) formula.

\section*{Loose Ends}

This describes the bulk of the hypergeometric function algorithm. There a few further tricks, described in the hyperexpand.py source file. The extension to Meijer G-functions is also described there.

\subsection*{5.3.2 Meijer G-Functions of Finite Confluence}

Slater's theorem essentially evaluates a \(G\)-function as a sum of residues. If all poles are simple, the resulting series can be recognised as hypergeometric series. Thus a \(G\)-function can be evaluated as a sum of Hypergeometric functions.
If the poles are not simple, the resulting series are not hypergeometric. This is known as the "confluent" or "logarithmic" case (the latter because the resulting series tend to contain logarithms). The answer depends in a complicated way on the multiplicities of various poles, and there is no accepted notation for representing it (as far as I know). However if there are only finitely many multiple poles, we can evaluate the \(G\) function as a sum of hypergeometric functions, plus finitely many extra terms. I could not find any good reference for this, which is why I work it out here.
Recall the general setup. We define
\[
G(z)=\frac{1}{2 \pi i} \int_{L} \frac{\prod_{j=1}^{m} \Gamma\left(b_{j}-s\right) \prod_{j=1}^{n} \Gamma\left(1-a_{j}+s\right)}{\prod_{j=m+1}^{q} \Gamma\left(1-b_{j}+s\right) \prod_{j=n+1}^{p} \Gamma\left(a_{j}-s\right)} z^{s} \mathrm{~d} s,
\]
where \(L\) is a contour starting and ending at \(+\infty\), enclosing all of the poles of \(\Gamma\left(b_{j}-s\right)\) for \(j=1, \ldots, n\) once in the negative direction, and no other poles. Also the integral is assumed absolutely convergent.
In what follows, for any complex numbers \(a, b\), we write \(a \equiv b(\bmod 1)\) if and only if there exists an integer \(k\) such that \(a-b=k\). Thus there are double poles iff \(a_{i} \equiv a_{j}(\bmod 1)\) for some \(i \neq j \leq n\).
We now assume that whenever \(b_{j} \equiv a_{i}(\bmod 1)\) for \(i \leq m, j>n\) then \(b_{j}<a_{i}\). This means that no quotient of the relevant gamma functions is a polynomial, and can always be achieved by "reduction of order". Fix a complex number \(c\) such that \(\left\{b_{i} \mid b_{i} \equiv c(\bmod 1), i \leq m\right\}\) is not empty. Enumerate this set as \(b, b+k_{1}, \ldots, b+k_{u}\), with \(k_{i}\) non-negative integers. Enumerate similarly \(\left\{a_{j} \mid a_{j} \equiv c(\bmod 1), j>n\right\}\) as \(b+l_{1}, \ldots, b+l_{v}\). Then \(l_{i}>k_{j}\) for all \(i, j\). For finite confluence, we need to assume \(v \geq u\) for all such \(c\).
Let \(c_{1}, \ldots, c_{w}\) be distinct \((\bmod 1)\) and exhaust the congruence classes of the \(b_{i}\). I claim
\[
G(z)=-\sum_{j=1}^{w}\left(F_{j}(z)+R_{j}(z)\right),
\]
where \(F_{j}(z)\) is a hypergeometric function and \(R_{j}(z)\) is a finite sum, both to be specified later. Indeed corresponding to every \(c_{j}\) there is a sequence of poles, at mostly finitely many of them multiple poles. This is where the \(j\)-th term comes from.
Hence fix again \(c\), enumerate the relevant \(b_{i}\) as \(b, b+k_{1}, \ldots, b+k_{u}\). We will look at the \(a_{j}\) corresponding to \(a+l_{1}, \ldots, a+l_{u}\). The other \(a_{i}\) are not treated specially. The corresponding gamma functions have poles at (potentially) \(s=b+r\) for \(r=0,1, \ldots\). For \(r \geq l_{u}\), pole of the integrand is simple. We thus set
\[
R(z)=\sum_{r=0}^{l_{u}-1} r e s_{s=r+b} .
\]

We finally need to investigate the other poles. Set \(r=l_{u}+t, t \geq 0\). A computation shows
\[
\frac{\Gamma\left(k_{i}-l_{u}-t\right)}{\Gamma\left(l_{i}-l_{u}-t\right)}=\frac{1}{\left(k_{i}-l_{u}-t\right){l_{i}-k_{i}}}=\frac{(-1)^{\delta_{i}}}{\left(l_{u}-l_{i}+1\right)_{\delta_{i}}} \frac{\left(l_{u}-l_{i}+1\right)_{t}}{\left(l_{u}-k_{i}+1\right)_{t}},
\]
where \(\delta_{i}=l_{i}-k_{i}\).

Also
\[
\begin{array}{r}
\Gamma\left(b_{j}-l_{u}-b-t\right)=\frac{\Gamma\left(b_{j}-l_{u}-b\right)}{(-1)^{)^{t}\left(l_{u}+b+1-b_{j}\right)_{t}},} \\
\Gamma\left(1-a_{j}+l_{u}+b+t\right)=\Gamma\left(1-a_{j}+l_{u}+b\right)\left(1-a_{j}+l_{u}+b\right)_{t}
\end{array}
\]
and
\[
r e s_{s=b+l_{u}+t} \Gamma(b-s)=-\frac{(-1)^{l_{u}+t}}{\left(l_{u}+t\right)!}=-\frac{(-1)^{l_{u}}}{l_{u}!} \frac{(-1)^{t}}{\left(l_{u}+1\right)_{t}} .
\]

Hence
\[
\begin{aligned}
\operatorname{res}_{s=b+l_{u}+t}= & -z^{b+l_{u}} \frac{(-1)^{l_{u}}}{l_{u}!} \prod_{i=1}^{u} \frac{(-1)^{\delta_{i}}}{\left(l_{u}-k_{i}+1\right)_{\delta_{i}}} \frac{\prod_{j=1}^{n} \Gamma\left(1-a_{j}+l_{u}+b\right) \prod_{j=1}^{m} \Gamma\left(b_{j}-l_{u}-b\right)^{*}}{\prod_{j=n+1}^{p} \Gamma\left(a_{j}-l_{u}-b\right)^{*} \prod_{j=m+1}^{q} \Gamma\left(1-b_{j}+l_{u}+b\right)} \\
& \times z^{t} \frac{(-1)^{t}}{\left(l_{u}+1\right)_{t}} \prod_{i=1}^{u} \frac{\left(l_{u}-l_{i}+1\right)_{t}}{\left(\prod_{u}-k_{i}+1\right)_{t}} \frac{\prod_{j=1}^{n}\left(1-a_{j}+l_{u}+b\right)_{t} \prod_{j=n+1}^{p}(-1)^{t}\left(l_{u}+b+1-a_{j}\right)_{t}^{*}}{\prod_{j=1}^{m}(-1)^{t}\left(l_{u}+b+1-b_{j}\right)_{t}^{*} \prod_{j=m+1}^{q}\left(1-b_{j}+l_{u}+b\right)_{t}},
\end{aligned}
\]
where the \(*\) means to omit the terms we treated specially.
We thus arrive at
\[
F(z)=C \times{ }_{p+1} F_{q}\left(\left.\begin{array}{c}
1,\left(1+l_{u}-l_{i}\right),\left(1+l_{u}+b-a_{i}\right)^{*} \\
1+l_{u},\left(1+l_{u}-k_{i}\right),\left(1+l_{u}+b-b_{i}\right)^{*}
\end{array} \right\rvert\,(-1)^{p-m-n} z\right),
\]
where \(C\) designates the factor in the residue independent of \(t\). (This result can also be written in slightly simpler form by converting all the \(l_{u}\) etc back to \(a_{*}-b_{*}\), but doing so is going to require more notation still and is not helpful for computation.)

\subsection*{5.3.3 Extending The Hypergeometric Tables}

Adding new formulae to the tables is straightforward. At the top of the file diofant/ simplify/hyperexpand.py, there is a function called add_formulae() (page 1007). Nested in it are defined two helpers, add(ap, bq, res) and addb(ap, bq, B, C, M), as well as dummys \(a, b, c\), and \(z\).
The first step in adding a new formula is by using add ( \(a p, b q\), res). This declares hyper ( \(a p\), \(b q, z\) ) == res. Here \(a p\) and \(b q\) may use the dummys \(a, b\), and \(c\) as free symbols. For example the well-known formula \(\sum_{0}^{\infty} \frac{(-a)_{n} z^{n}}{n!}=(1-z)^{a}\) is declared by the following line: add ( ( \(-\mathrm{a}, \mathrm{)}\) ), (), (1-z)**a).

From the information provided, the matrices \(B, C\) and \(M\) will be computed, and the formula is now available when expanding hypergeometric functions. Next the test file diofant/ simplify/tests/test_hyperexpand.py should be run, in particular the test test_formulae. This will test the newly added formula numerically. If it fails, there is (presumably) a typo in what was entered.

Since all newly-added formulae are probably relatively complicated, chances are that the automatically computed basis is rather suboptimal (there is no good way of testing this, other than observing very messy output). In this case the matrices \(B, C\) and \(M\) should be computed by hand. Then the helper addb can be used to declare a hypergeometric formula with handcomputed basis.

\section*{An example}

Because this explanation so far might be very theoretical and difficult to understand, we walk through an explicit example now. We take the Fresnel function \(C(z)\) which obeys the following hypergeometric representation:
\[
C(z)=z \cdot{ }_{1} F_{2}\left(\frac{1}{\frac{1}{2}}, \frac{5}{4} \left\lvert\,-\frac{\pi^{2} z^{4}}{16}\right.\right) .
\]

First we try to add this formula to the lookup table by using the (simpler) function add (ap, \(\mathrm{bq}, \mathrm{res})\). The first two arguments are simply the lists containing the parameter sets of \({ }_{1} F_{2}\). The res argument is a little bit more complicated. We only know \(C(z)\) in terms of \({ }_{1} F_{2}(\ldots \mid f(z))\) with \(f\) a function of \(z\), in our case
\[
f(z)=-\frac{\pi^{2} z^{4}}{16} .
\]

What we need is a formula where the hypergeometric function has only \(z\) as argument \({ }_{1} F_{2}(\ldots \mid z)\). We introduce the new complex symbol \(w\) and search for a function \(g(w)\) such that
\[
f(g(w))=w
\]
holds. Then we can replace every \(z\) in \(C(z)\) by \(g(w)\). In the case of our example the function \(g\) could look like
\[
g(w)=\frac{2}{\sqrt{\pi}} \exp \left(\frac{i \pi}{4}\right) w^{\frac{1}{4}} .
\]

We get these functions mainly by guessing and testing the result. Hence we proceed by computing \(f(g(w))\) (and simplifying naively)
\[
\begin{aligned}
f(g(w)) & =-\frac{\pi^{2} g(w)^{4}}{16} \\
& =-\frac{\pi^{2} g\left(\frac{2}{\sqrt{\pi}} \exp \left(\frac{i \pi}{4}\right) w^{\frac{1}{4}}\right)^{4}}{16} \\
& =-\frac{\pi^{2} \frac{2}{}^{4} \sqrt{\pi}^{4} \exp \left(\frac{i \pi}{4}\right)^{4} w^{\frac{1}{4}}}{16} \\
& =-\exp (i \pi) w \\
& =w
\end{aligned}
\]
and indeed get back \(w\). (In case of branched functions we have to be aware of branch cuts. In that case we take \(w\) to be a positive real number and check the formula. If what we have found works for positive \(w\), then just replace \(\exp ()\) (page 305) inside any branched function by exp_polar() (page 306) and what we get is right for all w.) Hence we can write the formula as
\[
C(g(w))=g(w) \cdot{ }_{1} F_{2}\left(\left.\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2}, \frac{5}{4}
\end{array} \right\rvert\, w\right) .
\]
and trivially
\[
{ }_{1} F_{2}\left(\frac{\frac{1}{4}}{\frac{1}{2}}, \left.\frac{5}{4} \right\rvert\, w\right)=\frac{C(g(w))}{g(w)}=\frac{C\left(\frac{2}{\sqrt{\pi}} \exp \left(\frac{i \pi}{4}\right) w^{\frac{1}{4}}\right)}{\frac{2}{\sqrt{\pi}} \exp \left(\frac{i \pi}{4}\right) w^{\frac{1}{4}}}
\]
which is exactly what is needed for the third parameter, res, in add. Finally, the whole function call to add this rule to the table looks like:
```

add([Rational(1, 4)],
[Rational(1, 2), Rational(5, 4)],
fresnelc(exp(pi*I/4)*root(z,4)*2/sqrt(pi)) / (exp(pi*I/4)*root(z,4)*2/sqrt(pi))
)

```

Using this rule we will find that it works but the results are not really nice in terms of simplicity and number of special function instances included. We can obtain much better results by adding the formula to the lookup table in another way. For this we use the (more complicated) function \(\operatorname{addb}(\mathrm{ap}, \mathrm{bq}, \mathrm{B}, \mathrm{C}, \mathrm{M})\). The first two arguments are again the lists containing the parameter sets of \({ }_{1} F_{2}\). The remaining three are the matrices mentioned earlier on this page.
We know that the \(n=\max (p, q+1)\)-th derivative can be expressed as a linear combination of lower order derivatives. The matrix \(B\) contains the basis \(\left\{B_{0}, B_{1}, \ldots\right\}\) and is of shape \(n \times 1\). The best way to get \(B_{i}\) is to take the first \(n=\max (p, q+1)\) derivatives of the expression for \({ }_{p} F_{q}\) and take out useful pieces. In our case we find that \(n=\max (1,2+1)=3\). For computing the derivatives, we have to use the operator \(z \frac{\mathrm{~d}}{\mathrm{~d} z}\). The first basis element \(B_{0}\) is set to the expression for \({ }_{1} F_{2}\) from above:
\[
B_{0}=\frac{\sqrt{\pi} \exp \left(-\frac{\imath \pi}{4}\right) C\left(\frac{2}{\sqrt{\pi}} \exp \left(\frac{2 \pi}{4}\right) z^{\frac{1}{4}}\right)}{2 z^{\frac{1}{4}}}
\]

Next we compute \(z \frac{\mathrm{~d}}{\mathrm{~d} z} B_{0}\). For this we can directly use Diofant!
```

>>> B0 = (sqrt(pi)*exp(-I*pi/4) *
\#.. fresnelc(2*root(z, 4)*exp(I*pi/4)/sqrt(pi))/(2*root(z, 4)))
>>> z * diff(B0, z)
z*(cosh(2*sqrt(z))/(4*z) - E**(-I*pi/4)*sqrt(pi)*fresnelc(2*E**(I*pi/4)*z**(1/4)/
->sqrt(pi))/(8*z**(5/4)))
>>> expand(_)
cosh(2*sqrt(z))/4 - E**(-I*pi/4)*sqrt(pi)*fresnelc(2*E**(I*pi/4)*z**(1/4)/sqrt(pi))/
->(8*z**(1/4))

```

Formatting this result nicely we obtain
\[
B_{1}^{\prime}=-\frac{1}{4} \frac{\sqrt{\pi} \exp \left(-\frac{2 \pi}{4}\right) C\left(\frac{2}{\sqrt{\pi}} \exp \left(\frac{2 \pi}{4}\right) z^{\frac{1}{4}}\right)}{2 z^{\frac{1}{4}}}+\frac{1}{4} \cosh (2 \sqrt{z})
\]

Computing the second derivative we find
```

>>> Blprime = cosh(2*sqrt(z))/4 - sqrt(pi)*exp(-I*pi/4) * \
\#. fresnelc(2*root(z, 4)*exp(I*pi/4)/sqrt(pi))/(8*root(z, 4))
>>> z * diff(B1prime, z)
z*(-cosh(2*sqrt(z))/(16*z) + sinh(2*sqrt(z))/(4*sqrt(z)) + E**(-I*pi/
4)*sqrt(pi)*fresnelc(2*E**(I*pi/4)*z**(1/4)/sqrt(pi))/(32*z**(5/4)))
>>> expand()
sqrt(z)*sinh}(2*sqrt(z))/4 - cosh(2*sqrt(z))/16 + E**(-I*pi/
\leftrightarrow4)*sqrt(pi)*fresnelc(2*E**(I*pi/4)*Z**(1/4)/sqrt(pi))/(32*z**(1/4))

```
which can be printed as
\[
B_{2}^{\prime}=\frac{1}{16} \frac{\sqrt{\pi} \exp \left(-\frac{2 \pi}{4}\right) C\left(\frac{2}{\sqrt{\pi}} \exp \left(\frac{2 \pi}{4}\right) z^{\frac{1}{4}}\right)}{2 z^{\frac{1}{4}}}-\frac{1}{16} \cosh (2 \sqrt{z})+\frac{1}{4} \sinh (2 \sqrt{z}) \sqrt{z}
\]

We see the common pattern and can collect the pieces. Hence it makes sense to choose \(B_{1}\) and \(B_{2}\) as follows
\[
B=\left(\begin{array}{l}
B_{0} \\
B_{1} \\
B_{2}
\end{array}\right)=\binom{\frac{\sqrt{\pi} \exp \left(-\frac{2 \pi}{4}\right) C\left(\frac{2}{\sqrt{\sqrt{2}}} \exp \left(\frac{2 \pi}{4}\right) z^{\frac{1}{4}}\right)}{\cosh ^{2 v^{\pi}}(2 \sqrt{z})}}{\sinh (2 \sqrt{z}) \sqrt{z}}
\]
(This is in contrast to the basis \(B=\left(B_{0}, B_{1}^{\prime}, B_{2}^{\prime}\right)\) that would have been computed automatically if we used just add(ap, bq, res).)
Because it must hold that \({ }_{p} F_{q}(\cdots \mid z)=C B\) the entries of \(C\) are obviously
\[
C=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)
\]

Finally we have to compute the entries of the \(3 \times 3\) matrix \(M\) such that \(z \frac{\mathrm{~d}}{\mathrm{~d} z} B=M B\) holds. This is easy. We already computed the first part \(z \frac{\mathrm{~d}}{\mathrm{~d} z} B_{0}\) above. This gives us the first row of \(M\). For the second row we have:
```

>>> B1 = cosh(2*sqrt(z))
>>> z * diff(B1, z)
sqrt(z)*sinh(2*sqrt(z))

```
and for the third one
```

>>> B2 = sinh(2*sqrt(z))*sqrt(z)
>>> expand(z * diff(B2, z))
sqrt(z)*sinh(2*sqrt(z))/2 + z*cosh(2*sqrt(z))

```

Now we have computed the entries of this matrix to be
\[
M=\left(\begin{array}{ccc}
-\frac{1}{4} & \frac{1}{4} & 0 \\
0 & 0 & 1 \\
0 & z & \frac{1}{2}
\end{array}\right)
\]

Note that the entries of \(C\) and \(M\) should typically be rational functions in \(z\), with rational coefficients. This is all we need to do in order to add a new formula to the lookup table for hyperexpand.

\subsection*{5.3.4 Implemented Hypergeometric Formulae}

A vital part of the algorithm is a relatively large table of hypergeometric function representations. The following automatically generated list contains all the representations implemented in Diofant (of course many more are derived from them). These formulae are mostly taken from [Luk69] and [APPM90]. They are all tested numerically.
\[
\begin{aligned}
& { }_{0} F_{0}(\mid z)=e^{z} \\
& { }_{1} F_{0}(a \mid z)=(-z+1)^{-a} \\
& { }_{2} F_{1}\left(\left.\begin{array}{c}
a, \left.a-\frac{1}{2} \right\rvert\, z \\
2 a
\end{array} \right\rvert\, z=2^{2 a-1}(\sqrt{-z+1}+1)^{-2 a+1}\right. \\
& { }_{2} F_{1}\left(\begin{array}{c|c}
1,1 \\
2 & z
\end{array}\right)=-\frac{1}{z} \log (-z+1) \\
& { }_{2} F_{1}\left(\left.\begin{array}{c}
\frac{1}{2}, 1 \\
\frac{3}{2}
\end{array} \right\rvert\, z\right)=\frac{1}{\sqrt{z}} \operatorname{atanh}(\sqrt{z}) \\
& { }_{2} F_{1}\left(\left.\begin{array}{c}
\frac{1}{2}, \frac{1}{2} \\
\frac{3}{2}
\end{array} \right\rvert\, z\right)=\frac{1}{\sqrt{z}} \operatorname{asin}(\sqrt{z})
\end{aligned}
\]
\[
\begin{aligned}
& { }_{2} F_{1}\left(\left.\begin{array}{c}
a, a+\frac{1}{2} \\
\frac{1}{2}
\end{array} \right\rvert\, z\right)=\frac{1}{2}(\sqrt{z}+1)^{-2 a}+\frac{1}{2}(-\sqrt{z}+1)^{-2 a} \\
& { }_{2} F_{1}\left(\left.\begin{array}{c}
a,-a \\
\frac{1}{2}
\end{array} \right\rvert\, z\right)=\cos (2 a \operatorname{asin}(\sqrt{z})) \\
& { }_{2} F_{1}\left(\left.\begin{array}{c}
1,1 \\
\frac{3}{2}
\end{array} \right\rvert\, z\right)=\frac{\operatorname{asin}(\sqrt{z})}{\sqrt{z} \sqrt{-z+1}} \\
& { }_{2} F_{1}\left(\frac{1}{2}, \left.\frac{1}{2} \right\rvert\, z\right)=\frac{2 K(z)}{\pi} \\
& { }_{2} F_{1}\left(\left.\begin{array}{c}
-\frac{1}{2}, \frac{1}{2} \\
1
\end{array} \right\rvert\, z\right)=\frac{2 E(z)}{\pi} \\
& { }_{3} F_{2}\left(\left.\begin{array}{c}
-\frac{1}{2}, 1,1 \\
\frac{1}{2}, 2
\end{array} \right\rvert\, z\right)=-\frac{2 \sqrt{z}}{3} \operatorname{atanh}(\sqrt{z})+\frac{2}{3}-\frac{1}{3 z} \log (-z+1) \\
& { }_{3} F_{2}\left(\left.\begin{array}{c}
-\frac{1}{2}, 1,1 \\
2,2
\end{array} \right\rvert\, z\right)=\left(\frac{4}{9}-\frac{16}{9 z}\right) \sqrt{-z+1}+\frac{4}{3 z} \log \left(\frac{1}{2} \sqrt{-z+1}+\frac{1}{2}\right)+\frac{16}{9 z} \\
& { }_{1} F_{1}\left(\left.\begin{array}{l}
1 \\
b
\end{array} \right\rvert\, z\right)=e^{z} z^{-b+1}(b-1) \gamma(b-1, z) \\
& { }_{1} F_{1}\left(\left.\begin{array}{c}
a \\
2 a
\end{array} \right\rvert\, z\right)=4^{a-\frac{1}{2}} e^{\frac{z}{2}} z^{-a+\frac{1}{2}} I_{a-\frac{1}{2}}\left(\frac{z}{2}\right) \Gamma\left(a+\frac{1}{2}\right) \\
& { }_{1} F_{1}\left(\left.\begin{array}{c}
a \\
a+1
\end{array} \right\rvert\, z\right)=a\left(z \exp _{\text {polar }}(i \pi)\right)^{-a} \gamma\left(a, z \exp _{\text {polar }}(i \pi)\right) \\
& { }_{1} F_{1}\left(\left.\begin{array}{c}
-\frac{1}{2} \\
\frac{1}{2}
\end{array} \right\rvert\, z\right)=e^{z}+i \sqrt{\pi} \sqrt{z} \operatorname{erf}(i \sqrt{z}) \\
& { }_{1} F_{2}\left(\left.\begin{array}{c}
1 \\
\frac{3}{4}, \frac{5}{4}
\end{array} \right\rvert\, z\right)=\frac{e^{-\frac{i \pi}{4}} \sqrt{\pi}}{2 \sqrt[4]{z}}\left(i \sinh (2 \sqrt{z}) S\left(\frac{2 \sqrt[4]{z}}{\sqrt{\pi}} e^{\frac{i \pi}{4}}\right)+\cosh (2 \sqrt{z}) C\left(\frac{2 \sqrt[4]{z}}{\sqrt{\pi}} e^{\frac{i \pi}{4}}\right)\right) \\
& { }_{2} F_{2}\left(\left.\begin{array}{c}
\frac{1}{2}, a \\
\frac{3}{2}, a+1
\end{array} \right\rvert\, z\right)=-\frac{i \sqrt{\pi} a \sqrt{\frac{1}{z}}}{2 a-1} \operatorname{erf}(i \sqrt{z})-\frac{a\left(z \exp _{\text {polar }}(i \pi)\right)^{-a}}{2 a-1} \gamma\left(a, z \exp _{\text {polar }}(i \pi)\right) \\
& { }_{2} F_{2}\left(\left.\begin{array}{l}
1,1 \\
2,2
\end{array} \right\rvert\, z\right)=\frac{1}{z}(-\log (z)+\operatorname{Ei}(z))-\frac{\gamma}{z} \\
& { }_{0} F_{1}\left(\left.{ }_{\frac{1}{2}} \right\rvert\, z\right)=\cosh (2 \sqrt{z}) \\
& { }_{0} F_{1}\left({ }_{b} \mid z\right)=z^{-\frac{b}{2}+\frac{1}{2}} I_{b-1}(2 \sqrt{z}) \Gamma(b) \\
& { }_{0} F_{3}\left(\frac{1}{2}, a, \left.a+\frac{1}{2} \right\rvert\, z\right)=2^{-2 a} z^{-\frac{a}{2}+\frac{1}{4}}\left(I_{2 a-1}(4 \sqrt[4]{z})+J_{2 a-1}(4 \sqrt[4]{z})\right) \Gamma(2 a) \\
& { }_{0} F_{3}\left(a, a+\frac{1}{2}, 2 a \mid z\right)=\left(2 \sqrt{z} \exp _{\text {polar }}\left(\frac{i \pi}{2}\right)\right)^{-2 a+1} I_{2 a-1}\left(2 \sqrt{2} \sqrt[4]{z} \exp _{\text {polar }}\left(\frac{i \pi}{4}\right)\right) J_{2 a-1}\left(2 \sqrt{2} \sqrt[4]{z} \exp _{\text {polar }}\left(\frac{i \pi}{4}\right)\right) \Gamma^{2}(2 a) \\
& { }_{1} F_{2}\left(\left.\begin{array}{c}
a \\
a-\frac{1}{2}, 2 a
\end{array} \right\rvert\, z\right)=2 \cdot 4^{a-1} z^{-a+1} I_{a-\frac{3}{2}}(\sqrt{z}) I_{a-\frac{1}{2}}(\sqrt{z}) \Gamma\left(a-\frac{1}{2}\right) \Gamma\left(a+\frac{1}{2}\right)-4^{a-\frac{1}{2}} z^{-a+\frac{1}{2}} I_{a-\frac{1}{2}}^{2}(\sqrt{z}) \Gamma^{2}\left(a+\frac{1}{2}\right) \\
& { }_{1} F_{2}\left(\left.\begin{array}{c}
\frac{1}{2} \\
b,-b+2
\end{array}\right|^{z}\right)=\frac{\pi I_{-b+1}(\sqrt{z}) I_{b-1}(\sqrt{z})}{\sin (\pi b)}(-b+1) \\
& { }_{1} F_{2}\left(\frac{\frac{3}{2}}{\frac{1}{2}}, \left.\frac{3}{2} \right\rvert\, z\right)=\frac{1}{2 \sqrt{z}} \operatorname{Shi}(2 \sqrt{z})
\end{aligned}
\]
\[
\begin{gathered}
{ }_{1} F_{2}\left(\begin{array}{c}
\frac{3}{2} \\
\frac{3}{4}
\end{array}\left|\frac{7}{4}\right| z\right)=\frac{3 \sqrt{\pi}}{4 z^{\frac{3}{4}}} e^{-\frac{3 i}{4} \pi} S\left(\frac{2 \sqrt[4]{z}}{\sqrt{\pi}} e^{\frac{i \pi}{4}}\right) \\
{ }_{1} F_{2}\left({ }_{\frac{1}{4}}^{\frac{1}{4}}, \left.\frac{5}{4} \right\rvert\, z\right)=\frac{e^{-\frac{i \pi}{4}} \sqrt{\pi}}{2 \sqrt[4]{z}} C\left(\frac{2 \sqrt[4]{z}}{\sqrt{\pi}} e^{\frac{i \pi}{4}}\right) \\
{ }_{2} F_{3}\left(\left.\begin{array}{c}
a, a+\frac{1}{2} \\
2 a, b, 2 a-b+1
\end{array} \right\rvert\, z\right)=\left(\frac{\sqrt{z}}{2}\right)^{-2 a+1} I_{2 a-b}(\sqrt{z}) I_{b-1}(\sqrt{z}) \Gamma(b) \Gamma(2 a-b+1) \\
{ }_{2} F_{3}\left(\left.\begin{array}{c}
1,1 \\
2,2, \frac{3}{2}
\end{array} \right\rvert\, z\right)=\frac{1}{z}(-\log (2 \sqrt{z})+\operatorname{Chi}(2 \sqrt{z}))-\frac{\gamma}{z} \\
{ }_{3} F_{3}\left(\left.\begin{array}{c}
1,1, a \\
2,2, a+1
\end{array} \right\rvert\, z\right)=-\frac{e^{z} a}{z\left(a^{2}-2 a+1\right)}+\frac{a(-z)^{-a}}{(a-1)^{2}}(\Gamma(a)-\Gamma(a,-z))+\frac{a}{z\left(a^{2}-2 a+1\right)}(-a+1)\left(\log (-z)+\mathrm{E}_{1}(-z)+\gamma\right)+
\end{gathered}
\]
diofant.simplify.hyperexpand.add_formulae(formulae)
Create our knowledge base.

\subsection*{5.4 Computing Integrals using Meijer G-Functions}

This text aims do describe in some detail the steps (and subtleties) involved in using Meijer G-functions for computing definite and indefinite integrals. We shall ignore proofs completely.

\subsection*{5.4.1 Overview}

The algorithm to compute \(\int f(x) \mathrm{d} x\) or \(\int_{0}^{\infty} f(x) \mathrm{d} x\) generally consists of three steps:
1. Rewrite the integrand using Meijer G-functions (one or sometimes two).
2. Apply an integration theorem, to get the answer (usually expressed as another Gfunction).
3. Expand the result in named special functions.

Step (3) is implemented in the function hyperexpand (q.v.). Steps (1) and (2) are described below. Moreover, G-functions are usually branched. Thus our treatment of branched functions is described first.
Some other integrals (e.g. \(\int_{-\infty}^{\infty}\) ) can also be computed by first recasting them into one of the above forms. There is a lot of choice involved here, and the algorithm is heuristic at best.

\subsection*{5.4.2 Polar Numbers and Branched Functions}

Both Meijer G-Functions and Hypergeometric functions are typically branched (possible branchpoints being \(0, \pm 1, \infty)\). This is not very important when e.g. expanding a single hypergeometric function into named special functions, since sorting out the branches can be left to the human user. However this algorithm manipulates and transforms G-functions, and to do this correctly it needs at least some crude understanding of the branchings involved.
To begin, we consider the set \(\mathcal{S}=\{(r, \theta): r>0, \theta \in \mathbb{R}\}\). We have a map \(p: \mathcal{S}: \rightarrow \mathbb{C}-\{0\},(r, \theta) \mapsto\) \(r e^{i \theta}\). Decreeing this to be a local biholomorphism gives \(\mathcal{S}\) both a topology and a complex structure. This Riemann Surface is usually referred to as the Riemann Surface of the logarithm, for the following reason: We can define maps Exp : \(\mathbb{C} \rightarrow \mathcal{S},(x+i y) \mapsto(\exp (x), y)\) and

Log : \(\mathcal{S} \rightarrow \mathbb{C},\left(e^{x}, y\right) \mapsto x+i y\). These can both be shown to be holomorphic, and are indeed mutual inverses.
We also sometimes formally attach a point "zero" (0) to \(\mathcal{S}\) and denote the resulting object \(\mathcal{S}_{0}\). Notably there is no complex structure defined near 0 . A fundamental system of neighbourhoods is given by \(\{\operatorname{Exp}(z): \Re(z)<k\}\), which at least defines a topology. Elements of \(\mathcal{S}_{0}\) shall be called polar numbers. We further define functions \(\operatorname{Arg}: \mathcal{S} \rightarrow \mathbb{R},(r, \theta) \mapsto \theta\) and


Using these maps many operations can be extended from \(\mathbb{C}\) to \(\mathcal{S}\). We define \(\operatorname{Exp}(a) \operatorname{Exp}(b)=\) \(\operatorname{Exp}(a+b)\) for \(a, b \in \mathbb{C}\), also for \(a \in \mathcal{S}\) and \(b \in \mathbb{C}\) we define \(a^{b}=\operatorname{Exp}(b \log (a))\). It can be checked easily that using these definitions, many algebraic properties holding for positive reals (e.g. \((a b)^{c}=a^{c} b^{c}\) ) which hold in \(\mathbb{C}\) only for some numbers (because of branch cuts) hold indeed for all polar numbers.
As one peculiarity it should be mentioned that addition of polar numbers is not usually defined. However, formal sums of polar numbers can be used to express branching behaviour. For example, consider the functions \(F(z)=\sqrt{1+z}\) and \(G(a, b)=\sqrt{a+b}\), where \(a, b, z\) are polar numbers. The general rule is that functions of a single polar variable are defined in such a way that they are continuous on circles, and agree with the usual definition for positive reals. Thus if \(S(z)\) denotes the standard branch of the square root function on \(\mathbb{C}\), we are forced to define
\[
F(z)= \begin{cases}S(p(z)) & :|z|<1 \\ S(p(z)) & :-\pi<\operatorname{Arg}(z)+4 \pi n \leq \pi \text { for some } n \in \mathbb{Z} . \\ -S(p(z)) & : \text { else }\end{cases}
\]
(We are omitting \(|z|=1\) here, this does not matter for integration.) Finally we define \(G(a, b)=\) \(\sqrt{a} F(b / a)\).

\subsection*{5.4.3 Representing Branched Functions on the Argand Plane}

Suppose \(f: \mathcal{S} \rightarrow \mathbb{C}\) is a holomorphic function. We wish to define a function \(F\) on (part of the complex numbers \(\mathbb{C}\) that represents \(f\) as closely as possible. This process is knows as "introducing branch cuts". In our situation, there is actually a canonical way of doing this (which is adhered to in all of Diofant), as follows: Introduce the "cut complex plane" \(C=\) \(\mathbb{C} \backslash \mathbb{R}_{\leq 0}\). Define a function \(l: C \rightarrow \mathcal{S}\) via \(r e^{i \theta} \mapsto r \operatorname{Exp}(i \theta)\). Here \(r>0\) and \(-\pi<\theta \leq \pi\). Then \(l\) is holomorphic, and we define \(G=f \circ l\). This called "lifting to the principal branch" throughout the Diofant documentation.

\subsection*{5.4.4 Table Lookups and Inverse Mellin Transforms}

Suppose we are given an integrand \(f(x)\) and are trying to rewrite it as a single G-function. To do this, we first split \(f(x)\) into the form \(x^{s} g(x)\) (where \(g(x)\) is supposed to be simpler than \(f(x)\) ). This is because multiplicative powers can be absorbed into the G-function later. This splitting is done by _split_mul( \(\mathrm{f}, \mathrm{x}\) ). Then we assemble a tuple of functions that occur in \(f\) (e.g. if \(f(x)=e^{x} \cos x\), we would assemble the tuple (cos, exp)). This is done by the function _mytype(f, x). Next we index a lookup table (created using _create_lookup_table()) with this tuple. This (hopefully) yields a list of Meijer G-function formulae involving these functions, we then pattern-match all of them. If one fits, we were successful, otherwise not and we have to try something else.
Suppose now we want to rewrite as a product of two G-functions. To do this, we (try to) find all inequivalent ways of splitting \(f(x)\) into a product \(f_{1}(x) f_{2}(x)\). We could try these splittings
in any order, but it is often a good idea to minimise (a) the number of powers occurring in \(f_{i}(x)\) and (b) the number of different functions occurring in \(f_{i}(x)\). Thus given e.g. \(f(x)=\) \(\sin x e^{x} \sin 2 x\) we should try \(f_{1}(x)=\sin x \sin 2 x, f_{2}(x)=e^{x}\) first. All of this is done by the function _mul_as_two_parts(f).
Finally, we can try a recursive Mellin transform technique. Since the Meijer G-function is defined essentially as a certain inverse mellin transform, if we want to write a function \(f(x)\) as a G-function, we can compute its mellin transform \(F(s)\). If \(F(s)\) is in the right form, the G-function expression can be read off. This technique generalises many standard rewritings, e.g. \(e^{a x} e^{b x}=e^{(a+b) x}\).

One twist is that some functions don't have mellin transforms, even though they can be written as G-functions. This is true for example for \(f(x)=e^{x} \sin x\) (the function grows too rapidly to have a mellin transform). However if the function is recognised to be analytic, then we can try to compute the mellin-transform of \(f(a x)\) for a parameter \(a\), and deduce the G-function expression by analytic continuation. (Checking for analyticity is easy. Since we can only deal with a certain subset of functions anyway, we only have to filter out those which are not analytic.)
The function rewrite_single does the table lookup and recursive mellin transform. The functions _rewritel and _rewrite2 respectively use above-mentioned helpers and _rewrite_single to rewrite their argument as respectively one or two G-functions.

\subsection*{5.4.5 Applying the Integral Theorems}

If the integrand has been recast into G-functions, evaluating the integral is relatively easy. We first do some substitutions to reduce e.g. the exponent of the argument of the G-function to unity (see _rewrite_saxena_1 and _rewrite_saxena, respectively, for one or two Gfunctions). Next we go through a list of conditions under which the integral theorem applies. It can fail for basically two reasons: either the integral does not exist, or the manipulations in deriving the theorem may not be allowed (for more details, see this).
Sometimes this can be remedied by reducing the argument of the G-functions involved. For example it is clear that the G-function representing \(e^{z}\) is satisfies \(G(\operatorname{Exp}(2 \pi i) z)=G(z)\) for all \(z \in \mathcal{S}\). The function meijerg.get_period() can be used to discover this, and the function principal_branch(z, period) in functions/elementary/complexes.py can be used to exploit the information. This is done transparently by the integration code.

\subsection*{5.4.6 The G-Function Integration Theorems}

This section intends to display in detail the definite integration theorems used in the code. The following two formulae go back to Meijer (In fact he proved more general formulae; indeed in the literature formulae are usually staded in more general form. However it is very easy to deduce the general formulae from the ones we give here. It seemed best to keep the theorems as simple as possible, since they are very complicated anyway.):
1.
\[
\int_{0}^{\infty} G_{p, q}^{m, n}\left(\left.\begin{array}{l}
a_{1}, \ldots, a_{p} \\
b_{1}, \ldots, b_{q}
\end{array} \right\rvert\, \eta x\right) \mathrm{d} x=\frac{\prod_{j=1}^{m} \Gamma\left(b_{j}+1\right) \prod_{j=1}^{n} \Gamma\left(-a_{j}\right)}{\eta \prod_{j=m+1}^{q} \Gamma\left(-b_{j}\right) \prod_{j=n+1}^{p} \Gamma\left(a_{j}+1\right)}
\]
2.
\[
\int_{0}^{\infty} G_{u, v}^{s, t}\left(\left.\begin{array}{l}
c_{1}, \ldots, c_{u} \\
d_{1}, \ldots, d_{v}
\end{array} \right\rvert\, \sigma x\right) G_{p, q}^{m, n}\left(\left.\begin{array}{c}
a_{1}, \ldots, a_{p} \\
b_{1}, \ldots, b_{q}
\end{array} \right\rvert\, \omega x\right) \mathrm{d} x=G_{v+p, u+q}^{m+t, n+s}\left(\left.\begin{array}{l}
a_{1}, \ldots, a_{n},-d_{1}, \ldots,-d_{v}, a_{n+1}, \ldots, a_{p} \\
b_{1}, \ldots, b_{m},-c_{1}, \ldots,-c_{u}, b_{m+1}, \ldots, b_{q}
\end{array} \right\rvert\, \frac{\omega}{\sigma}\right)
\]

The more interesting question is under what conditions these formulae are valid. Below we detail the conditions implemented in Diofant. They are an amalgamation of conditions found in [APPM90] and [Luk69]; please let us know if you find any errors.

\section*{Conditions of Convergence for Integral (1)}

We can without loss of generality assume \(p \leq q\), since the G-functions of indices \(m, n, p, q\) and of indices \(n, m, q, p\) can be related easily (see e.g. [Luk69], section 5.3). We introduce the following notation:
\[
\begin{gathered}
\xi=m+n-p \\
\delta=m+n-\frac{p+q}{2} \\
C_{3}:-\Re\left(b_{j}\right)<1 \text { for } j=1, \ldots, m \\
0<-\Re\left(a_{j}\right) \text { for } j=1, \ldots, n \\
C_{3}^{*}:-\Re\left(b_{j}\right)<1 \text { for } j=1, \ldots, q \\
0<-\Re\left(a_{j}\right) \text { for } j=1, \ldots, p \\
C_{4}:-\Re(\delta)+\frac{q+1-p}{2}>q-p
\end{gathered}
\]

The convergence conditions will be detailed in several "cases", numbered one to five. For later use it will be helpful to separate conditions "at infinity" from conditions "at zero". By conditions "at infinity" we mean conditions that only depend on the behaviour of the integrand for large, positive values of \(x\), whereas by conditions "at zero" we mean conditions that only depend on the behaviour of the integrand on \((0, \epsilon)\) for any \(\epsilon>0\). Since all our conditions are specified in terms of parameters of the G-functions, this distinction is not immediately visible. They are, however, of very distinct character mathematically; the conditions at infinity being in particular much harder to control.
In order for the integral theorem to be valid, conditions \(n\) "at zero" and "at infinity" both have to be fulfilled, for some \(n\).
These are the conditions "at infinity":
1.
\[
\delta>0 \wedge|\arg (\eta)|<\delta \pi \wedge(A \vee B \vee C),
\]
where
\[
\begin{gathered}
A=1 \leq n \wedge p<q \wedge 1 \leq m \\
B=1 \leq p \wedge 1 \leq m \wedge q=p+1 \wedge \neg(n=0 \wedge m=p+1) \\
C=1 \leq n \wedge q=p \wedge|\arg (\eta)| \neq(\delta-2 k) \pi \text { for } k=0,1, \ldots\left\lceil\frac{\delta}{2}\right\rceil .
\end{gathered}
\]
2.
\[
n=0 \wedge p+1 \leq m \wedge|\arg (\eta)|<\delta \pi
\]
3.
\[
(p<q \wedge 1 \leq m \wedge \delta>0 \wedge|\arg (\eta)|=\delta \pi) \vee(p \leq q-2 \wedge \delta=0 \wedge \arg (\eta)=0)
\]
4.
\[
p=q \wedge \delta=0 \wedge \arg (\eta)=0 \wedge \eta \neq 0 \wedge \Re\left(\sum_{j=1}^{p} b_{j}-a_{j}\right)<0
\]
5.
\[
\delta>0 \wedge|\arg (\eta)|<\delta \pi
\]

And these are the conditions "at zero":
1.
\[
\eta \neq 0 \wedge C_{3}
\]
2.
\[
C_{3}
\]
3.
\[
C_{3} \wedge C_{4}
\]
4.
\[
C_{3}
\]
5.
\[
C_{3}
\]

\section*{Conditions of Convergence for Integral (2)}

We introduce the following notation:
\[
\begin{gathered}
b^{*}=s+t-\frac{u+v}{2} \\
c^{*}=m+n-\frac{p+q}{2} \\
\rho=\sum_{j=1}^{v} d_{j}-\sum_{j=1}^{u} c_{j}+\frac{u-v}{2}+1 \\
\mu=\sum_{j=1}^{q} b_{j}-\sum_{j=1}^{p} a_{j}+\frac{p-q}{2}+1 \\
\phi=q-p-\frac{u-v}{2}+1 \\
\eta=1-(v-u)-\mu-\rho \\
\psi=\frac{\pi(q-m-n)+|\arg (\omega)|}{q-p}
\end{gathered}
\]
\[
\begin{gathered}
\theta=\frac{\pi(v-s-t)+|\arg (\sigma)|)}{v-u} \\
\lambda_{c}=(q-p)|\omega|^{1 /(q-p)} \cos \psi+(v-u)|\sigma|^{1 /(v-u)} \cos \theta \\
\lambda_{s 0}\left(c_{1}, c_{2}\right)=c_{1}(q-p)|\omega|^{1 /(q-p)} \sin \psi+c_{2}(v-u)|\sigma|^{1 /(v-u)} \sin \theta \\
\lambda_{s}= \begin{cases}\lambda_{\mathrm{s} 0}(-1,-1) \lambda_{\mathrm{s} 0}(1,1) & \text { for } \arg (\omega)=0 \wedge \arg (\sigma)=0 \\
\lambda_{\mathrm{s} 0}(\operatorname{sign}(\arg (\omega)),-1) \lambda_{\mathrm{s} 0}(\operatorname{sign}(\arg (\omega)), 1) & \text { for } \arg (\omega) \neq 0 \wedge \arg (\sigma)=0 \\
\lambda_{\mathrm{s} 0}(-1, \operatorname{sign}(\arg (\sigma))) \lambda_{\mathrm{s} 0}(1, \operatorname{sign}(\arg (\sigma))) & \text { for } \arg (\omega)=0 \wedge \arg (\sigma) \neq 0) \\
\lambda_{\mathrm{s} 0}(\operatorname{sign}(\arg (\omega)), \operatorname{sign}(\arg (\sigma))) & \text { otherwise } \\
z_{0}=\frac{\omega}{\sigma} e^{-i \pi\left(b^{*}+c^{*}\right)} & \\
z_{1}=\frac{\sigma}{\omega} e^{-i \pi\left(b^{*}+c^{*}\right)}\end{cases}
\end{gathered}
\]

The following conditions will be helpful:
\[
\begin{gathered}
C_{1}:\left(a_{i}-b_{j} \notin \mathbb{Z}_{>0} \text { for } i=1, \ldots, n, j=1, \ldots, m\right) \\
\wedge\left(c_{i}-d_{j} \notin \mathbb{Z}_{>0} \text { for } i=1, \ldots, t, j=1, \ldots, s\right) \\
C_{2}: \Re\left(1+b_{i}+d_{j}\right)>0 \text { for } i=1, \ldots, m, j=1, \ldots, s \\
C_{3}: \Re\left(a_{i}+c_{j}\right)<1 \text { for } i=1, \ldots, n, j=1, \ldots, t \\
C_{4}:(p-q) \Re\left(c_{i}\right)-\Re(\mu)>-\frac{3}{2} \text { for } i=1, \ldots, t \\
C_{5}:(p-q) \Re\left(1+d_{i}\right)-\Re(\mu)>-\frac{3}{2} \text { for } i=1, \ldots, s \\
C_{6}:(u-v) \Re\left(a_{i}\right)-\Re(\rho)>-\frac{3}{2} \text { for } i=1, \ldots, n \\
C_{7}:(u-v) \Re\left(1+b_{i}\right)-\Re(\rho)>-\frac{3}{2} \text { for } i=1, \ldots, m \\
C_{8}: 0<|\phi|+2 \Re((\mu-1)(-u+v)+(-p+q)(\rho-1)+(-p+q)(-u+v)) \\
C_{9}: 0<|\phi|-2 \Re((\mu-1)(-u+v)+(-p+q)(\rho-1)+(-p+q)(-u+v)) \\
C_{10}:|\arg (\sigma)|<\pi b^{*} \\
C_{11}:|\arg (\sigma)|=\pi b^{*} \\
C_{12}:|\arg (\omega)|<c^{*} \pi \\
C_{13}:|\arg (\omega)|=c^{*} \pi \\
C_{14}^{1}:\left(z_{0} \neq 1 \wedge\left|\arg \left(1-z_{0}\right)\right|<\pi\right) \vee\left(z_{0}=1 \wedge \Re(\mu+\rho-u+v)<1\right) \\
C_{14}^{2}:\left(z_{1} \neq 1 \wedge\left|\arg \left(1-z_{1}\right)\right|<\pi\right) \vee\left(z_{1}=1 \wedge \Re(\mu+\rho-p+q)<1\right) \\
C_{14}: \phi=0 \wedge b^{*}+c^{*} \leq 1 \wedge\left(C_{14}^{1} \vee C_{14}^{2}\right) \\
C_{15}: \lambda_{c}>0 \vee\left(\lambda_{c}=0 \wedge \lambda_{s} \neq 0 \wedge \Re(\eta)>-1\right) \vee\left(\lambda_{c}=0 \wedge \lambda_{s}=0 \wedge \Re(\eta)>0\right) \\
C_{16}: \int_{0}^{\infty} G_{u, v}^{s, t}(\sigma x) \mathrm{d} x \operatorname{converges} \text { at infinity } \\
C_{17}: \int_{0}^{\infty} G_{p, q}^{m, n}(\omega x) \mathrm{d} x \text { converges at infinity }
\end{gathered}
\]

Note that \(C_{16}\) and \(C_{17}\) are the reason we split the convergence conditions for integral (1).
With this notation established, the implemented convergence conditions can be enumerated as follows:
1.
\[
m n s t \neq 0 \wedge 0<b^{*} \wedge 0<c^{*} \wedge C_{1} \wedge C_{2} \wedge C_{3} \wedge C_{10} \wedge C_{12}
\]
2.
\[
u=v \wedge b^{*}=0 \wedge 0<c^{*} \wedge 0<\sigma \wedge \Re \rho<1 \wedge C_{1} \wedge C_{2} \wedge C_{3} \wedge C_{12}
\]
3.
\[
p=q \wedge u=v \wedge b^{*}=0 \wedge c^{*}=0 \wedge 0<\sigma \wedge 0<\omega \wedge \Re \mu<1 \wedge \Re \rho<1 \wedge \sigma \neq \omega \wedge C_{1} \wedge C_{2} \wedge C_{3}
\]
4.
\[
p=q \wedge u=v \wedge b^{*}=0 \wedge c^{*}=0 \wedge 0<\sigma \wedge 0<\omega \wedge \Re(\mu+\rho)<1 \wedge \omega \neq \sigma \wedge C_{1} \wedge C_{2} \wedge C_{3}
\]
5.
\[
p=q \wedge u=v \wedge b^{*}=0 \wedge c^{*}=0 \wedge 0<\sigma \wedge 0<\omega \wedge \Re(\mu+\rho)<1 \wedge \omega \neq \sigma \wedge C_{1} \wedge C_{2} \wedge C_{3}
\]
6.
\[
q<p \wedge 0<s \wedge 0<b^{*} \wedge 0 \leq c^{*} \wedge C_{1} \wedge C_{2} \wedge C_{3} \wedge C_{5} \wedge C_{10} \wedge C_{13}
\]
7.
\[
p<q \wedge 0<t \wedge 0<b^{*} \wedge 0 \leq c^{*} \wedge C_{1} \wedge C_{2} \wedge C_{3} \wedge C_{4} \wedge C_{10} \wedge C_{13}
\]
8.
\[
v<u \wedge 0<m \wedge 0<c^{*} \wedge 0 \leq b^{*} \wedge C_{1} \wedge C_{2} \wedge C_{3} \wedge C_{7} \wedge C_{11} \wedge C_{12}
\]
9.
\[
u<v \wedge 0<n \wedge 0<c^{*} \wedge 0 \leq b^{*} \wedge C_{1} \wedge C_{2} \wedge C_{3} \wedge C_{6} \wedge C_{11} \wedge C_{12}
\]
10.
\[
q<p \wedge u=v \wedge b^{*}=0 \wedge 0 \leq c^{*} \wedge 0<\sigma \wedge \Re \rho<1 \wedge C_{1} \wedge C_{2} \wedge C_{3} \wedge C_{5} \wedge C_{13}
\]
11.
\[
p<q \wedge u=v \wedge b^{*}=0 \wedge 0 \leq c^{*} \wedge 0<\sigma \wedge \Re \rho<1 \wedge C_{1} \wedge C_{2} \wedge C_{3} \wedge C_{4} \wedge C_{13}
\]
12.
\[
p=q \wedge v<u \wedge 0 \leq b^{*} \wedge c^{*}=0 \wedge 0<\omega \wedge \Re \mu<1 \wedge C_{1} \wedge C_{2} \wedge C_{3} \wedge C_{7} \wedge C_{11}
\]
13.
\[
p=q \wedge u<v \wedge 0 \leq b^{*} \wedge c^{*}=0 \wedge 0<\omega \wedge \Re \mu<1 \wedge C_{1} \wedge C_{2} \wedge C_{3} \wedge C_{6} \wedge C_{11}
\]

\section*{Diofant Documentation, Release 0.13.0}
14.
\[
p<q \wedge v<u \wedge 0 \leq b^{*} \wedge 0 \leq c^{*} \wedge C_{1} \wedge C_{2} \wedge C_{3} \wedge C_{4} \wedge C_{7} \wedge C_{11} \wedge C_{13}
\]
15.
\[
q<p \wedge u<v \wedge 0 \leq b^{*} \wedge 0 \leq c^{*} \wedge C_{1} \wedge C_{2} \wedge C_{3} \wedge C_{5} \wedge C_{6} \wedge C_{11} \wedge C_{13}
\]
16.
\[
q<p \wedge v<u \wedge 0 \leq b^{*} \wedge 0 \leq c^{*} \wedge C_{1} \wedge C_{2} \wedge C_{3} \wedge C_{5} \wedge C_{7} \wedge C_{8} \wedge C_{11} \wedge C_{13} \wedge C_{14}
\]
17.
\[
p<q \wedge u<v \wedge 0 \leq b^{*} \wedge 0 \leq c^{*} \wedge C_{1} \wedge C_{2} \wedge C_{3} \wedge C_{4} \wedge C_{6} \wedge C_{9} \wedge C_{11} \wedge C_{13} \wedge C_{14}
\]
18.
\[
t=0 \wedge 0<s \wedge 0<b^{*} \wedge 0<\phi \wedge C_{1} \wedge C_{2} \wedge C_{10}
\]
19.
\[
s=0 \wedge 0<t \wedge 0<b^{*} \wedge \phi<0 \wedge C_{1} \wedge C_{3} \wedge C_{10}
\]
20.
\[
n=0 \wedge 0<m \wedge 0<c^{*} \wedge \phi<0 \wedge C_{1} \wedge C_{2} \wedge C_{12}
\]
21.
\[
m=0 \wedge 0<n \wedge 0<c^{*} \wedge 0<\phi \wedge C_{1} \wedge C_{3} \wedge C_{12}
\]
22.
\[
s t=0 \wedge 0<b^{*} \wedge 0<c^{*} \wedge C_{1} \wedge C_{2} \wedge C_{3} \wedge C_{10} \wedge C_{12}
\]
23.
\[
m n=0 \wedge 0<b^{*} \wedge 0<c^{*} \wedge C_{1} \wedge C_{2} \wedge C_{3} \wedge C_{10} \wedge C_{12}
\]
24.
\[
p<m+n \wedge t=0 \wedge \phi=0 \wedge 0<s \wedge 0<b^{*} \wedge c^{*}<0 \wedge|\arg (\omega)|<\pi(m+n-p+1) \wedge C_{1} \wedge C_{2} \wedge C_{10} \wedge C_{14} \wedge C_{15}
\]
25.
\[
q<m+n \wedge s=0 \wedge \phi=0 \wedge 0<t \wedge 0<b^{*} \wedge c^{*}<0 \wedge|\arg (\omega)|<\pi(m+n-q+1) \wedge C_{1} \wedge C_{3} \wedge C_{10} \wedge C_{14} \wedge C_{15}
\]
26.
\[
p=q-1 \wedge t=0 \wedge \phi=0 \wedge 0<s \wedge 0<b^{*} \wedge 0 \leq c^{*} \wedge \pi c^{*}<|\arg (\omega)| \wedge C_{1} \wedge C_{2} \wedge C_{10} \wedge C_{14} \wedge C_{15}
\]
27.
\[
p=q+1 \wedge s=0 \wedge \phi=0 \wedge 0<t \wedge 0<b^{*} \wedge 0 \leq c^{*} \wedge \pi c^{*}<|\arg (\omega)| \wedge C_{1} \wedge C_{3} \wedge C_{10} \wedge C_{14} \wedge C_{15}
\]
28.
\(p<q-1 \wedge t=0 \wedge \phi=0 \wedge 0<s \wedge 0<b^{*} \wedge 0 \leq c^{*} \wedge \pi c^{*}<|\arg (\omega)| \wedge|\arg (\omega)|<\pi(m+n-p+1) \wedge C_{1} \wedge C_{2} \wedge C_{10} \wedge\)
29.
\(q+1<p \wedge s=0 \wedge \phi=0 \wedge 0<t \wedge 0<b^{*} \wedge 0 \leq c^{*} \wedge \pi c^{*}<|\arg (\omega)| \wedge|\arg (\omega)|<\pi(m+n-q+1) \wedge C_{1} \wedge C_{3} \wedge C_{10} \wedge\)
30.
\(n=0 \wedge \phi=0 \wedge 0<s+t \wedge 0<m \wedge 0<c^{*} \wedge b^{*}<0 \wedge|\arg (\sigma)|<\pi(s+t-u+1) \wedge C_{1} \wedge C_{2} \wedge C_{12} \wedge C_{14} \wedge C_{15}\)
31.
\(m=0 \wedge \phi=0 \wedge v<s+t \wedge 0<n \wedge 0<c^{*} \wedge b^{*}<0 \wedge|\arg (\sigma)|<\pi(s+t-v+1) \wedge C_{1} \wedge C_{3} \wedge C_{12} \wedge C_{14} \wedge C_{15}\)
32.
\(n=0 \wedge \phi=0 \wedge u=v-1 \wedge 0<m \wedge 0<c^{*} \wedge 0 \leq b^{*} \wedge \pi b^{*}<|\arg (\sigma)| \wedge|\arg (\sigma)|<\pi\left(b^{*}+1\right) \wedge C_{1} \wedge C_{2} \wedge C_{12} \wedge C_{14} \wedge\)
33.
\(m=0 \wedge \phi=0 \wedge u=v+1 \wedge 0<n \wedge 0<c^{*} \wedge 0 \leq b^{*} \wedge \pi b^{*}<|\arg (\sigma)| \wedge|\arg (\sigma)|<\pi\left(b^{*}+1\right) \wedge C_{1} \wedge C_{3} \wedge C_{12} \wedge C_{14} \wedge\)
34.
\(n=0 \wedge \phi=0 \wedge u<v-1 \wedge 0<m \wedge 0<c^{*} \wedge 0 \leq b^{*} \wedge \pi b^{*}<|\arg (\sigma)| \wedge|\arg (\sigma)|<\pi(s+t-u+1) \wedge C_{1} \wedge C_{2} \wedge C_{12} /\)
35.
\(m=0 \wedge \phi=0 \wedge v+1<u \wedge 0<n \wedge 0<c^{*} \wedge 0 \leq b^{*} \wedge \pi b^{*}<|\arg (\sigma)| \wedge|\arg (\sigma)|<\pi(s+t-v+1) \wedge C_{1} \wedge C_{3} \wedge C_{12} \wedge\)
36.
\[
C_{17} \wedge t=0 \wedge u<s \wedge 0<b^{*} \wedge C_{10} \wedge C_{1} \wedge C_{2} \wedge C_{3}
\]
37.
\[
C_{17} \wedge s=0 \wedge v<t \wedge 0<b^{*} \wedge C_{10} \wedge C_{1} \wedge C_{2} \wedge C_{3}
\]
38.
\[
C_{16} \wedge n=0 \wedge p<m \wedge 0<c^{*} \wedge C_{12} \wedge C_{1} \wedge C_{2} \wedge C_{3}
\]
39.
\[
C_{16} \wedge m=0 \wedge q<n \wedge 0<c^{*} \wedge C_{12} \wedge C_{1} \wedge C_{2} \wedge C_{3}
\]

\subsection*{5.4.7 The Inverse Laplace Transform of a G-function}

The inverse laplace transform of a Meijer G-function can be expressed as another G-function. This is a fairly versatile method for computing this transform. However, I could not find the details in the literature, so I work them out here. In [Luk69], section 5.6.3, there is a formula for the inverse Laplace transform of a G-function of argument \(b z\), and convergence conditions are also given. However, we need a formula for argument \(b z^{a}\) for rational \(a\).
We are asked to compute
\[
f(t)=\frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} e^{z t} G\left(b z^{a}\right) \mathrm{d} z,
\]
for positive real \(t\). Three questions arise:
1. When does this integral converge?
2. How can we compute the integral?
3. When is our computation valid?

\section*{How to compute the integral}

We shall work formally for now. Denote by \(\Delta(s)\) the product of gamma functions appearing in the definition of \(G\), so that
\[
G(z)=\frac{1}{2 \pi i} \int_{L} \Delta(s) z^{s} \mathrm{~d} s .
\]

Thus
\[
f(t)=\frac{1}{(2 \pi i)^{2}} \int_{c-i \infty}^{c+i \infty} \int_{L} e^{z t} \Delta(s) b^{s} z^{a s} \mathrm{~d} s \mathrm{~d} z .
\]

We interchange the order of integration to get
\[
f(t)=\frac{1}{2 \pi i} \int_{L} b^{s} \Delta(s) \int_{c-i \infty}^{c+i \infty} e^{z t} z^{a s} \frac{\mathrm{~d} z}{2 \pi i} \mathrm{~d} s .
\]

The inner integral is easily seen to be \(\frac{1}{\Gamma(-a s)} \frac{1}{t^{1+a s}}\). (Using Cauchy's theorem and Jordan's lemma deform the contour to run from \(-\infty\) to \(-\infty\), encircling 0 once in the negative sense. For as real and greater than one, this contour can be pushed onto the negative real axis and the integral is recognised as a product of a sine and a gamma function. The formula is then proved using the functional equation of the gamma function, and extended to the entire domain of convergence of the original integral by appealing to analytic continuation.) Hence we find
\[
f(t)=\frac{1}{t} \frac{1}{2 \pi i} \int_{L} \Delta(s) \frac{1}{\Gamma(-a s)}\left(\frac{b}{t^{a}}\right)^{s} \mathrm{~d} s,
\]
which is a so-called Fox H function (of argument \(\frac{b}{t^{a}}\) ). For rational \(a\), this can be expressed as a Meijer G-function using the gamma function multiplication theorem.

\section*{When this computation is valid}

There are a number of obstacles in this computation. Interchange of integrals is only valid if all integrals involved are absolutely convergent. In particular the inner integral has to converge. Also, for our identification of the final integral as a Fox H / Meijer G-function to be correct, the poles of the newly obtained gamma function must be separated properly.
It is easy to check that the inner integral converges absolutely for \(\Re(a s)<-1\). Thus the contour \(L\) has to run left of the line \(\Re(a s)=-1\). Under this condition, the poles of the newly-introduced gamma function are separated properly.

It remains to observe that the Meijer G-function is an analytic, unbranched function of its parameters, and of the coefficient \(b\). Hence so is \(f(t)\). Thus the final computation remains valid as long as the initial integral converges, and if there exists a changed set of parameters where the computation is valid. If we assume w.l.o.g. that \(a>0\), then the latter condition is fulfilled if \(G\) converges along contours (2) or (3) of [Luk69], section 5.2, i.e. either \(\delta>=\frac{a}{2}\) or \(p \geq 1, p \geq q\).

\section*{When the integral exists}

Using [Luk69], section 5.10, for any given meijer G-function we can find a dominant term of the form \(z^{a} e^{b z^{c}}\) (although this expression might not be the best possible, because of cancellation).

We must thus investigate
\[
\lim _{T \rightarrow \infty} \int_{c-i T}^{c+i T} e^{z t} z^{a} e^{b z^{c}} \mathrm{~d} z
\]
(This principal value integral is the exact statement used in the Laplace inversion theorem.) We write \(z=c+i \tau\). Then \(\arg (z) \rightarrow \pm \frac{\pi}{2}\), and so \(e^{z t} \sim e^{i t \tau}\) (where \(\sim\) shall always mean "asymptotically equivalent up to a positive real multiplicative constant"). Also \(z^{x+i y} \sim|\tau|^{x} e^{i y \log |\tau|} e^{ \pm x i \frac{\pi}{2}}\).
Set \(\omega_{ \pm}=b e^{ \pm \Re \Re(c) \frac{\pi}{2}}\). We have three cases:
1. \(b=0\) or \(\Re(c) \leq 0\). In this case the integral converges if \(\Re(a) \leq-1\).
2. \(b \neq 0, \Im(c)=0, \Re(c)>0\). In this case the integral converges if \(\Re\left(\omega_{ \pm}\right)<0\).
3. \(b \neq 0, \Im(c)=0, \Re(c)>0, \Re\left(\omega_{ \pm}\right) \leq 0\), and at least one of \(\Re\left(\omega_{ \pm}\right)=0\). Here the same condition as in (1) applies.

\subsection*{5.4.8 Implemented G-Function Formulae}

An important part of the algorithm is a table expressing various functions as Meijer Gfunctions. This is essentially a table of Mellin Transforms in disguise. The following automatically generated table shows the formulae currently implemented in Diofant. An entry "generated" means that the corresponding G-function has a variable number of parameters. This table is intended to shrink in future, when the algorithm's capabilities of deriving new formulae improve. Of course it has to grow whenever a new class of special functions is to be dealt with.
Elementary functions:
\[
a=a G_{1,1}^{1,0}\left(\begin{array}{ll} 
& 1 \\
0 & \mid z
\end{array}\right)+a G_{1,1}^{0,1}\left(\begin{array}{ll}
1 & \mid z \\
& 0
\end{array}\right)
\]
\[
\begin{aligned}
& \left(b+p z^{q}\right)^{-a}=\frac{b^{-a}}{\Gamma(a)} G_{1,1}^{1,1}\left(\begin{array}{c|c}
-a+1 & p z^{q} \\
0
\end{array}\right) \\
& \frac{-b^{a}+\left(p z^{q}\right)^{a}}{-b+p z^{q}}=\frac{1}{\pi} b^{a-1} G_{2,2}^{2,2}\left(\begin{array}{l|l}
0, a & p z^{q} \\
0, a & b
\end{array}\right) \sin (\pi a) \\
& \frac{-b^{a}+z^{a}}{-b+z}=\frac{1}{\pi} b^{a-1} G_{2,2}^{2,2}\left(\begin{array}{c|c}
0, a & z \\
0, a & \frac{z}{b}
\end{array}\right) \sin (\pi a) \\
& \left(a+\sqrt{a^{2}+p z^{q}}\right)^{b}=-\frac{a^{b} b}{2 \sqrt{\pi}} G_{2,2}^{1,2}\left(\begin{array}{cc}
\frac{b}{2}+\frac{1}{2}, \frac{b}{2}+1 & b \\
0 & b z^{q} \\
a^{2}
\end{array}\right) \\
& \left(-a+\sqrt{a^{2}+p z^{q}}\right)^{b}=\frac{a^{b} b}{2 \sqrt{\pi}} G_{2,2}^{1,2}\left(\begin{array}{cc}
\frac{b}{2}+\frac{1}{2}, \frac{b}{2}+1 & 0 \left\lvert\, \frac{p z^{q}}{a^{2}}\right.
\end{array}\right) \\
& \frac{\left(a+\sqrt{a^{2}+p z^{q}}\right)^{b}}{\sqrt{a^{2}+p z^{q}}}=\frac{1}{\sqrt{\pi}} a^{b-1} G_{2,2}^{1,2}\left(\left.\begin{array}{c}
\frac{b}{2}+\frac{1}{2}, \frac{b}{2} \\
0
\end{array} \quad b \right\rvert\, \frac{p z^{q}}{a^{2}}\right) \\
& \frac{\left(-a+\sqrt{a^{2}+p z^{q}}\right)^{b}}{\sqrt{a^{2}+p z^{q}}}=\frac{1}{\sqrt{\pi}} a^{b-1} G_{2,2}^{1,2}\left(\begin{array}{c}
\frac{b}{2}+\frac{1}{2}, \frac{b}{2} \\
b
\end{array} 0^{\frac{p z^{q}}{a^{2}}}\right) \\
& \left(\sqrt{p} z^{\frac{q}{2}}+\sqrt{a+p z^{q}}\right)^{b}=-\frac{a^{\frac{b}{2}} b}{2 \sqrt{\pi}} G_{2,2}^{2,1}\left(\begin{array}{cc}
\frac{b}{2}+1 & -\frac{b}{2}+1 \left\lvert\, \frac{p z^{q}}{a}\right. \\
0, \frac{1}{2}
\end{array}\right) \\
& \left(-\sqrt{p} z^{\frac{q}{2}}+\sqrt{a+p z^{q}}\right)^{b}=\frac{a^{\frac{b}{2} b}}{2 \sqrt{\pi}} G_{2,2}^{2,1}\left(\begin{array}{cc}
-\frac{b}{2}+1 & \frac{b}{2}+1 \left\lvert\, \frac{p z^{q}}{a}\right. \\
0, \frac{1}{2}
\end{array}\right) \\
& \frac{\left(\sqrt{p} z^{\frac{q}{2}}+\sqrt{a+p z^{q}}\right)^{b}}{\sqrt{a+p z^{q}}}=\frac{1}{\sqrt{\pi}} a^{\frac{b}{2}-\frac{1}{2}} G_{2,2}^{2,1}\left(\begin{array}{cc}
\frac{b}{2}+\frac{1}{2} & \left.-\frac{b}{2}+\frac{1}{2} \right\rvert\, \frac{p z^{q}}{a} \\
0, \frac{1}{2}
\end{array}\right) \\
& \frac{\left(-\sqrt{p} z^{\frac{q}{2}}+\sqrt{a+p z^{q}}\right)^{b}}{\sqrt{a+p z^{q}}}=\frac{1}{\sqrt{\pi}} a^{\frac{b}{2}-\frac{1}{2}} G_{2,2}^{2,1}\left(\begin{array}{cc}
-\frac{b}{2}+\frac{1}{2} & \left.\left.\frac{b}{2}+\frac{1}{2} \right\rvert\, \frac{p z^{q}}{a}\right) \\
0, \frac{1}{2}
\end{array}\right) \\
& e^{p z^{q}}=G_{0,1}^{1,0}\left(\begin{array}{ll}
0 & \left.\mid p z^{q} \exp _{\text {polar }}(-i \pi)\right)
\end{array}\right.
\end{aligned}
\]

Functions involving \(\left|b-p z^{q}\right|\) :
\[
\left|b-p z^{q}\right|^{-a}=2 G_{2,2}^{1,1}\left(\left.\begin{array}{cc}
-a+1 & -\frac{a}{2}+\frac{1}{2} \\
0 & -\frac{a}{2}+\frac{1}{2}
\end{array} \right\rvert\, \frac{p z^{q}}{b}\right) \sin \left(\frac{\pi a}{2}\right)|b|^{-a} \Gamma(-a+1), \text { if } \Re a<1
\]

Functions involving \(\operatorname{Chi}\left(p z^{q}\right)\) :
\[
\operatorname{Chi}\left(p z^{q}\right)=-\frac{\pi^{\frac{3}{2}}}{2} G_{2,4}^{2,0}\left(\begin{array}{ll} 
& \frac{1}{2}, 1 \\
0,0 & \frac{1}{2}, \frac{1}{2}
\end{array} \frac{p^{2}}{4} z^{2 q}\right)
\]

Functions involving \(\operatorname{Ci}\left(p z^{q}\right)\) :
\[
\operatorname{Ci}\left(p z^{q}\right)=-\frac{\sqrt{\pi}}{2} G_{1,3}^{2,0}\left(\left.\begin{array}{ll}
1 & 1 \\
0,0 & \frac{1}{2}
\end{array} \right\rvert\, \frac{p^{2}}{4} z^{2 q}\right)
\]

Functions involving \(\operatorname{Ei}\left(p z^{q}\right)\) :
\[
\operatorname{Ei}\left(p z^{q}\right)=-i \pi G_{1,1}^{1,0}\left(\begin{array}{ll} 
& 1 \\
0 & \mid z
\end{array}\right)-G_{1,2}^{2,0}\left(\left.\begin{array}{cc}
1 & \left.1 \mid p z^{q} \exp _{\text {polar }}(i \pi)\right) \\
0,0 & i \pi G_{1,1}^{0,1}\left(\begin{array}{ll}
1 & \mid z
\end{array}\right) . \\
& 0
\end{array} \right\rvert\,\right.
\]

Functions involving \(\theta\left(-b+p z^{q}\right)\) :
\[
\left(-b+p z^{q}\right)^{a-1} \theta\left(-b+p z^{q}\right)=b^{a-1} G_{1,1}^{0,1}\left(\begin{array}{ll}
a & 0 \left\lvert\, \frac{p z^{q}}{b}\right.
\end{array}\right) \Gamma(a), \text { if } b>0
\]
\[
\begin{gathered}
\left(b-p z^{q}\right)^{a-1} \theta\left(b-p z^{q}\right)=b^{a-1} G_{1,1}^{1,0}\left(\begin{array}{ll}
0 & a \left\lvert\, \frac{p z^{q}}{b}\right.
\end{array}\right) \Gamma(a), \text { if } b>0 \\
\left(-b+p z^{q}\right)^{a-1} \theta\left(z-\left(\frac{b}{p}\right)^{\frac{1}{q}}\right)=b^{a-1} G_{1,1}^{0,1}\left(\begin{array}{ll}
a & \\
& 0 \left\lvert\, \frac{p z^{q}}{b}\right.
\end{array}\right) \Gamma(a), \text { if } b>0 \\
\left(b-p z^{q}\right)^{a-1} \theta\left(-z+\left(\frac{b}{p}\right)^{\frac{1}{q}}\right)=b^{a-1} G_{1,1}^{1,0}\left(\begin{array}{ll}
0 & \left.a \left\lvert\, \frac{p z^{q}}{b}\right.\right) \Gamma(a), \text { if } b>0
\end{array}\right.
\end{gathered}
\]

Functions involving Shi \(\left(p z^{q}\right)\) :
\[
\operatorname{Shi}\left(p z^{q}\right)=\frac{\sqrt{\pi} p}{4} z^{q} G_{1,3}^{1,1}\left(\left.\begin{array}{ll}
\frac{1}{2} & \\
0 & -\frac{1}{2}, \left.-\frac{1}{2} \right\rvert\,
\end{array} \right\rvert\, \frac{p^{2}}{4} z^{2 q} \exp _{\text {polar }}(i \pi)\right)
\]

Functions involving \(\operatorname{Si}\left(p z^{q}\right)\) :
\[
\operatorname{Si}\left(p z^{q}\right)=\frac{\sqrt{\pi}}{2} G_{1,3}^{1,1}\left(\begin{array}{ll}
1 & \frac{1}{2}
\end{array} \quad 0,0 \left\lvert\, \frac{p^{2}}{4} z^{2 q}\right.\right)
\]

Functions involving \(I_{a}\left(p z^{q}\right)\) :
\[
I_{a}\left(p z^{q}\right)=\pi G_{1,3}^{1,0}\left(\left.\begin{array}{r}
\frac{a}{2}+\frac{1}{2} \\
\frac{a}{2} \\
-\frac{a}{2}, \frac{a}{2}+\frac{1}{2}
\end{array} \right\rvert\, \frac{p^{2}}{4} z^{2 q}\right)
\]

Functions involving \(J_{a}\left(p z^{q}\right)\) :
\[
J_{a}\left(p z^{q}\right)=G_{0,2}^{1,0}\left(\begin{array}{ll}
\frac{a}{2} & \left.-\frac{a}{2} \left\lvert\, \frac{p^{2}}{4} z^{2 q}\right.\right)
\end{array}\right)
\]

Functions involving \(K_{a}\left(p z^{q}\right)\) :
\[
K_{a}\left(p z^{q}\right)=\frac{1}{2} G_{0,2}^{2,0}\left(\frac{a}{2},-\frac{a}{2} \left\lvert\, \frac{p^{2}}{4} z^{2 q}\right.\right)
\]

Functions involving \(Y_{a}\left(p z^{q}\right)\) :
\[
Y_{a}\left(p z^{q}\right)=G_{1,3}^{2,0}\left(\begin{array}{ll} 
& \left.-\frac{a}{2}-\frac{1}{2} \right\rvert\, p^{2} \\
\frac{a}{2},-\frac{a}{2} & \left.-\frac{a}{2}-\frac{1}{2} \right\rvert\, \\
4 & z^{2 q}
\end{array}\right)
\]

Functions involving \(\cos \left(p z^{q}\right)\) :
\[
\cos \left(p z^{q}\right)=\sqrt{\pi} G_{0,2}^{1,0}\left(\begin{array}{ll}
0 & \frac{1}{2} \left\lvert\, \frac{p^{2}}{4} z^{2 q}\right.
\end{array}\right)
\]

Functions involving \(\cosh \left(p z^{q}\right)\) :
\[
\cosh \left(p z^{q}\right)=\pi^{\frac{3}{2}} G_{1,3}^{1,0}\left(\begin{array}{cc}
\frac{1}{2} & \frac{1}{2}, \frac{1}{2} \left\lvert\, \frac{p^{2}}{4} z^{2 q}\right.
\end{array}\right)
\]

Functions involving \(E\left(p z^{q}\right)\) :
\[
E\left(p z^{q}\right)=-\frac{1}{4} G_{2,2}^{1,2}\left(\left.\begin{array}{cc}
\frac{1}{2}, \frac{3}{2} & \\
0 & 0
\end{array} \right\rvert\,-p z^{q}\right)
\]

Functions involving \(K\left(p z^{q}\right)\) :
\[
K\left(p z^{q}\right)=\frac{1}{2} G_{2,2}^{1,2}\left(\left.\begin{array}{cc}
\frac{1}{2}, \frac{1}{2} & \\
0 & 0
\end{array} \right\rvert\,-p z^{q}\right)
\]

\section*{Diofant Documentation, Release 0.13.0}

Functions involving \(\operatorname{erf}\left(p z^{q}\right)\) :
\[
\operatorname{erf}\left(p z^{q}\right)=\frac{1}{\sqrt{\pi}} G_{1,2}^{1,1}\left(\begin{array}{ll}
1 & \\
\frac{1}{2} & 0
\end{array} p^{2} z^{2 q}\right)
\]

Functions involving \(\operatorname{erfc}\left(p z^{q}\right)\) :
\[
\operatorname{erfc}\left(p z^{q}\right)=\frac{1}{\sqrt{\pi}} G_{1,2}^{2,0}\left(\left.{ }_{0, \frac{1}{2}} \right\rvert\, p^{2} z^{2 q}\right)
\]

Functions involving erfi \(\left(p z^{q}\right)\) :
\[
\operatorname{erfi}\left(p z^{q}\right)=\frac{p z^{q}}{\sqrt{\pi}} G_{1,2}^{1,1}\left(\left.\begin{array}{ll}
\frac{1}{2} & \\
0 & -\frac{1}{2}
\end{array} \right\rvert\,-p^{2} z^{2 q}\right)
\]

Functions involving \(\mathrm{E}_{a}\left(p z^{q}\right)\) :
\[
\mathrm{E}_{a}\left(p z^{q}\right)=G_{1,2}^{2,0}\left(\begin{array}{ll}
a-1,0 & a \mid p z^{q}
\end{array}\right)
\]

Functions involving \(C\left(p z^{q}\right)\) :
\[
C\left(p z^{q}\right)=\frac{1}{2} G_{1,3}^{1,1}\left(\left.\begin{array}{ll}
1 & \\
\frac{1}{4} & 0, \frac{3}{4}
\end{array} \right\rvert\, \frac{\pi^{2} p^{4}}{16} z^{4 q}\right)
\]

Functions involving \(S\left(p z^{q}\right)\) :
\[
S\left(p z^{q}\right)=\frac{1}{2} G_{1,3}^{1,1}\left(\left.\begin{array}{ll}
1 & \\
\frac{3}{4} & 0, \frac{1}{4}
\end{array} \right\rvert\, \frac{\pi^{2} p^{4}}{16} z^{4 q}\right)
\]

Functions involving \(\log \left(p z^{q}\right)\) :
\[
\log ^{n}\left(p z^{q}\right)=\text { generated }
\]
\[
\left.\begin{array}{c}
\log \left(a+p z^{q}\right)=G_{1,1}^{1,0}\left(\left.\begin{array}{ll} 
& 1
\end{array} \right\rvert\, z\right) \log (a)+G_{1,1}^{0,1}\left(\begin{array}{ll}
1 & 0 \mid z
\end{array}\right) \log (a)+G_{2,2}^{1,2}\left(\left.\begin{array}{cc}
1,1 & 0 \\
1 & 0
\end{array} \right\rvert\, \frac{p z^{q}}{a}\right.
\end{array}\right)
\]

Functions involving \(\sin \left(p z^{q}\right)\) :
\[
\sin \left(p z^{q}\right)=\sqrt{\pi} G_{0,2}^{1,0}\left(\begin{array}{ll}
\frac{1}{2} & 0 \left\lvert\, \frac{p^{2}}{4} z^{2 q}\right.
\end{array}\right)
\]

Functions involving \(\sinh \left(p z^{q}\right)\) :
\[
\sinh \left(p z^{q}\right)=\pi^{\frac{3}{2}} G_{1,3}^{1,0}\left(\left.\begin{array}{cc}
1 & 1 \\
\frac{1}{2} & 1,0
\end{array} \right\rvert\, \frac{p^{2}}{4} z^{2 q}\right)
\]

Functions involving \(\theta\left(-p z^{q}+1\right), \log \left(p z^{q}\right)\) :
\[
\begin{gathered}
\log ^{n}\left(p z^{q}\right) \theta\left(-p z^{q}+1\right)=\text { generated } \\
\log ^{n}\left(p z^{q}\right) \theta\left(p z^{q}-1\right)=\text { generated }
\end{gathered}
\]

\subsection*{5.5 Numerical evaluation}

\subsection*{5.5.1 Floating-point numbers}

Floating-point numbers in Diofant are instances of the class Float. A Float can be created with a custom precision as second argument:
```

>>> Float(0.1)
0.100000000000000
>>> Float(0.1, 10)
0.1000000000
>>> Float(0.125, 30)
0.125000000000000000000000000000
>>> Float(0.1, 30)
0.100000000000000005551115123126

```

As the last example shows, some Python floats are only accurate to about 15 digits as inputs, while others (those that have a denominator that is a power of 2 , like \(0.125=1 / 8\) ) are exact. To create a Float from a high-precision decimal number, it is better to pass a string, Rational, or evalf a Rational:
```

>>> Float('0.1', 30)
0.100000000000000000000000000000
>>> Float(Rational(1, 10), 30)
0.100000000000000000000000000000
>>> Rational(1, 10).evalf(30)
0.100000000000000000000000000000

```

The precision of a number determines 1) the precision to use when performing arithmetic with the number, and 2) the number of digits to display when printing the number. When two numbers with different precision are used together in an arithmetic operation, the higher of the precisions is used for the result. The product of \(0.1+/-0.001\) and \(3.1415+/-0.0001\) has an uncertainty of about 0.003 and yet 5 digits of precision are shown.
```

>>> Float(0.1, 3)*Float(3.1415, 5)
0.31417

```

So the displayed precision should not be used as a model of error propagation or significance arithmetic; rather, this scheme is employed to ensure stability of numerical algorithms.

Function \(N()\) (page 143) (or evalf() (page 142) method) can be used to change the precision of existing floating-point numbers:
```

>>> N(3.5)
3.50000000000000
>>> N(3.5, 5)
3.5000

```

However, you can "increase" precision of the Float (page 87) number only with it's class constructor:
```

>>> Float(3.5, 30)
3.50000000000000000000000000000

```

\subsection*{5.5.2 Accuracy and error handling}

When the input to N or evalf is a complicated expression, numerical error propagation becomes a concern. As an example, consider the 100 'th Fibonacci number and the excellent (but not exact) approximation \(\varphi^{100} / \sqrt{5}\) where \(\varphi\) is the golden ratio. With ordinary floatingpoint arithmetic, subtracting these numbers from each other erroneously results in a complete cancellation:
```

>>> a, b = GoldenRatio**1000/sqrt(5), fibonacci(1000)
>>> float(a)
4.3466557686937455e+208
>>> float(b)
4.3466557686937455e+208
>>> float(a) - float(b)
0.0

```
\(N\) and evalf keep track of errors and automatically increase the precision used internally in order to obtain a correct result:
```

>>> N(fibonacci(100) - GoldenRatio**100/sqrt(5))
-5.64613129282185e-22

```

Unfortunately, numerical evaluation cannot tell an expression that is exactly zero apart from one that is merely very small. The working precision is therefore capped, by default to around 100 digits. If we try with the 1000'th Fibonacci number, the following happens:
```

>>> N(fibonacci(1000) - GoldenRatio**1000/sqrt(5))
Traceback (most recent call last):
PrecisionExhausted: ...

```

The exception indicates that \(N\) failed to achieve full accuracy. To force a higher working precision, the maxn keyword argument can be used:
```

>>> N(fibonacci(1000) - GoldenRatio**1000/sqrt(5), maxn=500)
-4.60123853010113e-210

```

Normally, maxn can be set very high (thousands of digits), but be aware that this may cause significant slowdown in extreme cases.
Also, you can set strict keyword argument to False to obtain imprecise answer instead of exception. For example, if we add a term so that the Fibonacci approximation becomes exact (the full form of Binet's formula), we get an expression that is exactly zero, but N does not know this:
```

>>> f = fibonacci(100) - (GoldenRatio**100 - (GoldenRatio-1)**100)/sqrt(5)
>>> N(f, strict=False)
0.e-126
>>> N(f, maxn=1000, strict=False)
0.e-1336

```

In situations where such cancellations are known to occur, the chop options is useful. This basically replaces very small numbers in the real or imaginary portions of a number with exact zeros:
```

>>> N(f, chop=True)
0
>> N(3 + I*f, chop=True)
3.00000000000000

```

In situations where you wish to remove meaningless digits, re-evaluation or the use of the round method are useful:
```

>>> Float('.1')*Float('.12345')
0.012297
>>> ans =
>>> N(ans,-1)
0.01
>>> ans.round(2)
0.01

```

If you are dealing with a numeric expression that contains no floats, it can be evaluated to arbitrary precision. To round the result relative to a given decimal, the round method is useful:
```

>>> v = 10*pi + cos(1)
>> N(v)
31.9562288417661
>>> v.round(3)
31.956

```

\subsection*{5.5.3 Sums and integrals}

Sums (in particular, infinite series) and integrals can be used like regular closed-form expressions, and support arbitrary-precision evaluation:
```

>>> Sum(1/n**n, (n, 1, oo)).evalf()
1.29128599706266
>>> Integral(x**(-x), (x, 0, 1)).evalf()
1.29128599706266
>>> Sum(1/n**n, (n, 1, 0o)).evalf(50)
1.2912859970626635404072825905956005414986193682745
>>> Integral(x**(-x), (x, 0, 1)).evalf(50)
1.2912859970626635404072825905956005414986193682745
>>> (Integral(exp(-x**2), (x, -oo, oo)) ** 2).evalf(30)
3.14159265358979323846264338328

```

By default, the tanh-sinh quadrature algorithm is used to evaluate integrals. This algorithm is very efficient and robust for smooth integrands (and even integrals with endpoint singularities), but may struggle with integrals that are highly oscillatory or have mid-interval discontinuities. In many cases, evalf/N will correctly estimate the error. With the following integral, the result is accurate but only good to four digits:
```

>>> f = abs(sin(x))
>>> Integral(abs(sin(x)), (x, 0, 4)).evalf()
Traceback (most recent call last):
PrecisionExhausted: ...

```

It is better to split this integral into two pieces:
```

>>> (Integral(f, (x, 0, pi)) + Integral(f, (x, pi, 4))).evalf()
2.34635637913639

```

A similar example is the following oscillatory integral:
```

>>> Integral(sin(x)/x**2, (x, 1, oo)).evalf()
Traceback (most recent call last):
PrecisionExhausted: ...

```

It can be dealt with much more efficiently by telling eval \(f\) or \(N\) to use an oscillatory quadrature algorithm:
```

>>> Integral(sin(x)/x**2, (x, 1, oo)).evalf(quad='osc')
0.504067061906928
>>> Integral(sin(x)/x**2, (x, 1, oo)).evalf(20, quad='osc')
0.50406706190692837199

```

Oscillatory quadrature requires an integrand containing a factor \(\cos (a x+b)\) or \(\sin (a x+b)\). Note that many other oscillatory integrals can be transformed to this form with a change of variables:
```

>>> init_printing(pretty_print=True, use_unicode=False,
... wrap_line=False, no_glōbal=True)
>>> intgrl = Integral(\overline{sin}(1/x), (x, 0, 1)).transform(x, 1/x)
>>> intgrl
00
/
sin(x)
-----dx
2
x
/
>>> N(intgrl, quad='osc')
0.504067061906928

```

Infinite series use direct summation if the series converges quickly enough. Otherwise, extrapolation methods (generally the Euler-Maclaurin formula but also Richardson extrapolation) are used to speed up convergence. This allows high-precision evaluation of slowly convergent series:
```

>>> Sum(1/k**2, (k, 1, oo)).evalf(strict=False)
1.64493406684823
>>> zeta(2).evalf()
1.64493406684823
>>> Sum(1/k-log(1+1/k), (k, 1, oo)).evalf()
0.577215664901533
>>> Sum(1/k-log(1+1/k), (k, 1, 0o)).evalf(50)
0.57721566490153286060651209008240243104215933593992
>>> EulerGamma.evalf(50)
0.57721566490153286060651209008240243104215933593992

```

The Euler-Maclaurin formula is also used for finite series, allowing them to be approximated quickly without evaluating all terms:
```

>>> Sum(1/k, (k, 10000000, 20000000)).evalf()
0.693147255559946

```

Note that evalf makes some assumptions that are not always optimal. For fine-tuned control over numerical summation, it might be worthwhile to manually use the method Sum. euler_maclaurin.
Special optimizations are used for rational hypergeometric series (where the term is a product of polynomials, powers, factorials, binomial coefficients and the like). N/evalf sum series of this type very rapidly to high precision. For example, this Ramanujan formula for pi can be summed to 10,000 digits in a fraction of a second with a simple command:
```

>>> f = factorial
>>> R = 9801/sqrt(8)/Sum(f(4*n)*(1103+26390*n)/f(n)**4/396**(4*n),
\because: (n, 0, 0o))
>>> N(R, 10000, strict=False)
3.141592653589793238462643383279502884197169399375105820974944592307...

```

\subsection*{5.5.4 Numerical simplification}

The function nsimplify attempts to find a formula that is numerically equal to the given input. This feature can be used to guess an exact formula for an approximate floating-point input, or to guess a simpler formula for a complicated symbolic input. The algorithm used by nsimplify is capable of identifying simple fractions, simple algebraic expressions, linear combinations of given constants, and certain elementary functional transformations of any of the preceding.

Optionally, nsimplify can be passed a list of constants to include (e.g. pi) and a minimum numerical tolerance. Here are some elementary examples:
```

>>> nsimplify(0.1)
1/10
>>> nsimplify(6.28, [pi], tolerance=0.01)
2*pi
>>> nsimplify(pi, tolerance=0.01)
22/7
>>> nsimplify(pi, tolerance=0.001)
355
113
>>> nsimplify(0.33333, tolerance=1e-4)
1/3
>>> nsimplify(2.0**(1/3.), tolerance=0.001)
635
504
>>> nsimplify(2.0**(1/3.), tolerance=0.001, full=True)
3
\/2

```

Here are several more advanced examples:
```

>>> nsimplify(Float('0.130198866629986772369127970337', 30), [pi, E])
1
5*pi
---- + 2*E
7
>>> nsimplify(cos(atan('1/3')))
3*\/ 10

10
>>> nsimplify(4/(1+sqrt(5)), [GoldenRatio])
-2 + 2*GoldenRatio
>>> nsimplify(2 + exp(2*atan('1/4')*I))
49 8*I
-- + ---
17 17
>>> nsimplify((1/(exp(3*pi*I/5)+1)))

```
```

l llal/l
>>> nsimplify(I**I, [pi])
-pi

2
E
>>> nsimplify(Sum(1/n**2, (n, 1, oo)), [pi])
2
pi

>>> nsimplify(gamma('1/4')*gamma('3/4'), [pi])
/ 2 *pi

```

\subsection*{5.5.5 uFuncify}

While NumPy operations are very efficient for vectorized data they sometimes incur unnecessary costs when chained together. Consider the following operation
```

x = get_numpy_array(...)
y = sin(x)/x

```

The operators sin and / call routines that execute tight for loops in C. The resulting computation looks something like this
```

for(int i = 0; i < n; i++)
{
temp[i] = sin(x[i]);
}
for(int i = i; i < n; i++)
{
y[i] = temp[i] / x[i];
}

```

This is slightly sub-optimal because
1. We allocate an extra temp array
2. We walk over x memory twice when once would have been sufficient A better solution would fuse both element-wise operations into a single for loop
```

for(int i = i; i < n; i++)
{
y[i] = sin(x[i]) / x[i];
}

```

Statically compiled projects like NumPy are unable to take advantage of such optimizations. Fortunately, Diofant is able to generate efficient low-level C or Fortran code. It can then depend on projects like Cython or f2py to compile and reconnect that code back up to Python. Fortunately this process is well automated and a Diofant user wishing to make use of this code generation should call the ufuncify function
```

>>> expr = sin(x)/x

```
```

>>> from diofant.utilities.autowrap import ufuncify
>>> f = ufuncify((x,), expr)

```

This function f consumes and returns a NumPy array. Generally ufuncify performs at least as well as lambdify. If the expression is complicated then ufuncify often significantly outperforms the NumPy backed solution. Jensen has a good blog post on this topic.

\section*{DEVELOPMENT}

Warning: If you are new to Diofant, start with the Tutorial (page 3). If you are willing to contribute - it's assumed you know the Python programming language and the Git Version Control System.

This project adheres to No Code of Conduct. Contributions will be judged by their technical merit.

\subsection*{6.1 Reporting Issues}

When opening a new issue, please take the following steps:
1. Please search GitHub issues to avoid duplicate reports.
2. If possible, try updating to master and reproducing your issue.
3. Try to include a minimal reproducible code example that demonstrates the problem.
4. Include any relevant details of your local setup (Python version, installed libraries).

Note: Please avoid changing your messages on the GitHub, unless you want fix a typo and so on. Just expand your comment or add a new one.

\subsection*{6.2 Contributing Code}

All work should be submitted via Pull Requests (PR).
1. PR can be submitted as soon as there is code worth discussing. Please make a draft PR, if one is not intended to be merged in its present shape even if all checks pass.
2. Please put your work on the branch of your fork, not in the master branch. PR should generally be made against master.
3. One logical change per commit. Make good commit messages: short (<=78 characters) one-line summary, then newline followed by verbose description of your changes. Please mention closed issues with commit message.
4. Please conform to PEP 8 and PEP 257; run:
flake8
to check formatting and:

\section*{flake8-rst}
if your change affects doctests.
5. PR should include tests:
1. Bugfixes should include regression tests. Please format them accordingly, to include references for fixed issues (e.g. by naming test like test_diofantissue_123 or adding comment with issue number).
2. All new functionality should be tested, every new line should be covered by tests. Please use in tests only public interfaces. Regression tests are not accounted in the coverage statistics.
3. Optionally, provide doctests to illustrate usage. But keep in mind, doctests are not tests. Think of them as examples that happen to be tested.
6. It's good idea to be sure that all existing tests pass and you don't break anything, so please run:
```

pytest

```

To check also doctests, run:
```

pytest --doctest-modules

```
7. Please also check for potential flaws in your Python code with:
```

pylint diofant

```
and do type checking:
```

mypy diofant

```
8. If your change affects documentation, please build it by:
```

sphinx-build -W -b html docs build/sphinx/html

```
and check that it looks as expected.

\subsection*{6.3 Rosetta Stone}

The Diofant project is a SymPy's fork, so it could be handy to collect here some facts about SymPy and explain historical code conventions.
First, the SymPy project was hosted in SVN repository on the Google Code and our master branch include only commits, that added after moving project on the Github. But it's not a problem for us - we keep old history on the branch sympy-svn-history. Also, you can see this history as part of master's, if you clone our repo (page 1) and simply do this:
git fetch origin 'refs/replace/*:refs/replace/*'

Please note, that we have dozens of references to SymPy issues in our codebase. Such reference must be either a direct URL of the issue, or a fully qualified reference in the Github format, like sympy/sympy\#123. Unqualified references like \#123 or issue 123 - are reserved for our Github issues. Functions for regression tests should be named like test_sympyissue_123 and test_diofantissue_123, respectively.
However, in the old Git history, before commit cbdd072, please expect that \#123, issue \#123 or issue 123 - are references to the SymPy's issues. The whole story is a little worse, because before commit 6f68fa1 - such unqualified references assume issues on the Google Code, not Github, unless other clearly stated. SymPy issues from the Google Code were moved to the Github in March 2014 (see sympy/sympy\#7235). Transfered issue numbers were shifted by 3099. I.e. issue 123 in the history - does mean issue sympy/sympy\#3222 on Github.

\subsection*{6.4 Versioning and Release Procedure}

We use standard Semantic Versioning numbering scheme, but adopt PEP 440 for alpha ("aN" suffix), beta ("bN") and development (".devN") releases.
To release a new version, tag latest commit to the master branch and publish this release tag:
```

git pull
git tag -s vX.Y.Z
git push origin vX.Y.Z

```

\begin{abstract}
ABOUT

This Python library for symbolic mathematics is a fork of the SymPy, started by Sergey B Kirpichev, last regular SymPy's commit is cbdd072 (22 Feb 2015). The git history goes back to 2007.

The project was named after the Diophantus of Alexandria. His "Arithmetica" is one of the earliest known texts that use symbols in equations. "Diofant" is a transliteration of Диофант, from Russian.
\end{abstract}

\subsection*{7.1 License}

Unless stated otherwise, all files in the Diofant project are licensed using the new BSD license:
Copyright (c) 2006-2018 SymPy Development Team, 2013-2021 Sergey B Kirpichev
All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
- Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
- Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

\section*{RELEASE NOTES}

This section documents the changes that have been made in various versions of Diofant. Users should consult these pages to learn about new features, bug fixes and backwards incompatibilities. Developers should summarize the development work they do here in a user friendly format.

\subsection*{8.1 Diofant 0.13}

7 Nov 2021

\subsection*{8.1.1 New features}
- Support square-free factorization of multivariate polynomials over finite fields (with adaptation of Musser's algorithm), see \#1132.

\subsection*{8.1.2 Major changes}
- Support calling from the command-line as python -m diofant, see \#853. Thanks to André Roberge.

\subsection*{8.1.3 Compatibility breaks}
- Removed n() method from EvalfMixin (page 142), see \#1114.
- Former submodule diofant.polys.polyconfig now is diofant.config (page 41), see \#1115.
- Drop support for DIOFANT_DEBUG environment variable, see \#1115.
- Drop support for CPython 3.7 and 3.8, see \#1118 and 5cae972.
- Renamed Ring as CommutativeRing (page 505), see \#1123.
- Removed support for Python 3.7 and 3.8, see \#1118 and \#1124.
- FiniteRing renamed to IntegerModRing (page 506), see \#1124.
- Removed igcd(), ilcm() and prod() functions, see \#1125.
- Changed the Derivative (page 126) (and similary diff() (page 128)) syntax to Derivative(foo, (x, 2)) from Derivative(foo, x, 2), see \#1131.
- Removed prem() function, see \#1140.
- Removed lseries() method of Expr (page 57), use series() (page 80) with n=None, see \#1146.

\subsection*{8.1.4 Minor changes}
- Protect hashed PolyElement (page 966)'s from modifications, see \#1033.
- Add gaussian rationals as an exact domain, associated with ComplexField (page 508), see \#1138.
- Support tan (page 291) in minimal_polynomial() (page 620), see \#1159.
- \(100 \%\) test coverage for plotting (page 648) module, see \#1175.
- Support CPython 3.10, see \#1162.

\subsection*{8.1.5 Developer changes}
- Turn on type checking for the whole codebase, see \#1114.
- Don't include regression tests in the coverage statistics, see \#1060.

\subsection*{8.1.6 Issues closed}

See the release milestone for complete list of issues and pull requests involved in this release. These Sympy issues also were addressed:
- sympy/sympy\#20861: reduce_inequalities() gives impossible answer
- sympy/sympy\#20874: Port the PRS algorithm to the sparse polynomial implementation
- sympy/sympy\#20902: Incorrect inequality solving: False returned instead of answer
- sympy/sympy\#20941: Fails to Solve Definite Integral
- sympy/sympy\#20973: cancel raises PolynomialError for \(\exp (1+\mathrm{O}(\mathrm{x}))\)
- sympy/sympy\#20985: TypeErrors appearing for simple plynomial manipulations (did not happen in v1.6.1)
- sympy/sympy\#21031: Limit of "limit \(\left(\left((1+\mathrm{x})^{* *}(1 / \mathrm{x})-\left(1+2^{*} \mathrm{x}\right)^{* *}\left(1 /\left(2^{*} \mathrm{x}\right)\right)\right) / \mathrm{asin}(\mathrm{x}), \mathrm{x}, 0\right)^{\prime}\) " is wrong with v1.7.1
- sympy/sympy\#21034: (Integration) regressions?
- sympy/sympy\#21038: Incorrect computation of a basic limit, regression from 1.6.2 to 1.7.1
- sympy/sympy\#21041: integrate error
- sympy/sympy\#21063: Wrong value of improper integral when using unevaluated -oo as boundary
- sympy/sympy\#21075: Order term being added to exact expansion
- sympy/sympy\#21091: Invalid comparison of non-real when using integrate()
- sympy/sympy\#19590: Poly.diff() doesn't support higher order derivatives
- sympy/sympy\#21121: Same symbols created in different processes are not resolved as being equal
- sympy/sympy\#21107: S.Infinity.is_nonzero returns False
- sympy/sympy\#21132: Integral with parametres: wrong and too long result
- sympy/sympy\#21180: Bug: sympy.factor doesn't work for Poly !!!
- sympy/sympy\#21167: Empty list of solutions returned for equation with cubic roots
- sympy/sympy\#21029: Continuous limits involving division by \(x\)
- sympy/sympy\#20697: Series is not simplified to final answer in output in sympy 1.7.1
- sympy/sympy\#20578: A strange behavior of limit function
- sympy/sympy\#20444: Leading Term with log
- sympy/sympy\#19453: Limit changes from simplification of original expression
- sympy/sympy\#19442: Non-existent bi-directional limit gives ValueError
- sympy/sympy\#11667: \(\operatorname{limit}(1 / \mathrm{x}, \mathrm{x}, 0)==\) oo ??
- sympy/sympy\#21202: laplace_transform( \(\left.\cosh \left(2^{*} \mathrm{x}\right), \mathrm{x}, \mathrm{s}\right)\) raises RecursionError
- sympy/sympy\#21227: Nested logarithms add unnecessary order term to series expansions
- sympy/sympy\#21263: Solutions of cubic equation
- sympy/sympy\#21334: RecursionError while calculating leading term
- sympy/sympy\#21342: 1/(exp(it) - 2) integrates wrong
- sympy/sympy\#21319: Primitive part of zero polynomial
- sympy/sympy\#21341: Issues with continued fraction for real roots of cubic polynomials
- sympy/sympy\#21024: sympy.polys.polyerrors.CoercionFailed integration regressions?
- sympy/sympy\#21396: Pow.as_base_exp inconsistent with I.as_base_exp
- sympy/sympy\#21410: Polynomial power raises KeyError
- sympy/sympy\#21437: \(\log (A b s)\)
- sympy/sympy\#21460: Polynomial GCD result is different for dense trivial polynomial
- sympy/sympy\#21466: Regression for match for differential binomial expression
- sympy/sympy\#21166: Wrong integration result involving square root of absolute value
- sympy/sympy\#21486: expand_func(besselj(oo, x)) -> RecursionError
- sympy/sympy\#21530: Incorrect limit
- sympy/sympy\#21549: Bug: integrate(x*sqrt(abs(x)),(x,-1,0)) returns wrong result
- sympy/sympy\#21557: Summation of geometric series with non-real exponent does not evaluate
- sympy/sympy\#21550: Bug: limit returns wrong result for rational function
- sympy/sympy\#21177: Incorrect residue for \(\cot \left(\mathrm{pi}^{*} \mathrm{x}\right) /\left(\mathrm{x}^{* *} 2-3^{*} \mathrm{x}+3\right)\)
- sympy/sympy\#21245: laurent series Fibonacci generating fuction
- sympy/sympy\#11833: error in limit involving exp, sinh and an assumption (maybe related to caching)
- sympy/sympy\#9127: ntheory.AskEvenHandler.Mul is order-dependent
- sympy/sympy\#21606: Notimplemented in simple limit
- sympy/sympy\#21641: Simplify hangs
- sympy/sympy\#21651: doit() method sometimes ignores floor and ceiling within Sum
- sympy/sympy\#20461: Eq(Product( \(\left.4 *_{n}{ }^{* *} 2 /\left(4 *_{n} * * 2-1\right),(n, 1, o o)\right)\), pi/2) incorrectly gives False
- sympy/sympy\#13029: with gens, time taken for sqf increases orders of magnitude faster than factor as input size increases
- sympy/sympy\#21711: odd result for integrate(sqrt(1-(x-1)*(x-1)), (x, 0, 1))
- sympy/sympy\#21721: Bug in integration solver
- sympy/sympy\#21716: isympy -c python tab triggered auto completion not working
- sympy/sympy\#21741: integrate() does not work with multivariable function that is solved by simple substitution. DomainError: there is no ring associated with CC
- sympy/sympy\#21756: Incorrect limit with ratio of complex exponentials
- sympy/sympy\#21760: Poly div is slow
- sympy/sympy\#21761: sympy.polys.polyerrors.NotAlgebraic Exception
- sympy/sympy\#21430: minpoly raises 'NotAlgebraic' for \(\tan \left(13^{*} \mathrm{pi} / 45\right)\)
- sympy/sympy\#21766: solve breaks on certain repeated inputs
- sympy/sympy\#21773: TypeError multiplying Subs expressions
- sympy/sympy\#21785: Limit gives TypeError from as_leading_term
- sympy/sympy\#21812: LambertW displaying in jupyter lab
- sympy/sympy\#21814: Printing of unevaluated Mul needs brackets
- sympy/sympy\#21176: Incorrect residue of \(\mathrm{x}^{* * 2 *} \cot \left(\mathrm{pi}{ }^{*} \mathrm{x}\right) /\left(\mathrm{x}^{* *} 4+1\right)\)
- sympy/sympy\#21852: simple quadratic not solving
- sympy/sympy\#21859: AttributeError: 'mpz' object has no attribute 'denominator' with sp.series()
- sympy/sympy\#21882: Incorrect solutions given by solve
- sympy/sympy\#21890: RecursionError and TypeError in nonlinsolve
- sympy/sympy\#21888: TypeError raised for evalf containing summations
- sympy/sympy\#5822: What should summation() do with non-integer limits?
- sympy/sympy\#19745: Weird value of a sum
- sympy/sympy\#9358: summation: Wrong out for non-integral range
- sympy/sympy\#21905: raise NotImplementedError("Equation not in exact domain. Try converting to rational") Error
- sympy/sympy\#21938: Series raises an error at infinity for an example which can be solved by aseries
- sympy/sympy\#21984: ValueError: list.remove(x): x not in list occurs in nonlinsolve
- sympy/sympy\#21999: detection of infinite solution request
- sympy/sympy\#22020: Comparing two operations that contain log sometimes leads to TypeError exception
- sympy/sympy\#22051: Nonlinsolve incorrect result
- sympy/sympy\#22058: Regression in solveset for quadratic with symbolic coefficients
- sympy/sympy\#22073: Interval with oo
- sympy/sympy\#22093: sympy.polys.polyerrors.HeuristicGCDFailed: no luck
- sympy/sympy\#22155: Problem with solving simple separable ODE
- sympy/sympy\#22220: Bug in the evaluation of a log limit
- sympy/sympy\#22248: solve running forever
- sympy/sympy\#22294: Bernoulli differential equation
- sympy/sympy\#22322: 'abs' is not parsed correctly
- sympy/sympy\#22334: Wrong answer returned while calculating limit for different arrangements of the same expression
- sympy/sympy\#22400: Minpoly doesn't terminate
- sympy/sympy\#22435: sympy integration error

\subsection*{8.2 Diofant 0.12}

18 Jan 2021

\subsection*{8.2.1 New features}
- Support modular exponentiation of PolyElement (page 966)'s, see \#1032.
- reduce_inequalities() (page 746) support solving linear inequalities with FourierMotzkin elimination algorithm, see \#1063.
- Added class FiniteRing for modular integers, see \#876.
- Implemented compose() (page 994) for functional composition in the fields of fractions, see \#1100.

\subsection*{8.2.2 Major changes}
- Module sqfreetools (page 992) was ported to use sparse polynomial representation, see \#1009.
- Module factortools (page 974) was ported to use sparse polynomial representation, see \#1015, \#1018, \#1019, \#1020 and \#1021.
- Module rootisolation (page 991) was ported to use sparse polynomial representation, finally the dense representation is used nowhere, see \#1030, \#1031 and \#1035.
- reduce_inequalities() (page 746) uses ExtendedReals (page 678) subsets to solve inequalities, see \#1067 and \#1092.
- Added new algorithm for factorization of multivariate polynomials over AlgebraicField (page 506)'s (uses Hensel lifting), see \#876. Thanks to Katja Sophie Hotz. Thanks to Kalevi Suominen for help with review.

\subsection*{8.2.3 Compatibility breaks}
- Removed vring() and vfield() functions, see \#1016.
- Drop support for from_list() initialization for multivariate polynomials, see \#1035.
- Drop to_dense(), tail_degrees(), almosteq() and degree_list() methods and is_monic, is_primitive attributes of PolyElement (page 966), see \#1035, \#1036 and \#1051.
- Drop is_monic, is_primitive, zero, one and unit attributes and degree_list() method of Poly (page 588), see \#1036, \#1039 and \#1051.
- Drop sring(), poly_from_expr(), gcd_list() and lcm_list() functions, see \#1037, \#1057 and \#1086.
- Functions and classes of the polytools (page 586) module do not support anymore iterables as polynomial generator, see \#1039.
- Drop unused functions dispersion(), dispersionset() and degree_list(), see \#1051 and \#1053.
- Drop rich comparison methods from the FracElement (page 994), see \#1101.
- from_list() (page 596) support now ascending order of coefficients (i.e., the leading coefficient of univariate polynomial is coming last), see \#1103.
- Removed support for 3D geometry in the geometry (page 403) module and Point. __getitem_() method, see \#1105.
- Drop coeff(), coeffs(), monoms(), terms() and deflate() methods of PolyElement (page 966), use dictionary indexing, see \#1108.

\subsection*{8.2.4 Minor changes}
- Special case univariate polynomials with UnivarPolynomialRing (page 506) and UnivarPolyElement (page 970), see \#1024.
- Implement is_primitive (page 509), see \#1035.
- Add ExtendedReals (page 678) singleton, see \#1067.
- \(100 \%\) test coverage for geometry (page 403) module, see \#1105. Overall test coverage is around \(98 \%\).

\subsection*{8.2.5 Developer changes}
- Depend on flake8-sfs, see \#983.
- Depend on mypy, see \#1046.
- Drop dependency on strategies, see \#1074.

\subsection*{8.2.6 Issues closed}

See the release milestone for complete list of issues and pull requests involved in this release. These Sympy issues also were addressed:
- sympy/sympy\#19630 rsolve gives None for linear homogeneous recurrence relation
- sympy/sympy\#19076 modular exponentiation of poly
- sympy/sympy\#19670 \(\operatorname{Poly}\left(\mathrm{E}^{* *} 100000000\right)\) is slow to create
- sympy/sympy\#19755 poly gives coercion error when integers and rationals are mixed
- sympy/sympy\#19760 minimal_polynomial using Groebner basis can give wrong result
- sympy/sympy\#19770 Limit involving cosine
- sympy/sympy\#19766 Incorrect limit
- sympy/sympy\#19774 evalf() doesn't evaluate terms in an exponential
- sympy/sympy\#19988 Float loses precision after being pickled
- sympy/sympy\#14874 Limit x -> oo for besselk
- sympy/sympy\#19991 Wrong result from floor().evalf()
- sympy/sympy\#10666 resultant misses the sign
- sympy/sympy\#20163 Apart hangs with extension=[sqrt(3), I]
- sympy/sympy\#9479 Cannot solve multivariate inequalities
- sympy/sympy\#20365 Limit Bug
- sympy/sympy\#20360 Incorrect definite integration of simple exponential involving pi
- sympy/sympy\#20389 TypeError: Argument of Integer should be of numeric type, got -oo
- sympy/sympy\#20391 Linear programming with simplex method
- sympy/sympy\#19161 When applying simplify on a Poly it fails
- sympy/sympy\#20397 bug in dividing polynomials by module
- sympy/sympy\#19196 Slow f.factor_list
- sympy/sympy\#20491 Inconsistencies in pretty printing in a notebook
- sympy/sympy\#20490 LaTeX printing of negative constant PolyElement
- sympy/sympy\#20484 Need more utility for polynomial substitution
- sympy/sympy\#20485 Rational powers for non-monomial PolyElement
- sympy/sympy\#20487 LaTeX printing errors for puiseux polynomial
- sympy/sympy\#20610 Solve: GeneratorsNeeded with system involving constant equation
- sympy/sympy\#20617 Complex exponentials are not recognized by domains
- sympy/sympy\#20640 Multivariate polynomial division
- sympy/sympy\#20704 Limit not terminating

\subsection*{8.3 Diofant 0.11}

22 Apr 2020

\subsection*{8.3.1 New features}
- Added discrete_log() (page 259) to compute discrete logarithms, see \#785. Thanks to Gabriel Orisaka.
- Support inhomogenous case for systems of linear ODEs with constant coefficients, see \#919.
- Support domains pickling, see \#972.

\subsection*{8.3.2 Major changes}
- Poly (page 588) now use sparse polynomial representation (via PolyElement (page 966)) internally, see \#795.
- rsolve() (page 821) now return list of dict's, see \#940.
- solve() (page 742) now return all solutions for equations, involving surds, see \#910.
- Module galoistools was adapted to use FiniteField (page 506)'s and usual conventions for low-level methods of the polys (page 586) module, see \#957, \#971 and \#964. Polynomial factorization now works for univariate polynomials over any FiniteField (page 506)'s domain.
- Module euclidtools (page 972) was ported to use sparse polynomial representation, see \#994.

\subsection*{8.3.3 Compatibility breaks}
- Removed support for Python 3.5 and 3.6 , see \#775.
- is_monomial attribute of Poly (page 588) renamed to is_term (page 600), see \#780.
- Removed log() helper from RationalField (page 506), see \#787.
- Removed seterr() function, see \#794.
- Removed DMP class, see \#795.
- Removed ring_series module, see \#820.
- Equality (page 111) doesn't support single-argument call, see \#828.
- Removed is_nonnegative(), is_nonpositive() and is_positive() methods of Domain (page 504) subclasses, see \#834 and \#975.
- Change order of keyword arguments for integrate() (page 969), see \#834.
- Removed support for dps=' ' in Float (page 87). Significant digits automatically counted for int and str inputs, see \#797.
- Removed numer/denom properties of FracElement (page 994), see \#851.
- Removed is_hermitian/is_antihermitian core properties, see \#873.
- Removed print_python() and print_ccode() functions, see \#891.
- Reorder output for jordan_form() (page 540) and jordan_cells() (page 539), the last one is now optional, see \#896.
- Removed generate_oriented_forest(), kbins() and ibin() functions, see \#903.
- Removed support for numexpr module in lambdify() (page 902) and NumExprPrinter printer class, see \#903.
- Removed DeferredVector class, see \#905.
- Don't export too much from solvers (page 742) to the default namespace, keep only solve() (page 742), rsolve() (page 821) and dsolve() (page 771) functions, see \#921.
- Make rsolve() (page 821)'s init parameter more compatible with dsolve() (page 771)'s one, e.g. drop accepting init=[1, 2, 3] and init=\{0: 1, 1: 2, 2: 3\} forms, see \#921.
- Removed dict_merge(), generate_bell() and reshape() functions, see \#921.
- Removed subs() methods from PolyElement (page 966) and FracElement (page 994), see \#967.
- is_negative() method of Domain (page 504) refactored to the is_normal() (page 505), see \#977.
- Removed algebraic_field() method of IntegerRing (page 506), see \#977.
- Removed has_assoc_Field property, is_SymbolicDomain property renamed to is_ExpressionDomain of Domain (page 504), see \#977.
- drop_to_ground() method of PolynomialRing (page 506) renamed to eject() (page 506), see \#977.
- Renamed option misspeled option bareis to bareiss in det() (page 526) and wronskian() (page 554), see \#866.
- Removed nth_power_roots_poly(), ground_roots(), refine_root(), intervals() and sturm() functions and nth_power_roots_poly(), ltrim(), ground_roots(), refine_root(), intervals(), max_norm(), ll_norm() and sturm() methods of Poly (page 588), see \#996.

\subsection*{8.3.4 Minor changes}
- Support truncation for elements of RealAlgebraicField (page 506) to int, see \#788.
- Matrix (page 509)'s and Array (page 837)'s support symbolic indexes, see \#785. Thanks to Francesco Bonazzi.
- Added AA_FACTOR_METHOD configuration option to specify factorization algorithm for polynomials with algebraic coefficients, see \#844.
- CCodeGen (page 870) got support for common subexpression replacement, see \#893. Thanks to James Cotton.
- \(100 \%\) test coverage for utilities (page 863) module.
- rsolve() (page 821) got simplify option to control default output simplification, see \#921.
- Function rsolve() (page 821) got initial support for systems of equations, see \#921.
- minimal polynomial() (page 620) got support for RootOf (page 622) instances over algebraic number fields, see \#927.
- The CommutativeRing (page 505) and all derived classes got characteristic (page 505) property, see \#968.
- Correct wrong implementations of factorization algorithms over finite fields, see \#968 and \#964. Thanks to Kalevi Suominen for help with review.

\subsection*{8.3.5 Developer changes}
- Depend on sphinxcontrib-bibtex to track the bibliography, see \#766.
- Use Github Actions for CI, instead of the Travis CI, see \#887.
- Depend on flake8-rst to test formatting of docstrings, see \#928.
- Depend on flake8-quotes, see \#982.

\subsection*{8.3.6 Issues closed}

See the release milestone for complete list of issues and pull requests involved in this release.
These Sympy issues also were addressed:
- sympy/sympy\#15943 Wrong result from summation
- sympy/sympy\#12163 matematica code printer does not handle floats and derivatives correctly
- sympy/sympy\#11642 Geometric sum doesn't evaluate with float base
- sympy/sympy\#15984 Value error in limit
- sympy/sympy\#7337 Wrong integration result
- sympy/sympy\#11600 re and im should work for matrix expressions
- sympy/sympy\#16038 solve_poly_system works with integers but not floats
- sympy/sympy\#15553 rsolve can not solve this kind of recurrences
- sympy/sympy\#11581 conjugate of real expression should not change expression
- sympy/sympy\#11976 Typo in ellipse.py
- sympy/sympy\#11275 LaTeX printer inconsistent with pretty printer
- sympy/sympy\#11841 Function('gamma') pretty prints as \(\Gamma\)
- sympy/sympy\#11926 ccode does not accept user_functions for Max and Min
- sympy/sympy\#11855 DiracDelta function is zero for nonzero arguments
- sympy/sympy\#11955 diophantine gives wrong solution for \(-4 * x^{*} * 2+4 * x * y-y * * 2+2 * x-3\)
- sympy/sympy\#11502 Discrete logarithms
- sympy/sympy\#11435 str printing of logic expressions should use operators
- sympy/sympy\#12200 coeff docstring is wrong
- sympy/sympy\#9123 apart drops term
- sympy/sympy\#12177 Wrong result with apart Wrong Result
- sympy/sympy\#8129 The probability function does not handle expressions like \(\mathrm{b}>=\mathrm{b}\)
- sympy/sympy\#9983 Product( \(1+1 / \mathrm{n}^{* *}(\mathrm{~S}(2) / 3)\), ( \(\mathrm{n}, 1\), oo) ).doit() raise RunTimeError
- sympy/sympy\#11726 pde_separate does not allow expressions as input
- sympy/sympy\#11981 powsimp() fails with noncommutative variables
- sympy/sympy\#12092 evalf does not call _imp_recursively
- sympy/sympy\#10472 pprint should align the middle of the matrix to the baseline?
- sympy/sympy\#11959 diophantine gives wrong solution for \(-4 * x^{*} * 2+4 * x * y-y * * 2+2 * x-3\)
- sympy/sympy\#11944 matrix vstack/hstack can fail with immutable matrix as first argument
- sympy/sympy\#11732 Fails operators between Interval and some S.Sets
- sympy/sympy\#12178 Empty intersection should be UniversalSet
- sympy/sympy\#10681 TypeError: 'Float' object cannot be interpreted as an integer from integrate( \(\mathrm{r}^{* *} 2^{*}\left(\mathrm{R}^{* *} 2-\mathrm{r} * * 2\right)^{* *} 0.5\), r)
- sympy/sympy\#11078 TypeError: 'Float' object cannot be interpreted as an integer from integrate(( \(\left.\left.6-\mathrm{x}^{*} \mathrm{x}\right)^{* *}(1.5)\right)\)
- sympy/sympy\#11877 integrate(log(0.5-x), (x, 0, 0.5)) wrongly produces imaginary part
- sympy/sympy\#7337 Wrong integration result
- sympy/sympy\#10211 integrate((1/sqrt(((y-x) \(\left.\left.\left.\left.{ }^{* * 2}+\mathrm{h}^{* *} 2\right)\right)^{* *} 3\right),(\mathrm{x}, 0, \mathrm{w}),(\mathrm{y}, 0, \mathrm{w})\right)\) is wrong
- sympy/sympy\#11806 Incorrectly evaluating integral
- sympy/sympy\#12325 string formatting error in dmp_integrate_in
- sympy/sympy\#16222 Poly(E**100000000) is slow to create
- sympy/sympy\#15413 rootof fails for polynomial with irrational coefficients
- sympy/sympy\#16432 a.is_even does not imply a.is_finite
- sympy/sympy\#16431 a.is_zero is False does not imply a.is_nonzero is True
- sympy/sympy\#16530 (1/x).is_real should be None if x can be zero
- sympy/sympy\#16562 Eq with 1 argument is allowed?
- sympy/sympy\#16589 roots gives incorrect result
- sympy/sympy\#16714 Limit \(\left(\left(\mathrm{n}^{* *}(\mathrm{n}+1)+(\mathrm{n}+1)^{* *} \mathrm{n}\right) / \mathrm{n} * *(\mathrm{n}+1)\right)^{* *} \mathrm{n}\) recursion error
- sympy/sympy\#16774 square proportion match has no result
- sympy/sympy\#17034 isqrt gives incorrect results
- sympy/sympy\#17044 is_square gives incorrect answers
- sympy/sympy\#10996 Bug in polynomial GCD computation
- sympy/sympy\#15282 Works too long on some limits with big powers
- sympy/sympy\#16722 limit(binomial(n + z, n)*n**-z, n, oo) gives different answers based on assumptions of n and z
- sympy/sympy\#15673 Wrong results. (Limit, Integral, sphere(Space polar coordinates))
- sympy/sympy\#17380 Incorrect results given by some limit expressions
- sympy/sympy\#17431 Wrong results. (Limit, factorial, Power)
- sympy/sympy\#17492 Add link to GitHub in the Sphinx documentation
- sympy/sympy\#17555 (-x).is_extended_positive fails for extended_real and infinite
- sympy/sympy\#17556 Mul.is_imaginary fails for infinite values
- sympy/sympy\#17453 Pow._eval_is_error
- sympy/sympy\#17719 plot_implicit error for Xor
- sympy/sympy\#12386 Latex printer for MutableDenseNDimArray, MutableSparseNDimArray
- sympy/sympy\#12369 Start using spherical_jn from SciPy
- sympy/sympy\#17792 Wrong limit
- sympy/sympy\#17789 Intermittent test failure in assumptions
- sympy/sympy\#17841 integrate throws error for rational functions involving I
- sympy/sympy\#17847 Wrong result for as_leading_term()
- sympy/sympy\#17982 Wrong result from rsolve
- sympy/sympy\#9244 dsolve: nonhomogeneous linear systems are not supported
- sympy/sympy\#15946 Matrix exponential for dsolve
- sympy/sympy\#16635 problem when using dsolve() to solve ordinary differential equations
- sympy/sympy\#14312 Incorrect solution of 3 by 3 linear ODE systems
- sympy/sympy\#8859 wrong result: dsolve for systems with forcings
- sympy/sympy\#9204 dsolve fails
- sympy/sympy\#14779 Spurious solutions when solving equation involving Abs(x)/x
- sympy/sympy\#18008 series does not give the same expansion depending on whether simple expression is simplified or not
- sympy/sympy\#8810 Poly keyword 'composite' is ignored when instantiating from Poly
- sympy/sympy\#18118 limit( \(\left.\left.\operatorname{sign}(\sin (\mathrm{x})), \mathrm{x}, 0,{ }^{\prime}+\prime\right)\right)=0\) (which is wrong)
- sympy/sympy\#6599 limit of fraction with oscillating term in the numerator calculated incorrectly
- sympy/sympy\#18176 Incorrect value for \(\operatorname{limit}\left(\mathrm{x}^{* *} \mathrm{n}-\mathrm{x}^{* *}(\mathrm{n}-\mathrm{k}), \mathrm{x}, \mathrm{oo}\right)\) when k is a natural number
- sympy/sympy\#18306 NotImplementedError in limit
- sympy/sympy\#8695 sqf and sqf_list output is not consistant
- sympy/sympy\#18378 Invalid result in Limit
- sympy/sympy\#18384 abs( \(\left.\sin (\mathrm{x})^{*} \cos (\mathrm{x})\right)\) integrates wrong
- sympy/sympy\#18399 Incorrect limit
- sympy/sympy\#18452 Infinite recursion while computing Limit of Expression in 1.5.1
- sympy/sympy\#18470 nan**0 returns 1 instead of nan
- sympy/sympy\#18482 Incorrect evaluation of limit
- sympy/sympy\#18499 The result of (1/oo)**(-oo) should be oo
- sympy/sympy\#18501 Extraneous variable in limit result
- sympy/sympy\#18508 NotImplementedError in limit
- sympy/sympy\#18507 Bug in Mul
- sympy/sympy\#18707 There is a problem or limitation when the Limit is calculated
- sympy/sympy\#18751 handling of rsolve coefficients
- sympy/sympy\#18749 polys: Berlekamp factorization failure
- sympy/sympy\#18895 Factor with extension=True drops a factor of y-1
- sympy/sympy\#18894 sring extension=True error: nan is not in any domain
- sympy/sympy\#18531 apart: hangs or takes too long
- sympy/sympy\#14806 Domain.is_positive (and friends) is a wrong interface
- sympy/sympy\#18874 Zero divisor from sring over QQ<sqrt(2) + sqrt(5)>
- sympy/sympy\#16620 Slow factor( \(\mathrm{x}^{\wedge} \mathrm{n}-1\), modulus=2) computation for some "difficult" n
- sympy/sympy\#18997 Incorrect limit result involving Abs, returns expression involving a symbol
- sympy/sympy\#18992 Possibly incorrect limit related to Stirling's formula
- sympy/sympy\#19026 Bug in Limit
- sympy/sympy\#12303 Ellipse comparison with other geometric entities throws an error
- sympy/sympy\#11986 Typo Error in mathml.py
- sympy/sympy\#12361 Misspelling of "Bareiss" in Matrix module
- sympy/sympy\#12452 is_upper() raises IndexError for tall matrices
- sympy/sympy\#19070 bug in poly
- sympy/sympy\#16971 is_extended_real should not evaluate if sign is not known

\subsection*{8.4 Diofant 0.10}

27 Jan 2019

\subsection*{8.4.1 New features}
- New representation for elements of AlgebraicField (page 506), see \#619, \#631 and \#763.
- Support towers of algebraic field extensions: ground domain for AlgebraicField (page 506) can be also an instance of AlgebraicField (page 506), see \#653.
- New subclasses of AlgebraicField (page 506): RealAlgebraicField (page 506) and ComplexAlgebraicField (page 506), see \#669, \#630 and \#748. Thanks to Kalevi Suominen for help with review.
- Added integer_digits() (page 93), see \#765.
- FiniteField (page 506) support prime power orders, forbid everything else, see \#622 and \#762.

\subsection*{8.4.2 Major changes}
- Stable enumeration of polynomial roots in Root0f (page 622), see \#633, \#658, \#741 and \#768. Thanks to Kalevi Suominen for the implementation idea and help with review.
- Support root isolation for polynomials with algebraic coefficients, see \#673 and \#630. Thanks to Kalevi Suominen for help with review.
- Polynomials with algebraic coefficients will use algebraic number domains per default, see \#478.

\subsection*{8.4.3 Compatibility breaks}
- Removed DMF class, see \#620.
- Removed K[x, y, ...] sugar, use poly_ring() (page 504) to create polynomial rings, see \#622.
- Removed FracField class, see \#622.
- get_field() method for domains, derived from CommutativeRing (page 505), now is a property, e.g. field (page 504), see \#622.
- Removed PolyRing class, see \#621.
- get_ring() method for domains, derived from CommutativeRing (page 505), now is a property, e.g. ring (page 505), see \#621.
- Removed compose option for minimal_polynomial() (page 620), use method instead, see \#624.
- field_isomorphism() (page 620) take fields as arguments, see \#627.
- Functions minimal_polynomial() (page 620) and primitive_element() (page 620) return PurePoly (page 608) instances, see \#628.
- Removed ANP class, see \#619.
- Removed to_number_field(), use convert() (page 504) instead, see \#619.
- Removed RealNumber alias, see \#635.
- Method characteristic() now is a property of CharacteristicZero (page 505) and FiniteField (page 506), see \#636.
- Removed of_type(), abs(), is_one(), unify_with_symbols() and map() methods and has_CharacteristicZero attribute of Domain (page 504), see \#636, \#704 and \#637.
- Removed is_unit(), numer() and denom() methods of CommutativeRing (page 505), see \#637.
- from_<Foo>() methods of Domain (page 504) now are private, see \#637.
- Method from_expr() (page 504) was renamed from from_diofant(), see \#637.
- Method to_expr() (page 504) was renamed from to_diofant(), see \#637.
- Removed AlgebraicNumber class, see \#631.
- Removed polys.distributedmodules module, see \#648.
- Removed p and q properties of Rational (page 89), see \#654.
- Removed @public decorator, see \#666.
- Removed dummy_eq() method from Basic (page 46), see \#666.
- Subs (page 132) now support only Subs(expr, (var1, val1), (var2, val2), ...) syntax, see \#667.
- Root0f (page 622) don't canonicalize anymore polynomials to have integer coefficients, use expand_func() (page 139) instead, see \#679.
- Removed Theano support, see \#681.
- Removed minpoly alias for minimal_polynomial() (page 620), see \#684.
- Method set_order() (page 587) was renamed from fglm(), see \#688.
- Removed row(), col(), row_del() and col_del() methods of Matrix (page 509), see \#688.
- Removed add() and mul() methods for PolynomialRing (page 506), see \#697.
- Removed itercoeffs(), itermonoms(), iterterms(), listcoeffs(), listmonoms(), listterms(), const(), imul_num() and square() methods of PolyElement (page 966), see \#697.
- Removed abs(), neg(), add(), add_ground(), sub(), sub_ground(), mul(), mul_ground(), pow(), sqr(), nth(), factor_list_include(), revert(), gff(), gff_list(), sqf_list_include(), homogenize(), homogeneous_order(), eq() and ne( \(\overline{)}\) methods of \(\overline{\text { Poly }}\) ( \(\overline{\text { page 588), see \#688, \#701, \#732, \#717, \#727, \#729 and \#747. }}\)
- subs() (page 52) support one argument (a mapping or an iterable of pairs), see \#532.
- Renamed is_sqf property of Poly (page 588) to is_squarefree (page 600), see \#724.
- Removed all option for sqf_list() (page 605) method, see \#727.
- Renamed has_Ring/Field attributes of Domain (page 504) to is_Ring/Field, see \#729.
- Removed symmetric option for polynomial functions, see \#761.
- Removed print_mathml() function and tree submodule, see \#769.
- Removed zero option from as_dict() (page 590) method, see \#771.
- Removed lift() method of Poly (page 588), see \#771.

\subsection*{8.4.4 Minor changes}
- Be sure that minimal_polynomial() (page 620) returns an irreducible polynomial over specified domain, see \#622.
- Support algebraic function fields in minpoly_groebner() (page 978), see \#623.
- Added argument method for minimal polynomial() (page 620) and MINPOLY_METHOD configuration option to select default algorithm, see \#624.
- Support derivatives of Root0f (page 622) instances, see \#624.
- primitive_element() (page 620) now return an algebraic integer and support algebraic fields, see \#643, \#655 and \#659.
- Support conjugate (page 287), Abs (page 285), re (page 284) and im (page 284) in minimal_polynomial() (page 620), see \#661 and \#668.
- refine() (page 622) method to refine interval for the root, see \#670.
- Support detection of imaginary roots in RootOf (page 622), see \#625.
- Mutable matrices support indexed deletion with __delitem__(), see \#688.
- Integer powers of Root0f (page 622) instances are automatically reduced, according to their minimal polynomial, see \#691.
- Support gmpy2.mpz ground type for numerator/denominator of Rational (page 89), see \#694.
- Added FALLBACK_GCD_ZZ_METHOD configuration option to specify GCD algorithm for polynomials with integer coefficients if heuristic GCD was off or just unlucky, see \#721.
- Added GCD_AA_METHOD configuration option to specify GCD algorithm for polynomials with algebraic coefficients, see \#721.
- sqf_part() (page 606), sqf_norm() (page 605), sqf_list() (page 605) methods and is_squarefree (page 600) property use notion of being square-free w.r.t. to all polynomial variables, see \#726.
- \(100 \%\) test coverage for core (page 41), polys (page 586) and stats (page 705) modules. Overall test coverage is around \(97 \%\).

\subsection*{8.4.5 Developer changes}
- Removed cachetools dependence, see \#647.
- Depend on pylint, see \#668.
- Use setuptools_scm to track package versions, see \#725.
- Don't use doctests for code coverage statistics, see \#739.

\subsection*{8.4.6 Issues closed}

See the release milestone for complete list of issues and pull requests involved in this release. These Sympy issues also were addressed:
- sympy/sympy\#14384 An unspecified power of x is reported to be \(\mathrm{O}\left(\log (\mathrm{x})^{* *} 6\right)\)
- sympy/sympy\#14393 Incorrect limit
- sympy/sympy\#14414 Should QQ[x, y, ...] syntax be removed?
- sympy/sympy\#13886 Raise an exception for non-prime p in FiniteFIeld(p)
- sympy/sympy\#14220 Should be there both PolyRing and PolynomialRing?
- sympy/sympy\#7724 roots should find the roots of \(x^{* *} 4^{*} \mathrm{I}+\mathrm{x}^{* *} 2+\mathrm{I}\)
- sympy/sympy\#5850 minpoly() should use PurePoly
- sympy/sympy\#14494 make better decisions for minpoly based on domain
- sympy/sympy\#14389 AlgebraicNumber should be a domain element?
- sympy/sympy\#14291 poly \(\left(\left((\mathrm{x}-1)^{* *} 2+1\right)^{*}\left((\mathrm{x}-1)^{* * 2}+2\right)^{*}(\mathrm{x}-1)\right)\).all_roots() hangs
- sympy/sympy\#14590 limit((n**3*((n +1)/n)**n)/((n+1)*(n+2)*(n+3)), n, oo) is incorrect
- sympy/sympy\#14645 Bug when solving multivariate polynomial systems with identical equations
- sympy/sympy\#14294 to_number_field should be idempotent for single extension
- sympy/sympy\#14721 solve can't find solution
- sympy/sympy\#14293 Sorting of polynomial roots
- sympy/sympy\#14380 AlgebraicField.numer() could return an algebraic integer
- sympy/sympy\#14442 Should AlgebraicField be a Composite domain?
- sympy/sympy\#14759 dup_isolate_real_roots_list() docstring is wrong
- sympy/sympy\#14738 dup_count_complex_roots() can't handle degenerate cases
- sympy/sympy\#14782 integrate(sqrt(-x**2 +1\(\left.)^{*}\left(-x^{* *} 2+x\right),[x,-1,1]\right)\) is incorrect
- sympy/sympy\#14791 No solution is returned for solve \((\exp (\log (5) * x)-\exp (\log (2) * x), x)\)
- sympy/sympy\#14793 Limit involving log(factorial(x)) incorrect
- sympy/sympy\#14811 Exception during evaluation of limit (only locally, not in the live version)
- sympy/sympy\#14822 RisingFactorial cannot do numerical (floating point) evaluations
- sympy/sympy\#14820 octave/matlab codegen wrong for two argument zeta
- sympy/sympy\#14831 minpoly(-3*sqrt(12*sqrt(2) + 17) + 12*sqrt(2) + 17 \(2 *\) sqrt(2)*sqrt(12*sqrt(2) +17 ), x) fails
- sympy/sympy\#14476 QQ.algebraic_field(Rational) should be just QQ
- sympy/sympy\#14885 Sympy series gives TypeError on \(x^{\wedge}(-3 / 2) * \exp (x)\) at \(x=0\)
- sympy/sympy\#15055 Incorrect limit of \(n^{* *} 3 *((-n-1) * \sin (1 / n)+(n+2) * \sin (1 /(n+1))) /(-n\) \(+1)\)
- sympy/sympy\#15056 dsolve: get_numbered_constants should consider Functions
- sympy/sympy\#6938 Undefined Functions should not use the evalf name lookup scheme
- sympy/sympy\#8945 integrate \(\left(\sin (\mathrm{x})^{* *} 3 / \mathrm{x},(\mathrm{x}, 0,1)\right)\) can't do it
- sympy/sympy\#15146 Incorrect limit (n/2) * \((-2 * \mathrm{n} * * 3-2 *(\mathrm{n} * * 3-1) * \mathrm{n} * 2 * \operatorname{digamma}(\mathrm{n} * * 3\) \(+1)+2^{*}\left(\mathrm{n}^{* *} 3-1\right) * \mathrm{n}^{* * 2} 2\) digamma \(\left.\left(\mathrm{n}^{* *} 3+\mathrm{n}+1\right)+\mathrm{n}+3\right)\)
- sympy/sympy\#5934 PolynomialError with minpoly()
- sympy/sympy\#8210 Zero degree polynomial copy() error
- sympy/sympy\#11775 TypeError: unorderable types: PolyElement() < mpz() from factor_list
- sympy/sympy\#7047 Python and gmpy ground type specific stuff from "from sympy import *"
- sympy/sympy\#15323 limit of the derivative of \((1-1 / \mathrm{x})^{\wedge} \mathrm{x}\) as \(\mathrm{x}->1+\) gives wrong answer
- sympy/sympy\#15344 mathematica_code gives wrong output with Max
- sympy/sympy\#12602 count_roots is extremely slow with Python ground types
- sympy/sympy\#5595 Should mpmath use the polys ground types?
- sympy/sympy\#5602 Poly should use free_symbols to check for variable dependence
- sympy/sympy\#5555 Explain coefficient domain handling in groebner()'s docstring
- sympy/sympy\#15407 BUG: dsolve fails for linear first order ODE with three equations
- sympy/sympy\#15311 3rd-order ODE with irrational coefficient fails
- sympy/sympy\#11668 Get rid of bare "except"s
- sympy/sympy\#4511 integrate \(\left(\cos (\mathrm{x})^{* * 2}\right.\) / ( \(\left.1-\sin (\mathrm{x})\right)\) ) gives too complicated answer
- sympy/sympy\#15474 dsolve system gives complicated solution for diagonal system
- sympy/sympy\#15502 Python 3.7 test failures
- sympy/sympy\#15520 5th-order ODE with irrational coefficient fails
- sympy/sympy\#15539 Order at negative infinity
- sympy/sympy\#15561 SymPy's Number.__divmod__ doesn't agree with the builtin divmod
- sympy/sympy\#15574 dsolve fails for a system of independent equations
- sympy/sympy\#12695 [matrices] remove dead files densearith.py densetools.py and densesolve.py
- sympy/sympy\#5428 Should Poly use an algebraic domain by default?
- sympy/sympy\#14337 Poly constructor uses domain EX when it's not necessary
- sympy/sympy\#8818 lambdify precision loss with module=mpmath from high-precision Floats
- sympy/sympy\#9544 Finite fields
- sympy/sympy\#15798 Poly.copy() does not copy unused generators
- sympy/sympy\#15810 integrate( \(\left.1 /\left(2^{* *}(2 * x / 3)+1\right),(x, 0, o o)\right)\) is wrong

\subsection*{8.5 Diofant 0.9}

23 Feb 2018

\subsection*{8.5.1 New features}
- Polynomial solvers now express all available solutions with Root0f (page 622), see \#400.
- Added mod_inverse() (page 93) and invert() (page 70), see \#390. Thanks to Chris Smith.
- Support solving linear programming problems, see \#283 and \#461.
- Added interval (page 622) property for Root0f (page 622), see \#508.
- Added AST transformation IntegerDivisionWrapper (page 648) to wrap integer division, see \#519.
- Added AST transformation FloatRationalizer (page 648) to wrap float's, see \#538.
- Compute independent_sets (page 586) and dimension of the ideal, generated by Gröbner basis, see \#573.
- Added permutedims() (page 838) and derive_by_array() (page 837), see \#567. Thanks to Francesco Bonazzi.
- Added is_square() (page 258), ordered partitions() (page 893), permute_signs() (page 896) and signed_permutations() (page 898), see \#578. Thanks to Chris Smith.

\subsection*{8.5.2 Major changes}
- Assumptions (old) moved from Basic (page 46) to Expr (page 57), see \#311.
- solve() (page 742) now return list of dict's, see \#473.
- diofant. polys.domains module is now top-level module domains (page 503), see \#487.
- Optionally reduce RootOf (page 622) instances to have polynomials with integer coefficients, see \#430.
- solve_poly_system() (page 745) now able to solve positive-dimensional systems, see \#448 and \#573.
- Big update of the diophantine (page 746) module with a lot of bugfixes, see \#578. Thanks to Chris Smith.

\subsection*{8.5.3 Compatibility breaks}
- Removed assumption0 property, see \#382.
- check_assumptions() (page 45) moved to assumptions (page 44), see \#387.
- Removed nsolve() function, see \#387.
- is_comparable (page 71) and is_hypergeometric() (page 73) moved to Expr (page 57), see \#391.
- Removed solve_triangulated() and solve_biquadratic() functions, solve_poly_system() (page 745) now use dict as output, see \#389 and \#448.
- Removed support for solving undetermined coefficients in solve() (page 742), see \#389.
- Removed intersect() alias for intersection() (page 666), see \#396.
- Removed interactive_traversal(), see \#395.
- Removed xring() and xfield(), see \#403.
- Removed jscode submodule and TableForm class, see \#403.
- Removed agca submodule of polys (page 586), see \#404.
- Removed pager_print() and print_fcode(), see \#411.
- Disallow "increase" precision of Float (page 87)'s with evalf() (page 142), see \#380.
- Removed experimental_lambdify() and intervalmath module from plotting package, see \#384.
- Removed solve() (page 742) flags set, manual, minimal, implicit, particular, quick, exclude, force and numerical see \#426, \#554 and \#549.
- Removed support for inequalities in solve() (page 742), please use reduce_inequalities() (page 746) instead, see \#426.
- Removed get_domain() method of Poly (page 588), use domain (page 593) property instead, see \#479.
- Renamed prec argument of Float (page 87) to dps, see \#510.
- Removed as_content_primitive() method of Basic (page 46), see \#529.
- Removed canonical_variables() property to canonical_variables() (page 66), see \#534.
- Removed group option of find() (page 48), which now return a dict, see \#529.
- Removed support for Python 3.4, see \#543.
- Second argument of checksol() (page 832) must be a dict. See \#549.
- Removed solve_undetermined_coeffs() function, see \#554.
- Make matches() method for Basic (page 46) - private, see \#557.
- Removed replace() (page 49) flags simultaneous and map, see \#557.
- Make strict=True - default for evalf() (page 142), see \#537.
- Removed I property of the MatrixExpr (page 581), see \#577.
- Removed isolate() function, see \#585.
- \(\operatorname{gcd}()\) (page 612) and \(l c m()\) (page 613) now are two-arg functions, see \#585.
- Removed is_zero_dimensional() function and GroebnerBasis (page 586)'s property of the same name, use dimension (page 586) instead, see \#573.
- Removed MonomialOps class, see \#586.
- Renamed \(n\) argiment of evalf() (page 142) to dps, see \#596.
- Return representation of elements via primitive in primitive_element() (page 620) (former ex=True format), see \#597.
- Removed pprint_try_use_unicode() function, see \#605.

\subsection*{8.5.4 Minor changes}
- New integration heuristics for integrals with Abs (page 285), see \#321.
- Support unevaluated Root0f (page 622), see \#400.
- Sorting of symbolic quadratic roots now same as in RootOf (page 622) for numerical coefficients, see \#400.
- Improve printing of Mathematica code, see \#400, \#433, \#438, \#519, \#553 and \#571.
- Support simple first-order DAE with dsolve() (page 771) helper ode_lie_group() (page 798), see \#413.
- Added support for limits of relational expressions, see \#414.
- Make MatrixSymbol (page 582) truly atomic, see \#415.
- Support rewriting Min (page 309) and Max (page 309) as Piecewise (page 308), see \#426.
- minimal_polynomial() (page 620) fixed to support generic AlgebraicNumber's, see \#433 and \#438.
- AlgebraicNumber now support arithmetic operations, see \#428 and \#485.
- Support rewrite Root0f (page 622) via radicals, see \#563.
- Export set singletons, see \#577.
- Correct implementation of the trial method (uses Gröbner bases) in primitive_element() (page 620), see \#608 and \#609.
- Support (not in RootOf (page 622) yet) of root isolation for polynomials over Gaussian rationals, see \#606.
- \(100 \%\) test coverage for matrices (page 509), domains (page 503), logic (page 493), parsing (page 905) and printing (page 629) modules. Overall test coverage is \(96 \%\).

\subsection*{8.5.5 Developer changes}
- Enabled docstring testing with flake8, see \#408.
- Use only relative imports in the codebase, see \#421.
- Enabled flake8-comprehensions plugin, see \#420.
- Imports are sorted with isort, see \#520.
- Depend on hypothesis, see \#547.
- Depend on pytest-xdist, see \#551.
- Depend on pytest-timeout, see \#608.

\subsection*{8.5.6 Issues closed}

See the release milestone for complete list of issues and pull requests involved in this release. These Sympy issues also were addressed:
- sympy/sympy\#11879 Strange output from common limit used in elementary calculus
- sympy/sympy\#11884 Addition with Order gives wrong result
- sympy/sympy\#11045 integrate(1/(x*sqrt(x**2-1)), (x, 1, 2)) Sympy latest version AttributeError: 'Or' object has no attribute 'lts'
- sympy/sympy\#7165 integrate(abs(y-x**2), ( \(\mathrm{y}, 0,2\) ) ) raises ValueError: gamma function pole
- sympy/sympy\#8733 integrate(abs(x+1), \((x, 0,1))\) raises gamma function pole error
- sympy/sympy\#8430 integrate(abs(x), (x, 0, 1)) does not simplify
- sympy/sympy\#12005 Subs._eval_derivative doubles derivatives
- sympy/sympy\#11799 Something wrong with the Riemann tensor?
- sympy/sympy\#12018 solution not found by Sum and gosper_sum
- sympy/sympy\#5649 Bug with AlgebraicNumber._eq
- sympy/sympy\#11538 Bug in solve maybe
- sympy/sympy\#12081 integrate(x**(-S(3)/2)*exp(-x), (x, 0, oo)) encounters Runtime Error
- sympy/sympy\#7214 Move old assumptions from Basic to Expr
- sympy/sympy\#4678 Have solve() return RootOf when it can't solve equations
- sympy/sympy\#7789 Poly(...).all_roots fails for general quadratic equation
- sympy/sympy\#8255 roots_quadratic should return roots in same order as Poly.all_roots(radicals=False)
- sympy/sympy\#7138 How to solve system of differential equations with symbolic solution?
- sympy/sympy\#11691 Test failing with matplotlib 2.0.0
- sympy/sympy\#7457 TypeError when using both multiprocessing and gmpy
- sympy/sympy\#12115 Cannot access imported submodules in sympy.core
- sympy/sympy\#4315 series expansion of piecewise fails
- sympy/sympy\#6807 atoms does not work correctly in the otherwise case of Piecewise
- sympy/sympy\#12114 solve() leads to ZeroDivisionError: polynomial division
- sympy/sympy\#5169 All elements of .args should be Basic
- sympy/sympy\#6249 Problems with MatrixSymbol and simplifying functions
- sympy/sympy\#6426 test_args.py should also test rebuilability
- sympy/sympy\#11461 NameError: name ' Ne ' is not defined plotting real_root((log(x/(x2))), 3)
- sympy/sympy\#10925 plot doesn't work with Piecewise
- sympy/sympy\#12180 Confusing output from sympy.solve
- sympy/sympy\#5786 factor(extension=[I]) gives wrong results
- sympy/sympy\#9607 factor - incorrect result
- sympy/sympy\#8754 Problem factoring trivial polynomial
- sympy/sympy\#8697 rsolve fails to find solutions to some higer order recurrence relations
- sympy/sympy\#8694 Match fail
- sympy/sympy\#8710 geometry's encloses method fails for non-polygons
- sympy/sympy\#10337 bad Boolean args not rejected
- sympy/sympy\#9447 sets.Complement fails on certain Unions
- sympy/sympy\#10305 Complement Of Universal Subsets
- sympy/sympy\#10413 ascii pprint of ProductSet uses non-ascii multiplication symbol
- sympy/sympy\#10414 pprint(Union, use_unicode=False) raises error (but str(Union) works)
- sympy/sympy\#10375 lambdify on sympy.Min does not work with NumPy
- sympy/sympy\#10433 Dict does not accept collections.defaultdict
- sympy/sympy\#9044 pretty printing: Trace could be improved (and LaTeX)
- sympy/sympy\#10445 Improper integral does not evaluate
- sympy/sympy\#10379 dsolve() converts floats to integers/rationals
- sympy/sympy\#10633 Eq(True, False) doesn't evaluate
- sympy/sympy\#7163 integrate((sign(x-1) - sign(x-2))*cos(x), x) raises TypeError: doit() got an unexpected keyword argument 'manual'
- sympy/sympy\#11881 ZeroDivisionError: pole in hypergeometric series random test failure
- sympy/sympy\#11801 Exception when printing Symbol(")
- sympy/sympy\#11911 typo in docs of printing
- sympy/sympy\#10489 Mathematical Symbol does not seem to serialize correctly LaTeX printer
- sympy/sympy\#10336 nsimplify problems with oo and inf
- sympy/sympy\#12345 nonlinsolve (solve_biquadratic) gives no solution with radical
- sympy/sympy\#12375 sympy.series() is broken?
- sympy/sympy\#5514 Poly(x, x) * I != I * Poly(x, x)
- sympy/sympy\#12398 Limits With abs in certain cases remains unevaluated
- sympy/sympy\#12400 polytool.poly() can't raise polynomial to negative power?
- sympy/sympy\#12221 Issue with definite piecewise integration
- sympy/sympy\#12522 BooleanTrue and Boolean False should have simplify method
- sympy/sympy\#12555 limit(( \(\left.\left.3^{* *} \mathrm{x}+2{ }^{*} \mathrm{x}^{* *} 10\right) /\left(\mathrm{x}^{* *} 10+\mathrm{E}^{* *} \mathrm{x}\right), \mathrm{x},-\mathrm{oo}\right)\) gives 0 instead of 2
- sympy/sympy\#12569 problem with polygamma or im
- sympy/sympy\#12578 Taylor expansion wrong (likely because of wrong substitution at point of evaluation?)
- sympy/sympy\#12582 Can't solve integrate(abs( \(\mathrm{x}^{* * 2-3 * x), ~(x,-15,15)) ~}\)
- sympy/sympy\#12747 Missing constant coefficient in Taylor series of degree 1
- sympy/sympy\#12769 Slow limit() calculation?!
- sympy/sympy\#12942 Remove x**1.0 == x hack from core
- sympy/sympy\#12238 match can take a long time (possibly forever)
- sympy/sympy\#4269 ordering of classes
- sympy/sympy\#13081 Some comparisons between rational and irrational numbers are incorrect
- sympy/sympy\#13078 Return NotImplemented, not False, upon rich comparison with unknown type
- sympy/sympy\#13098 sympy.floor() sometimes returns the wrong answer
- sympy/sympy\#13312 SymPy does not evaluate integrals of exponentials with symbolic parameter and limit
- sympy/sympy\#13111 Don’t use "is" to compare classes
- sympy/sympy\#10488 integrate(x/(a*x+b), x) gives wrong answer
- sympy/sympy\#9706 Interval(-oo, 0).closure hangs
- sympy/sympy\#10740 Add a test for Interval(..) in Interval(..) == False
- sympy/sympy\#10592 zeta( \(0, \mathrm{n}\) ) where n is negative is wrong
- sympy/sympy\#7858 Nth root mod giving wrong solutions
- sympy/sympy\#5412 N(oo*I) returns wrong result
- sympy/sympy\#10710 Any dict-like object in expr.subs
- sympy/sympy\#10810 Implemented function gives ValueError when constructing float expression in sympy 1.0
- sympy/sympy\#10867 Getting KeyError while solving ode : dsolve(Eq(g(x).diff(x).diff(x) , ( \(\left.\mathrm{x}-2)^{* *} 2+(\mathrm{x}-3)^{* *} 3\right), \mathrm{g}(\mathrm{x})\) )
- sympy/sympy\#10782 condition_number() for empty matrices giving ValueError
- sympy/sympy\#10719 eigenvals of empty matrix raises IndexError
- sympy/sympy\#10680 unable to get unevaluated Integral object for integrate ( \(\mathrm{x}^{* *} \log\) ( \(\mathrm{x}^{* *} \log \left(\mathrm{x}^{* *} \log (\mathrm{x})\right)\) ), x\()\).
- sympy/sympy\#10701 Is the empty matrix nilpotent? IndexError: Index out of range: a[0]
- sympy/sympy\#10770 Adding a row or a column to an empty matrix
- sympy/sympy\#10773 sympify evaluates Div Operation in case of Unary Operator when evaluate \(=\) False
- sympy/sympy\#13332 limit(): AttributeError: 'NoneType' object has no attribute 'rewrite'
- sympy/sympy\#13382 Incorrect Result for limit(n*(( \(\mathrm{n}+1)^{\left.\left.* * 2+1) /\left(n^{* *} 2+1\right)-1\right), \mathrm{n}, \mathrm{oo}\right)}\)
- sympy/sympy\#13403 Incorrect Result for \(\operatorname{limit}\left(n^{*}(-1+(n+\log (n+1)+1) /(n+\log (n)))\right.\), \(\mathrm{n}, \mathrm{oo}\) )
- sympy/sympy\#13416 Incorrect Result for \(\operatorname{limit}\left(\left(-\mathrm{n} * * 3 * \log (\mathrm{n}) * * 3+(\mathrm{n}-1)^{*}(\mathrm{n}+\right.\right.\) \(\left.\left.1)^{* *} 2 * \log (\mathrm{n}+1)^{* *} 3\right) /\left(\mathrm{n}^{* *} 2 * \log (\mathrm{n})^{* *} 3\right), \mathrm{n}, \mathrm{oo}\right)\)
- sympy/sympy\#13462 Bug in sympy.limit()
- sympy/sympy\#13501 Incorrect integral of a rational function with a symbolic coefficient
- sympy/sympy\#13536 TypeError for integration from infinity to a positive value
- sympy/sympy\#13545 Poly loses modulus after arithemetic
- sympy/sympy\#13460 Integration of certain cubic rational functions is incorrect
- sympy/sympy\#13071 meijerg.is_number is wrong
- sympy/sympy\#13575 limit(acos(erfi(x)), x, 1) causes recursion error
- sympy/sympy\#13629 bug in rsolve
- sympy/sympy\#13645 sympy hangs on evaluating expression
- sympy/sympy\#7067 factor_list() error Python3
- sympy/sympy\#11378 S.Reals should be accessible as just "Reals"
- sympy/sympy\#10999 diop: holzer error
- sympy/sympy\#11000 diop: power_representation

- sympy/sympy\#8943 diophantine misses trivial solution
- sympy/sympy\#11016 diop: sum of squares needs to try more options to satisfy conditions
- sympy/sympy\#9538 diophantine() doesn't let you specify the variable order
- sympy/sympy\#11049 diop: recursion error
- sympy/sympy\#11021 diop: power_representation(4**5, 3, 1) -> (4,)
- sympy/sympy\#11050 diop: partition(n, k) gives redundant result
- sympy/sympy\#13853 Why does the expansion of polylog(1, z) have exp_polar(-I*pi)?
- sympy/sympy\#13849 solve/nonlinsolve: RuntimeError: run out of coefficient configurations
- sympy/sympy\#9366 rootof: Constructing RootOfs with polys containing RootOf coefficients
- sympy/sympy\#13914 The power of zoo
- sympy/sympy\#14000 sqrt and other root functions should inherit from Function
- sympy/sympy\#11099 Min and Max would not substitute in evalf
- sympy/sympy\#8257 Interval(-oo, oo) + FiniteSet(oo) takes forever
- sympy/sympy\#11198 factor_list(sqrt(const)*x) error
- sympy/sympy\#10784 autowrap on windows - distutils doesn't work with C compiler
- sympy/sympy\#10897 rewrite im() in terms of re() and vice versa
- sympy/sympy\#10963 x**6000\%400 hangs
- sympy/sympy\#10931 S.Integers - S.Integers does not evaluate
- sympy/sympy\#2799 S.UniversalSet + Interval(0, oo) takes forever
- sympy/sympy\#11090 ImmutableMatrix * MatrixSymbol raises AttributeError
- sympy/sympy\#11207 floor(ceiling(x)) doesn't simplify
- sympy/sympy\#9135 Incorrect subsitution of partial derivatives by .subs()
- sympy/sympy\#10829 subs method gives wrong result for powers
- sympy/sympy\#10816 is_nthpow_residue(a,n,m) gives NotImplemented error when m don't have primitive root
- sympy/sympy\#10886 No solution by nthroot_mod
- sympy/sympy\#10157 Replace needs_brackets with parenthesize in the latex printer
- sympy/sympy\#10972 [tensor module] incorrect evaluation of TensMul.data
- sympy/sympy\#10044 Error pretty printing a tuple with a sympy.vector basis vector
- sympy/sympy\#10395 nfloat changes the arguments inside Max.
- sympy/sympy\#10641 Or, And don't evaluate
- sympy/sympy\#10821 latex bug for commutator output
- sympy/sympy\#9296 simplify(a)+simplify(b) Is Not simplify(a+b)
- sympy/sympy\#9630 simplify() rounds a numerical coefficient (indeed very close to unity) to 1
- sympy/sympy\#12792 Simplify with float values leads to non-equal result
- sympy/sympy\#12506 Simplify() returns wrong simplified expressions using Sympy 1.0 (trigonometric functions)
- sympy/sympy\#13115 Bug in simplify ?
- sympy/sympy\#13149 factor() of expression with float coefficients gives incorrect result
- sympy/sympy\#14117 Run out of coefficient configurations in primitive_element()
- sympy/sympy\#14159 Can't set bottom and top bounds of root isolation rectangle with dup_isolate_complex_roots_sqf()
- sympy/sympy\#11122 x > 0 doesn't evaluate for \(\mathrm{x}=\) Symbol(' x ', positive \(=\) False)
- sympy/sympy\#11418 diophantine: misclassification
- sympy/sympy\#9862 [tensor] error when retrieving data from TensAdd instance involving fully contracted tensor and scalar
- sympy/sympy\#11525 [tensor] TensAdd ignores all but one scalar argument
- sympy/sympy\#11530 ITE(x, True, False) should auto simplify to x
- sympy/sympy\#11559 str of Transpose should be valid Python
- sympy/sympy\#11547 mathml(Matrix([0,1,2])) gives back error
- sympy/sympy\#11306 numpy lambdify of piecewise doesn't work for invalid values
- sympy/sympy\#7171 \(\sin (x)\).rewrite(pow) raises RuntimeError: maximum recursion depth
- sympy/sympy\#2866 lambdify inserts numpy after math
- sympy/sympy\#11351 TypeError exception in totient and reduced_totient LaTeX printers
- sympy/sympy\#14289 Sign of generator of an algebraic numberfield

\subsection*{8.6 Diofant 0.8}

7 Nov 2016

\subsection*{8.6.1 New features}
- MrvAsympt algorithm to find asymptotic expansion, see aseries() (page 65) method and \#6. Thanks to Avichal Dayal.
- findrecur() (page 271) method to find recurrence relations (with Sister Celine’s algorithm), see \#15.
- Support for Pow (page 100)/log (page 307) branch-cuts in limits, see \#140.
- Added basic optimization package, see minimize() (page 910) and \#108.
- Cartesian product of iterables using Cantor pairing, see cantor_product() (page 884) and \#276.
- Rationals (page 677) set, \#255.
- New simple and robust solver for systems of linear ODEs, see \#286. Thanks to Colin B. Macdonald.
- Added mutable/immutable N-dim arrays, sparse and dense, see \#275.
- dsolve() (page 771) now support initial conditions for ODEs, see \#307. Thanks to Aaron Meurer.

\subsection*{8.6.2 Major changes}
- Depend on setuptools, see \#44.
- The Gruntz Algorithm (page 995) reimplemented correctly, see \#68.
- Replaced \(\exp (x)\) with \(E^{* * x}\) internally, see \#79.
- Used srepr() (page 642) instead of sstr() (page 642) for __repr__() printing, see \#39.
- Major cleanup for series methods, see \#187.
- Depend on cachetools to implement caching, see \#72 and \#209.
- Assumption system (old) was validated (\#316 and \#334) and improved:
- 0 now is imaginary, see \#8
- extended_real fact added, reals are finite now, see \#36
- complex are finite now, see \#42.
- added docstrings for assumption properties, see \#354.

\subsection*{8.6.3 Compatibility breaks}
- Removed physics submodule, see \#23.
- Removed galgebra submodule, see \#45.
- Removed pyglet plotting, see \#50.
- Removed TextBackend from plotting, see \#67.
- Removed SageMath support, see \#84.
- Removed unify submodule, see \#88.
- Removed crypto submodule, see \#102.
- Removed print_gtk, see \#114.
- Unbundle strategies module, see \#103.
- Removed "old" argument for match/matches, see \#141.
- Removed when_multiple kwarg in Piecewise, see \#156.
- Support for Python 2 was removed, see \#160.
- Removed core.py, see \#60 and \#164.
- Removed S(foo) syntax, see \#115.
- Removed (new) assumptions submodule, see \#122.
- Removed undocumented Symbol._call_, see \#201
- Removed categories and liealgebras submodules, see \#280.
- Rename module sympy -> diofant, see \#315.
- Use gmpy2, drop gmpy support, see \#292.
- Removed redundant dom properties in polys, see \#308.
- Removed manualintegrate function, see \#279.

\subsection*{8.6.4 Minor changes}
- Add support for bidirectional limits, see \#10.
- Reimplement cot (page 292), see \#113.
- A better implementation of singularities() (page 909), see \#147.
- Fix "flip" of arguments in relational expressions, see \#30.
- Make Gosper code use new dispersion algorithm, see \#205. Thanks to Raoul Bourquin.
- Consolidate code for solving linear systems, see \#253.
- Hacks for automatic symbols and wrapping int's replaced with AST transformers, see \#278 and \#167.
- Build correct inhomogeneous solution in rsolve_hyper() (page 821), see \#298.
- Evaluate matrix powers for non-diagonalizable matrices, see \#275.
- Support non-orthogonal Jordan blocks, see \#275.
- Make risch_integrate( \(\mathrm{x}^{* *} \mathrm{x}\), x ) work, see \#275.
- Support CPython 3.6, see \#337 and \#356.

\subsection*{8.6.5 Developer changes}
- Unbundle numpydoc, see \#26.
- Deprecate AUTHORS file, all credits go to the aboutus.rst, see \#87.
- Use python's tokenize(), see \#120.
- Drop using bundled pytest fork, depend on pytest for testing, see \#38, \#152, \#91, \#48, \#90, \#96 and \#99.
- Adopt No Code Of Conduct, see \#212.
- Measure code coverage, enable codecov.io reports. See \#217.
- Adopt pep8 (\#2) and then flake8 (\#214) for code quality testing.
- Add regression tests with DIOFANT_USE_CACHE=False \#323.
- Add interface tests, see \#219 and \#307.
- Test for no DeprecationWarning in the codebase, see \#356.

\subsection*{8.6.6 Issues closed}

See the release milestone for complete list of issues and pull requests involved in this release. These Sympy issues also were addressed:
- sympy/sympy\#9351 order-1 series wrong with non-zero expansion point
- sympy/sympy\#9034 Unicode printing problem with mixture of logs and powers
- sympy/sympy\#7927 pretty print incorrect result with powers of sin
- sympy/sympy\#9283 KroneckerDelta(p, 0) raises IndexError
- sympy/sympy\#9274 Wrong Jordan form: complex eigenvalues w/ geo. mult. > alg. mult.
- sympy/sympy\#9398 Simplify of small imaginary number yields 0
- sympy/sympy\#7259 LambertW has no series expansion at \(x=0\) (nan)
- sympy/sympy\#9832 x**2 < oo returns True but x < oo un-evaluated for real x
- sympy/sympy\#9053 MatMul(2, Matrix(...)).doit() doesn't do it
- sympy/sympy\#9052 trace(2*A) != \(2 *\) Trace(A) because LHS still has an MatMul
- sympy/sympy\#9533 Logical operators in octave_code
- sympy/sympy\#9545 Mod(zoo, 0) causes RunTime Error
- sympy/sympy\#9652 Fail in plot_implicit test on OSX 10.8.5
- sympy/sympy\#8432 Tests fail, seems like Cython is not configured to compile with numpy correctly
- sympy/sympy\#9542 codegen octave global vars should print "global foo" at top of function
- sympy/sympy\#9326 Bug with Dummy
- sympy/sympy\#9413 Circularity in assumptions of products
- sympy/sympy\#8840 sympy fails to construct \((1+\mathrm{x})\) *x with disabled cache
- sympy/sympy\#4898 Replace \(\exp (x)\) with \(E^{* *}\) x internally
- sympy/sympy\#10195 Simplification bug on alternating series.
- sympy/sympy\#10196 reduce_inequalities error
- sympy/sympy\#10198 solving abs with negative powers
- sympy/sympy\#7917 Implement cot as a ReciprocalTrigonometricFunction
- sympy/sympy\#8649 If t is transcendental, \(\mathrm{t}^{* *} \mathrm{n}\) is determined (wrongly) to be non-integer
- sympy/sympy\#5641 Compatibility with py.test
- sympy/sympy\#10258 Relational involving Piecewise evaluates incorrectly as True
- sympy/sympy\#10268 solving inequality involving exp fails for large values
- sympy/sympy\#10237 improper inequality reduction
- sympy/sympy\#10255 solving a Relational involving Piecewise fails
- sympy/sympy\#10290 Computing series where the free variable is not just a symbol is broken
- sympy/sympy\#10304 Equality involving expression with known real part and 0 should evaluate
- sympy/sympy\#9471 Wrong limit with log and constant in exponent
- sympy/sympy\#9449 limit fails with "maximum recursion depth exceeded" / Python crash
- sympy/sympy\#8462 Trivial bounds on binomial coefficients
- sympy/sympy\#9917 O(n*sin(n) + 1, (n, oo)) returns O(n*sin(n), (n, oo))
- sympy/sympy\#7383 Integration error
- sympy/sympy\#7098 Incorrect expression resulting from integral evaluation
- sympy/sympy\#10323 bad ceiling(sqrt(big integer))
- sympy/sympy\#10326 Interval(-oo, oo) contains oo
- sympy/sympy\#10095 simplify ((1/(2*E) )**oo) returns nan
- sympy/sympy\#4187 integrate(log(x)*exp(x), (x, 0, oo)) should return -EulerGamma
- sympy/sympy\#10383 det of empty matrix is 1
- sympy/sympy\#10382 limit(fibonacci(n + 1)/fibonacci(n), n, oo) does not give GoldenRatio
- sympy/sympy\#10388 factorial2 runs into RunTimeError for non-integer
- sympy/sympy\#10391 solve((2*x + 8)*exp(-6*x), x) can't find any solution
- sympy/sympy\#8241 Wrong assumption/result in a parametric limit
- sympy/sympy\#3539 Symbol.__call__ should not create a Function
- sympy/sympy\#7216 Limits involving branch cuts of elementary functions not handled
- sympy/sympy\#10503 Series return an incorrect result
- sympy/sympy\#10567 Integral(v,t).doit() differs from integrate(v,t)
- sympy/sympy\#9075 sympy.limit yields incorrect result
- sympy/sympy\#10610 limit( \(3 * * n * 3 * *(-n-1) *(n+1)^{* *} 2 / n^{* *} 2\), \(n\), oo \()\) is wrong
- sympy/sympy\#4173 implement maximize([ \(\left.\left.\mathrm{x}^{* *}(1 / \mathrm{x}), \mathrm{x}>0\right], \mathrm{x}\right)\)
- sympy/sympy\#10803 Bad pretty printing of power of Limit
- sympy/sympy\#10836 Latex generation error for .series expansion for rightarrow term
- sympy/sympy\#9558 Bug with limit
- sympy/sympy\#4949 solve_linear_system contains duplicate rref algorithm
- sympy/sympy\#5952 Standard sets (ZZ, QQ, RR, etc.) for the sets module
- sympy/sympy\#9608 Partition can't be ordered
- sympy/sympy\#10961 fractional order Laguerre gives wrong result
- sympy/sympy\#10976 incorrect answer for limit involving erf
- sympy/sympy\#10995 acot(-x) evaluation
- sympy/sympy\#11011 Scientific notation should be delimited for LaTeX
- sympy/sympy\#11062 Error while simplifying equations containing csc and sec using trigsimp_groebner
- sympy/sympy\#10804 1/limit(airybi(x) \({ }^{*} \operatorname{root}(\mathrm{x}, 4)^{*} \exp \left(-2^{*} \mathrm{x}^{* *}(\mathrm{~S}(3) / 2) / 3\right), \mathrm{x}\), oo \()^{* *} 2\) is wrong
- sympy/sympy\#11063 Some wrong answers from rsolve
- sympy/sympy\#9480 Matrix.rank() incorrect results
- sympy/sympy\#10497 next(iter(S.Integers*S.Integers)) hangs (expected (0, 0), ...)
- sympy/sympy\#5383 Calculate limit error
- sympy/sympy\#11270 Limit erroneously reported as infinity
- sympy/sympy\#5172 limit() throws TypeError: an integer is required
- sympy/sympy\#7055 Failures in rsolve_hyper from test_rsolve_bulk()
- sympy/sympy\#11261 Recursion solver fails
- sympy/sympy\#11313 Series of Derivative
- sympy/sympy\#11290 1st_exact_Integral wrong result
- sympy/sympy\#10761 (1/(x**-2 + \(\mathrm{x}^{* *}\)-3)).series( \(\left.\mathrm{x}, 0\right)\) gives wrong result
- sympy/sympy\#10024 Eq( \(\operatorname{Mod}\left(x, 2^{*}\right.\) pi), 0\()\) evaluates to False
- sympy/sympy\#7985 Indexed should work with subs on a container
- sympy/sympy\#9637 S.Reals - FiniteSet(n) returns EmptySet - FiniteSet(n)
- sympy/sympy\#10003 P( \(\mathrm{X}<-1\) ) of ExponentialDistribution
- sympy/sympy\#10052 P( X < oo ) for any Continuous Distribution raises AttributeError
- sympy/sympy\#10063 Integer raised to Float power does not evaluate
- sympy/sympy\#10075 X.pdf(x) for Symbol x returns 0
- sympy/sympy\#9823 Matrix power of identity matrix fails
- sympy/sympy\#10156 do not use has() to test against self.variables when factoring Sum
- sympy/sympy\#10113 imageset(lambda x: \(\mathrm{x}^{* *} 2 /\left(\mathrm{x}^{* *} 2-4\right)\), S.Reals) returns (1, oo)
- sympy/sympy\#10020 oo**I raises RunTimeError
- sympy/sympy\#10240 \(\operatorname{Not}(\operatorname{And}(x>2, x<3))\) does not evaluate
- sympy/sympy\#8510 Differentiation of general functions
- sympy/sympy\#10220 Matrix.jordan_cells() fails
- sympy/sympy\#10092 subs into inequality involving RootOf raises GeneratorsNeeded
- sympy/sympy\#10161 factor gives an invalid expression
- sympy/sympy\#10243 Run the examples during automated testing or at release
- sympy/sympy\#10274 The helpers kwarg in autowrap method is probably broken.
- sympy/sympy\#10210 LaTex printing of Cycle
- sympy/sympy\#9539 diophantine ( \(6 * \mathrm{k}+9 * \mathrm{n}+20 * \mathrm{~m}-\mathrm{x}\) ) gives TypeError: unsupported operand type(s) for *: 'NoneType' and 'Symbol'
- sympy/sympy\#11407 Series expansion of the square root gives wrong result
- sympy/sympy\#11413 Wrong result from Matrix norm
- sympy/sympy\#11434 Matrix rank() produces wrong result
- sympy/sympy\#11526 Different result of limit after simplify
- sympy/sympy\#11553 Polynomial solve with GoldenRatio causes Traceback
- sympy/sympy\#8045 make all NaN is_* properties that are now None -> False (including is_complex)
- sympy/sympy\#11602 Replace dots with ldots or cdots
- sympy/sympy\#4720 Initial conditions in dsolve()
- sympy/sympy\#11623 Wrong groebner basis
- sympy/sympy\#10292 poly cannot generically be rebuilt from its args
- sympy/sympy\#6572 Remove "\#doctest: +SKIP" comments on valid docstrings
- sympy/sympy\#10134 Remove "raise StopIteration"
- sympy/sympy\#11672 limit(Rational(-1,2)**k, k, oo) fails
- sympy/sympy\#11678 Invalid limit of floating point matrix power
- sympy/sympy\#11746 undesired (wrong) substition behavior in sympy?
- sympy/sympy\#3904 missing docstrings in core
- sympy/sympy\#3112 Asymptotic expansion
- sympy/sympy\#9173 Series/limit fails unless expression is simplified first.
- sympy/sympy\#9808 Complements with symbols should remain unevaluated
- sympy/sympy\#9341 Cancelling very long polynomial expression
- sympy/sympy\#9908 Sum(1/(n**3-1), (n, -oo, -2)).doit() raise UnboundLocalVariable
- sympy/sympy\#6171 Limit of a piecewise function
- sympy/sympy\#9276 ./bin/diagnose_imports: does it work at all?!
- sympy/sympy\#10201 Solution of "first order linear non-homogeneous ODE-System" is wrong
- sympy/sympy\#9057 segfault on printing Integral of phi(t)
- sympy/sympy\#11159 Substitution with E fails
- sympy/sympy\#2839 init_session(auto_symbols=True) and init_session(auto_int_to_Integer=True) do not work
- sympy/sympy\#11081 where possible, use python fractions for Rational
- sympy/sympy\#10974 solvers.py contains BOM character
- sympy/sympy\#10806 LaTeX printer: Integral not surrounded in brackets
- sympy/sympy\#10801 Make limit work with binomial
- sympy/sympy\#9549 series expansion: ( \(\left.\mathrm{x}^{* *} 2+\mathrm{x}+1\right) /\left(\mathrm{x}^{* *} 3+\mathrm{x}^{* *} 2\right)\) about oo gives wrong result
- sympy/sympy\#4231 add a test for complex integral from wikipedia
- sympy/sympy\#8634 limit( \(\mathrm{x}^{* *} \mathrm{n}, \mathrm{x},-\mathrm{oo}\) ) is sometimes wrong
- sympy/sympy\#8481 Wrong error raised trying to calculate limit of Poisson PMF
- sympy/sympy\#9956 Union(Interval(-oo, oo), FiniteSet(1)) not evaluated
- sympy/sympy\#9747 test_piecewise_lambdify fails locally
- sympy/sympy\#7853 Deprecation of lambdify converting Matrix -> numpy.matrix
- sympy/sympy\#9634 Repeated example in the docstring of hermite
- sympy/sympy\#8500 Using and operator vs fuzzy_and while querying assumptions
- sympy/sympy\#9192 O(y +1) = O(1)
- sympy/sympy\#7130 Definite integral returns an answer with indefinite integrals
- sympy/sympy\#8514 Inverse Laplace transform of a simple function fails after updating from 0.7.5 to 0.7.6
- sympy/sympy\#9334 Numexpr must be string argument to lambdify
- sympy/sympy\#8229 limit(( \(\mathrm{x}^{* *}\) Rational(1,4)-2)/(sqrt(x)-4)**Rational(2, 3), \(\left.\mathrm{x}, 16\right)\) NotImplementedError
- sympy/sympy\#8061 limit( \(\left.4^{* *}\left(\operatorname{acos}\left(1 /\left(1+\mathrm{x}^{* *} 2\right)\right)^{* *} 2\right) / \log (1+\mathrm{x}, 4), \mathrm{x}, 0\right)\) raises NotImplementedError
- sympy/sympy\#7872 Substitution in Order fails
- sympy/sympy\#3496 limits for complex variables
- sympy/sympy\#2929 limit((x*exp(x))/(exp(x)-1), x , -oo) gives -oo
- sympy/sympy\#8203 Why is oo real?
- sympy/sympy\#7649 S.Zero.is_imaginary should be True?
- sympy/sympy\#7256 use old assumptions in code
- sympy/sympy\#6783 Get rid of confusing assumptions
- sympy/sympy\#5662 AssocOp._eval_template_is_attr is wrong or misused
- sympy/sympy\#5295 Document assumptions
- sympy/sympy\#4856 coding style
- sympy/sympy\#4555 use pyflakes to identify simple bugs in sympy and fix them
- sympy/sympy\#5773 Remove the cmp_to_key() helper function
- sympy/sympy\#5484 use sort_key instead of old comparison system
- sympy/sympy\#8825 Can't use both weakref's \& cache
- sympy/sympy\#8635 limit( \(\mathrm{x}^{* *} \mathrm{n}-\mathrm{x}^{* *}(\mathrm{n}-\mathrm{k})\), \(\mathrm{x}, \mathrm{oo}\) ) sometimes raises NotImplementedError
- sympy/sympy\#8157 Non-informative error raised when computing limit of cos(n*pi)
- sympy/sympy\#7599 Addition of expression and order term fails
- sympy/sympy\#6179 wrong order in series
- sympy/sympy\#5415 limit involving multi-arg function (polygamma) fails
- sympy/sympy\#2865 gruntz doesn't work properly for big-O with point! = 0
- sympy/sympy\#5907 integrate \(\left(1 /\left(\mathrm{x}^{* *} 2+\mathrm{a}^{* *} 2\right)^{* *} 2, \mathrm{x}\right)\) is wrong if a is real
- sympy/sympy\#11722 series() calculation up to \(\mathrm{O}\left(\mathrm{t}^{* *} \mathrm{k}\right)\) returns invalid coefficients for \(\mathrm{t}^{* *} \mathrm{k} * \log (\mathrm{t})\)
- sympy/sympy\#8804 series expansion of \(1 / \mathrm{x}\) ignores order parameter
- sympy/sympy\#10728 Dummy(commutative=False).is_zero -> False

\subsection*{8.7 SymPy releases}

For convenience, here included release notes from the old SymPy versions, up to 0.7.6. Changelog sources are taken from web archive and adapted to resemble usual Diofant's release notes.

\subsection*{8.7.1 SymPy 0.7.6}

21 Nov 2014

\section*{New features}
- New module calculus.finite_diff for generating finite difference formulae approximating derivatives of arbitrary order on arbitrarily spaced grids.
- New module physics.optics for symbolic computations related to optics.
- geometry module now supports 3D geometry.
- Support for series expansions at a point other then 0 or oo. See sympy/sympy\#2427.
- Rules for the intersection of integer ImageSets were added. See sympy/sympy\#7587. We can now do things like \(\{2 \cdot m \mid m \in \mathbb{Z}\} n\{3 \cdot n \mid n \in \mathbb{Z}\}=\{6 \cdot t \mid t \in \mathbb{Z}\}\) and \(\{2 \cdot m\) \(\mid m \in \mathbb{Z}\} \cap\{2 \cdot n+1 \mid n \in \mathbb{Z}\}=\varnothing\).
- dsolve module now supports system of ODEs including linear system of ODEs of 1st order for 2 and 3 equations and of 2 nd order for 2 equations. It also supports homogeneous linear system of \(n\) equations.
- New support for continued fractions, including iterators for partial quotients and convergents, and reducing a continued fraction to a Rational or a quadratic irrational.
- Support for Egyptian fraction expansions, using several different algorithms.
- Addition of generalized linearization methods to physics.mechanics.
- Use an LRU cache by default instead of an unbounded one. See sympy/sympy\#7464. Control cache size by the environment variable SYMPY_CACHE_SIZE (default is 500). SYMPY_CACHE_SIZE=None restores the unbounded cache.
- Added fastcache as an optional dependency. Requires v0.4 or newer. Control via SYMPY_CACHE_SIZE. May result in significant speedup. See sympy/sympy\#7737.
- New experimental module physics.unitsystems for computation with dimensions, units and quantities gathered into systems. This opens the way to dimensional analysis and better quantity calculus. The old module physics.units will stay available until the new one reaches a mature state. See sympy/sympy\#2628.
- New Complement class to represent relative complements of two sets. See sympy/sympy\#7462.
- New trigonometric functions (asec, acsc), many enhancements for other trigonometric functions (see sympy/sympy\#7500).
- New Contains class to represent the relation "is an element of" (see sympy/sympy\#7989).
- The code generation tools (code printers, codegen, autowrap, and ufuncify) have been updated to support a wider variety of constructs, and do so in a more robust way. Major changes include added support for matrices as inputs/outputs, and more robust handling of conditional (Piecewise) statements.
- ufuncify now uses a backend that generates actual numpy. ufuncs by default through the use of the numpy C api. This allows broadcasting on all arguments. The previous cython and f2py backends are still accessible through the use of the backend kwarg.
- CodeGen now generates code for Octave and Matlab from SymPy expressions. This is supported by a new CodePrinter with interface octave_code. For example octave_code(Matrix([[x**2, sin(pi*x*y), ceiling(x)]])) gives the string [x.^2 \(\sin \left(\mathrm{pi}^{\bar{*}} \mathrm{x} . * \mathrm{y}\right)\) ceil(x)].
- New general 3D vector package at sympy.vector. This package provides a 3D vector object with the Del, gradient, divergence, curl, and operators. It supports arbitrary rotations of Cartesian coordinate systems and arbitrary locations of points.

\section*{Compatibility breaks}
- All usage of inequalities ( \(>,>=,<,<=\) ) on SymPy objects will now return SymPy's S. true or S.false singletons instead of Python's True or False singletons. Code that checks for, e.g., \((\mathrm{a}<\mathrm{b}\) ) is True should be changed to ( \(\mathrm{a}<\mathrm{b}\) ) == True or ( \(\mathrm{a}<\mathrm{b}\) ) == S.true. Use of is is not recommended here.
- The subset() method in sympy.core.sets is marked as being deprecated and will be removed in a future release (sympy/sympy\#7460). Instead, the is_subset() method should be used.
- Previously, if you compute the series expansion at a point other than 0 , the result was shifted to 0 . Now SymPy returns the usual series expansion, see sympy/sympy\#2427.
- In physics.mechanics, KanesMethod.linearize has a new interface. Old code should be changed to use this instead. See docstring for information.
- physics.gaussopt has been moved to physics.optics.gaussopt. You can still import it from the previous location but it may result in a deprecation warning.
- This is the last release with the bundled mpmath library. In the next release you will have to install this library from the official site.
- Previously lambdify would convert Matrix to numpy .matrix by default. This behavior is being deprecated, and will be completely phased out with the release of 0.7.7. To use the new behavior now set the modules kwarg to [ \{'ImmutableMatrix': numpy.array\}, ' numpy ' ]. If lambdify will be used frequently it is recommended to wrap it with a partial as so: lambdify = functools.partial(lambdify, modules=[\{'ImmutableMatrix': numpy.array\}, 'numpy']). For more information see sympy/sympy\#7853 and the lambdify docstring.
- Set.complement doesn't exists as an attribute anymore. Now we have a method Set. complement (<universal_set>) which complements the given universal set.
- Removed is_finite assumption (see sympy/sympy\#7891). Use instead a combination of is_bounded and is_nonzero assumptions.
- is_bounded and is_unbounded assumptions were renamed to is_finite and is_infinite (see sympy/sympy\#7947).
- Removed is_infinitesimal assumption (see sympy/sympy\#7995).
- Removed is_real property for Sets, use Set.is_subset(Reals) instead (see sympy/sympy\#7996).
- For generic symbol \(x\) (SymPy's symbols are not bounded by default), inequalities with 00 are no longer evaluated as they were before, e.g. \(x<00\) no longer evaluates to True). See sympy/sympy\#7861.
- CodeGen has been refactored to make it easier to add other languages. The main highlevel tool is still utilities. codegen. codegen. But if you previously used the Routine class directly, note its __init__ behaviour has changed; the new utilities.codegen. make_routine is recommended instead and by default retains the previous C/Fortran behaviour. If needed, you can still instantiate Routine directly; it only does minimal sanity checking on its inputs. See sympy/sympy\#8082.
- FiniteSet([1, 2, 3, 4]) syntax not supported anymore, use FiniteSet(1, 2, 3, 4) instead. See sympy/sympy\#7622.

\section*{Minor changes}
- Updated the parsing module to allow sympification of lambda statements to their SymPy equivalent.
- Lambdify can now use numexpr by specifying modules=' numexpr'.
- Use with evaluate(False) context manager to control automatic evaluation. E.g. with evaluate(False): \(x+x\) is actually \(x+x\), not \(2 * x\).
- IndexedBase and Indexed are changed to be commutative by default.
- sympy. core.sets moved to sympy.sets.
- Changes in sympy. sets:
- Infinite Range is now allowed. See sympy/sympy\#7741.
- is_subset(): The is_subset() method deprecates the subset() method. self. is_subset (other) checks if self is a subset of other. This is different from self. subset (other), which checked if other is a subset of self.
- is_superset(): A new method is_superset() method is now available. self. is_superset (other) checks if self is a superset of other.
- is_proper_subset and is_proper_superset: Two new methods allow checking if one set is the proper subset and proper superset of another respectively. For e.g. self.is_proper_subset(other) and self.is_proper_superset(other) checks if self is the proper subset of other and if self is the proper superset of other respectively.
- is_disjoint(): A new method for checking if two sets are disjoint.
- powerset(): A new method powerset() has been added to find the power set of a set.
- The cardinality of a ProductSet can be found using the len() function.
- Changes in sympy.plot.plot_implicit:
- The plot_implicit function now also allows explicitly specifying the symbols to plot on the X and Y axes. If not specified, the symbols will be assigned in the order they are sorted.
- The plot_implicit function also allows axes labels for the plot to be specified.
- rules for simplification of ImageSet were added sympy/sympy\#7625. As a result \(\{x \mid x\) \(\in \mathbb{Z}\}\) now simplifies to \(\mathbb{Z}\) and \(\{\sin (n) \mid n \in\{\tan (m) \mid m \in \mathbb{Z}\}\}\) automatically simplifies to \(\{\sin (\tan (m)) \mid m \in \mathbb{Z}\}\).
- coth(0) now returns Complex Infinity. See sympy/sympy\#7634.
- dioptre is added to physics.units. See sympy/sympy\#7782.
- replace now respects commutativity, see sympy/sympy\#7752.
- The CCodePrinter gracefully handles Symbols which have string representations that match C reserved words, see sympy/sympy\#8199.
- limit function now returns an unevaluated Limit instance if it can't compute given limit, see sympy/sympy\#8213.

\subsection*{8.7.2 SymPy 0.7.5}

22 Feb 2014

\section*{Major changes}
- The version of mpmath included in SymPy has been updated to 0.18.
- New routines for efficiently compute the dispersion of a polynomial or a pair thereof.
- Fancy indexing of matrices is now provided, e.g. A[:, [1, 2, 5]] selects all rows and only 3 columns.
- Enumeration of multiset partitions is now based on an implementation of Algorithm 7.1.2.5M from Knuth's The Art of Computer Programming. The new version is much faster, and includes fast methods for enumerating only those partitions with a restricted range of sizes, and counting multiset partitions. (See the new file sympy.utilities. enumerative.py.)
- distance methods were added to Line and Ray to compute the shortest distance to them from a point.
- The normal_lines method was added to Ellipse to compute the lines from a point that strike the Ellipse at a normal angle.
- inv_quick and det_quick were added as functions in solvers.py to facilitate fast solution of small symbolic matrices; their use in solve has reduced greatly the time needed to solve such systems.
- solve_univariate_inequality has been added to sympy.solvers.inequalities.py.
- as_set attribute for Relationals and Booleans has been added.
- Several classes and functions strictly associated with vector calculus were moved from sympy.physics.mechanics to a new package sympy.physics.vector. (See sympy/sympy\#2732, sympy/sympy\#2862 and sympy/sympy\#2894).
- New implementation of the Airy functions Ai and Bi and their derivatives Ai' and Bi' (called airyai, airybi, airyaiprime and airybiprime, respectively). Most of the usual features of SymPy special function are present. Notable exceptions are Gruntz limit computation helpers and meijerg special functions integration code.
- Euler-Lagrange equations (function euler_equations) in a new package sympy. calculus (sympy/sympy\#2431).

\section*{Compatibility breaks}
- the submatrix method of matrices was removed; access the functionality by providing slices or list of rows/columns to matrix directly, e.g. A[:, [1, 2]].
- Matrix([]) and Matrix([[]]) now both return a 0x0 matrix
- terms_gcd no longer removes a -1.0 from expressions
- extract_multiplicatively will not remove a negative Number from a positive one, so \(\left(4 * x^{*} y\right)\).extract_multiplicatively( \(-2 * x\) ) will return None.
- the shape of the result from M.cross (B) now has the same shape as matrix M.
- The factorial of negative numbers is now zoo instead of 0 . This is consistent with the definition factorial(n) = gamma(n + 1).
- 1/0 returns zoo, not oo (sympy/sympy\#2813).
- zoo.is_number is True (sympy/sympy\#2823).
- oo < I raises TypeError, just as for finite numbers (sympy/sympy\#2734).
- \(1^{* *} 00==\) nan instead of 1 , better documentation for Pow class (sympy/sympy\#2606).

\section*{Minor changes}
- Some improvements to the gamma function.
- generate_bell now generates correct permutations for any number of elements.
- It is no longer necessary to provide nargs to objects subclassed from Function unless an eval class method is not defined. (If eval is defined, the number of arguments will be inferred from its signature.)
- geometric Point creation will be faster since simplification is done only on Floats
- Some improvements to the intersection method of the Ellipse.
- solutions from solve of equations involving multiple log terms are more robust
- idiff can now return higher order derivatives
- Added to_matrix() method to sympy.physics.vector.Vector and sympy.physics. dyadic.Dyadic. (sympy/sympy\#2686).
- Printing improvements for sympy.physics.vector objects and mechanics printing. (See sympy/sympy\#2687, sympy/sympy\#2728, sympy/sympy\#2772, sympy/sympy\#2862 and sympy/sympy\#2894).
- Functions with LaTeX symbols now print correct LaTeX. (sympy/sympy\#2772).
- init_printing has several new options, including a flag print_builtin to prevent SymPy printing of basic Python types (sympy/sympy\#2683), and flags to let you supply custom printers (sympy/sympy\#2894).
- improvements in evaluation of imageset for Intervals (sympy/sympy\#2723).
- Set properties to determine boundary and interior (sympy/sympy\#2744).
- input to a function created by lambdify no longer needs to be flattened.

\subsection*{8.7.3 SymPy 0.7.4}

9 Dec 2013

\section*{Major changes}
- Python 3
- SymPy now uses a single code-base for Python 2 and Python 3.
- Geometric Algebra
- The internal representation of a multivector has been changes to more fully use the inherent capabilities of SymPy. A multivector is now represented by a linear combination of real commutative SymPy expressions and a collection of non-commutative SymPy symbols. Each non-commutative symbol represents a base in the geometric algebra of an N -dimensional vector space. The total number of non-commutative bases is \(2 * * N-1\) ( N of which are a basis for the vector space) which when including
scalars give a dimension for the geometric algebra of \(2^{* *} \mathrm{~N}\). The different products of geometric algebra are implemented as functions that take pairs of bases symbols and return a multivector for each pair of bases.
- The LaTeX printing module for multivectors has been rewritten to simply extend the existing sympy LaTeX printing module and the sympy LaTeX module is now used to print the bases coefficients in the multivector representation instead of writing an entire LaTeX printing module from scratch.
- The main change in the geometric algebra module from the viewpoint of the user is the interface for the gradient operator and the implementation of vector manifolds:
* The gradient operator is now implemented as a special vector (the user can name it grad if they wish) so the if \(F\) is a multivector field all the operations of grad on \(F\) can be written grad*F, F*grad, grad^F, \(\mathrm{F}^{\wedge}\) grad, grad \(|F, F|\) grad, grad<F, \(\mathrm{F}<\mathrm{grad}\), grad>F, and F>grad where \({ }^{* *}, \uparrow, \mid,<\), and \(>\) are the geometric product, outer product, inner product, left contraction, and right contraction, respectively.
* The vector manifold is defined as a parametric vector field in an embedding vector space. For example a surface in a 3-dimensional space would be a vector field as a function of two parameters. Then multivector fields can be defined on the manifold. The operations available to be performed on these fields are directional derivative, gradient, and projection. The weak point of the current manifold representation is that all fields on the manifold are represented in terms of the bases of the embedding vector space.
- Classical Cryptography, implements:
- Affine ciphers
- Vigenere ciphers
- Bifid ciphers
- Hill ciphers
- RSA and "kid RSA"
- linear feedback shift registers.
- Common Subexpression Elimination (CSE). Major changes have been done in cse internals resulting in a big speedup for larger expressions. Some changes reflect on the user side:
- Adds and Muls are now recursively matched ([w* \(\left.w^{*}, w^{*} x^{*} y, w^{*} x^{*} y^{*} z\right]\) now turns into [(x0, \(\left.w^{*} x\right)\), ( \(\left.\left.\left.x 1, x 0 * y\right)\right],\left[x 0, x 1, x 1^{*} z\right]\right)\)
- CSE is now not performed on the non-commutative parts of multiplications (it avoids some bugs).
- Pre and post optimizations are not performed by default anymore. The optimizations parameter still exists and optimizations='basic' can be used to apply previous default optimizations. These optimizations could really slow down cse on larger expressions and are no guarantee of better results.
- An order parameter has been introduced to control whether Adds and Muls terms are ordered independently of hashing implementation. The default order='canonical' will independently order the terms. order='none' will not do any ordering (hashes order is used) and will represent a major performance improvement for really huge expressions.
- In general, the output of cse will be slightly different from the previous implementation.
- Diophantine Equation Module. This is a new addition to SymPy as a result of a GSoC project. With the current release, following five types of equations are supported.
- Linear Diophantine equation, \(a_{1} x_{1}+a_{2} x_{2}+\ldots+a_{n} x_{n}=b\)
- General binary quadratic equation, \(a x^{2}+b x y+c y^{2}+d x+e y+f=0\)
- Homogeneous ternary quadratic equation, \(a x^{2}+b y^{2}+c z^{2}+d x y+e y z+f z x=0\)
- Extended Pythagorean equation, \(a_{1} x_{1}^{2}+a_{2} x_{2}^{2}+\ldots+a_{n} x_{n}^{2}=a_{n+1} x_{n+1}^{2}\)
- General sum of squares, \(x_{1}^{2}+x_{2}^{2}+\ldots+x_{n}^{2}=k\)
- Unification of Sum, Product, and Integral classes
- A new superclass has been introduced to unify the treatments of indexed expressions, such as Sum, Product, and Integral. This enforced common behavior accross the objects, and provides more robust support for a number of operations. For example, Sums and Integrals can now be factored or expanded. S.subs () can be used to substitute for expressions inside a Sum/Integral/Product that are independent of the index variables, including unknown functions, for instance, Integral ( \(f(x)\), ( \(x\), \(1,3)\) ).subs ( \(\left.f(x), x^{* *} 2\right)\), while Sum.change_index() or Integral.transform are now used for other changes of summation or integration variables. Support for finite and infinite sequence products has also been restored.
- In addition there were a number of fixes to the evaluation of nested sums and sums involving Kronecker delta functions, see sympy/sympy\#7023 and sympy/sympy\#7086.
- Series
- The Order object used to represent the growth of a function in series expansions as a variable tend to zero can now also represent growth as a variable tend to infinity. This also fixed a number of issues with limits. See sympy/sympy\#3333 and sympy/sympy\#5769.
- Division by Order is disallowed, see sympy/sympy\#4855.
- Addition of Order object is now commutative, see sympy/sympy\#4279.
- Physics
- Initial work on gamma matrices, depending on the tensor module.
- Logic
- New objects true and false which are Basic versions of the Python builtins True and False.
- Other
- Arbitrary comparisons between expressions (like \(x<y\) ) no longer have a boolean truth value. This means code like if \(x<y\) or sorted (exprs) will raise TypeError if \(x<y\) is symbolic. A typical fix of the former is if ( \(x<y\) ) is True (assuming the if block should be skipped if \(x<y\) is symbolic), and of the latter is sorted (exprs, key=default_sort_key), which will order the expressions in an arbitrary, but consistent way, even across platforms and Python versions. See sympy/sympy\#5931.
- Arbitrary comparisons between complex numbers (for example, I > 1) now raise TypeError as well (see sympy/sympy\#2510).
- minimal_polynomial now works with algebraic functions, like minimal_polynomial(sqrt(x) + sqrt(x + 1), y).
- exp can now act on any matrix, even those which are not diagonalizable. It is also more comfortable to call it, \(\exp (\mathrm{m})\) instead of just \(m \cdot \exp ()\), as was required previously.
- sympify now has an option evaluate=False that will not automatically simplify expressions like \(\mathrm{x}+\mathrm{x}\).
- Deep processing of cancel and simplify functions. simplify is now recursive through the expression tree. See e.g. sympy/sympy\#7022.
- Improved the modularity of the codebase for potential subclasses, see sympy/sympy\#6751.
- The SymPy cheatsheet was cleaned up.

\section*{Compatibility breaks}
- Removed deprecated Real class and is_Real property of Basic, see sympy/sympy\#4820.
- Removed deprecated 'each_char' option for symbols(), see sympy/sympy\#5018.
- The viewer="StringI0" option to preview() has been deprecated. Use viewer="BytesIO" instead. See sympy/sympy\#7083.
- TransformationSet has been renamed to ImageSet. Added public facing imageset function.

\subsection*{8.7.4 SymPy 0.7.3}

13 Jul 2013

\section*{Major changes}
- Integration
- This release includes Risch integration algorithm from Aaron Meurer's 2010 Google Summer of Code project. This makes integrate much more powerful and much faster for the supported functions. The algorithm is called automatically from integrate(). For now, only transcendental elementary functions containing exp or log are supported. To access the algorithm directly, use integrate(expr, x, risch=True). The algorithm has the ability to prove that integrals are nonelementary. To determine if a function is nonelementary, integrate using risch=True. If the resulting Integral class is an instance of NonElementaryIntegral, then it is not elementary (otherwise, that part of the algorithm has just not been implemented yet).
- ODE
- Built basic infrastructure of the PDE module (sympy/sympy\#1970)
- Theano Interaction
- SymPy expressions can now be translated into Theano expressions for numeric evaluation. This includes most standard scalar operations (e.g. sin, exp, gamma, but not
beta or MeijerG) and matrices. This system generally outperforms lambdify and autowrap but does require Theano to be installed.
- Matrix Expressions
- Matrix expressions now support inference using the new assumptions system. New predicates include invertible, symmetric, positive_definite, orthogonal, ....
- New operators include Adjoint, HadamardProduct, Determinant, MatrixSlice, DFT. Also, preliminary support exists for factorizations like SVD and LU.
- Context manager for New Assumptions
- Added the with assuming(*facts) context manager for new assumptions. See blogpost.

\section*{Compatibility breaks}
- This is the last version of SymPy to support Python 2.5.
- The IPython extension, i.e., \%load_ext sympy.interactive.ipythonprinting is deprecated. Use from sympy import init_printing; init_printing() instead. See sympy/sympy\#7013.
- The viewer='file' option to preview without a file name is deprecated. Use filename='name' in addition to viewer='file'. See sympy/sympy\#7018.
- The deprecated syntax Symbol('x', dummy=True), which had been deprecated since 0.7.0, has been removed. Use Dummy ('x') or symbols('x', cls=Dummy) instead. See sympy/sympy\#6477.
- The deprecated Expr methods as_coeff_terms and as_coeff_factors, which have been deprecated in favor of as_coeff_mū and as_coeff_add, respectively (see also as_coeff_Mul and as_coeff_Add), were removed. The methods had been deprecated since SymPy 0.7.0. See sympy/sympy\#6476.
- The spherical harmonics have been completely rewritten. See sympy/sympy\#1510.

\section*{Minor changes}
- Solvers
- Added enhancements and improved the methods of solving exact differential equation. See sympy/sympy\#1955 and sympy/sympy\#1823.
- Support for differential equations with linear coefficients and those that can be reduced to separable and linear form. See sympy/sympy\#1940, sympy/sympy\#1864 and sympy/sympy\#1883.
- Support for first order linear general PDE's with constant coefficients (sympy/sympy\#2109).
- Return all found independent solutions for underdetermined systems.
- Handle recursive problems for which y(0) = 0 .
- Handle matrix equations.
- Integration
- integrate will split out integrals into Piecewise expressions when conditions must hold for the answer to be true. For example, integrate ( \(x^{* *}\) n, \(x\) ) now gives Piecewise( \(\left(\log (x), E q(n,-1),\left(x^{* *}(n+1) /(n+1)\right.\right.\), True)) (previously it just gave \(\left.x^{* *}(\mathrm{n}+1) /(\mathrm{n}+1)\right)\).
- Calculate Gauss-Legendre and Gauss-Laguerre points and weights (sympy/sympy\#1497).
- Various new error and inverse error functions (sympy/sympy\#1703).
- Use in heurisch for more symmetric and nicer results.
- Gruntz for expintegrals and all new erf*.
- Li, li logarithmic integrals (sympy/sympy\#1708).
- Integration of li/Li by heurisch (sympy/sympy\#1712).
- elliptic integrals, complete and incomplete.
- Integration of complete elliptic integrals by meijerg.
- Integration of Piecewise with symbolic conditions.
- Fixed many wrong results of DiracDelta integrals.
- Logic
- Addition of SOPform and POSform functions to sympy.logic to generate boolean expressions from truth tables.
- Addition of simplify_logic function and enabling simplify() to reduce logic expressions to their simplest forms.
- Addition of bool_equals function to check equality of boolean expressions and return a mapping of variables from one expr to other that leads to the equality.
- Addition of disjunctive normal form methods - to_dnf, is_dnf
- Others
- gmpy version 2 is now supported
- Added is_algebraic_expr() method (sympy/sympy\#2176).
- Many improvements to the handling of noncommutative symbols:
* Better support in simplification functions, e.g. factor, trigsimp
* Better integration with Order()
* Better pattern matching
- Improved pattern matching including matching the identity.
- normalizes Jacobi polynomials
- Quadrature rules for orthogonal polynomials in arbitrary precision (hermite, laguerre, legendre, gen_legendre, jacobi)
- summation of harmonic numbers
- Many improvements of the polygamma functions
- evaluation at special arguments
- Connections to harmonic numbers
- structured full partial fraction decomposition (mainly interesting for developers)
- besselsimp improvements
- Karr summation convention
- New spherical harmonics
- improved minimal_polynomial using composition of algebraic numbers (sympy/sympy\#2038).
- faster integer polynomial factorization (sympy/sympy\#2148).
- Euler-Descartes method for quartic equations (sympy/sympy\#1947)
- algebraic operations on tensors (sympy/sympy\#1700).
- tensor canonicalization (sympy/sympy\#1644).
- Handle the simplification of summations and products over a KroneckerDelta.
- Implemented LaTeX printing of DiracDelta, Heaviside, KroneckerDelta and LeviCivita, also many Matrix expressions.
- Improved LaTeX printing of fractions, Mul in general.
- IPython integration and printing issues have been ironed out.
- Stats now supports discrete distributions (e.g. Poisson) by relying on Summation objects
- Added DOT printing for visualization of expression trees
- Added information about solvability and nilpotency of named groups.

\subsection*{8.7.5 SymPy 0.7.2}

16 Oct 2012

\section*{Major Changes}
- Python 3 support
- SymPy now supports Python 3. The officially supported versions are 3.2 and 3.3, but 3.1 should also work in a pinch. The Python 3-compatible tarballs will be provided separately, but it is also possible to download Python 2 code and convert it manually, via the bin/use2to3 utility. See the README for more.
- PyPy support
- All SymPy tests pass in recent nightlies of PyPy, and so it should have full support as of the next version after 1.9.
- Combinatorics
- A new module called Combinatorics was added which is the result of a successful GSoC project. It attempts to replicate the functionality of Combinatorica and currently has full featured support for Permutations, Subsets, Gray codes and Prufer codes.
- In another GSoC project, facilities from computational group theory were added to the combinatorics module, mainly following the book "Handbook of computational group theory". Currently only permutation groups are supported. The main functionalities are: basic properties (orbits, stabilizers, random elements...), the

Schreier-Sims algorithm (three implementations, in increasing speed: with Jerrum's filter, incremental, and randomized (Monte Carlo)), backtrack searching for subgroups with certain properties.
- Definite Integration
- A new module called meijerint was added, which is also the result of a successful GSoC project. It implements a heuristic algorithm for (mainly) definite integration, similar to the one used in Mathematica. The code is automatically called by the standard integrate() function. This new algorithm allows computation of important integral transforms in many interesting cases, so helper functions for Laplace, Fourier and Mellin transforms were added as well.
- Random Variables
- A new module called stats was added. This introduces a RandomSymbol type which can be used to model uncertainty in expressions.
- Matrix Expressions
- A new matrix submodule named expressions was added. This introduces a MatrixSymbol type which can be used to describe a matrix without explicitly stating its entries. A new family of expression types were also added: Transpose, Inverse, Trace, and BlockMatrix. ImmutableMatrix was added so that explicitly defined matrices could interact with other SymPy expressions.
- Sets
- A number of new sets were added including atomic sets like FiniteSet, Reals, Naturals, Integers, UniversalSet as well as compound sets like ProductSet and TransformationSet. Using these building blocks it is possible to build up a great variety of interesting sets.
- Classical Mechanics
- A physics submodule named machanics was added which assists in formation of equations of motion for constrained multi-body systems. It is the result of 3 GSoC projects. Some nontrivial systems can be solved, and examples are provided.
- Quantum Mechanics
- Density operator module has been added. The operator can be initialized with generic Kets or Qubits. The Density operator can also work with TensorProducts as arguments. Global methods are also added that compute entropy and fidelity of states. Trace and partial-trace operations can also be performed on these density operators.
- To enable partial trace operations a Tr module has been added to the core library. While the functionality should remain same, this module is likely to be relocated to an alternate folder in the future. One can currently also use sympy.core. Tr to work on general trace operations, but this module is what is needed to work on trace and partial-trace operations on any sympy.physics.quantum objects.
- The Density operators, Tr and Partial trace functionality was implemented as part of student participation in GSoC 2012.
- Expanded angular momentum to include coupled-basis states and product-basis states. Operators can also be treated as acting on the coupled basis (default behavior) or on one component of the tensor product states. The methods for coupling and uncoupling these states can work on an arbitrary number of states. Representing, rewriting and applying states and operators between bases has been improved.
- Commutative Algebra
- A new module agca was started which seeks to support computations in commutative algebra (and eventually algebraic geometry) in the style of Macaulay2 and Singular. Currently there is support for computing Gröbner bases of modules over a (generalized) polynomial ring over a field. Based on this, there are algorithms for various standard problems in commutative algebra, e.g., computing intersections of submodules, equality tests in quotient rings, etc...
- Plotting Module
- A new plotting module has been added which uses Matplotlib as its back-end. The plotting module has functions to plot the following:
* 2D line plots
* 2D parametric plots.
* 2D implicit and region plots.
* 3D surface plots.
* 3D parametric surface plots.
* 3D parametric line plots.
- Differential Geometry
- Thanks to a GSoC project the beginning of a new module covering the theory of differential geometry was started. It can be imported with sympy.diffgeom. It is based on "Functional Differential Geometry" by Sussman and Wisdom. Currently implemented are scalar, vector and form fields over manifolds as well as covariant and other derivatives.

\section*{Compatibility breaks}
- The KroneckerDelta class was moved from sympy/physics/quantum/kronecker.py to sympy/functions/special/tensor_functions.py.
- Merged the KroneckerDelta class in sympy/physics/secondquant.py with the class above.
- The Dij class in sympy/functions/special/tensor_functions.py was replaced with KroneckerDelta.
- The errors raised for invalid float calls on SymPy objects were changed in order to emulate more closely the errors raised by the standard library. The \(\qquad\) float \(\qquad\) and __complex__ methods of Expr are concerned with that change.
- The solve() function returns empty lists instead of None objects if no solutions were found. Idiomatic code of the form sol = solve(...); if sol:... will not be affected by this change.
- Piecewise no longer accepts a Set or Interval as a condition. One should explicitly specify a variable using Set().contains(x) to obtain a valid conditional.
- The statistics module has been deprecated in favor of the new stats module.
- sympy/galgebra/GA.py:
- set_main() is no longer needed
- make_symbols() is deprecated (use sympy.symbols() instead)
- the symbols used in this package are no longer broadcast to the main program
- The classes for Infinity, NegativeInfinity, and NaN no longer subclass from Rational. Creating a Rational with 0 in the denominator will still return one of these classes, however.

\section*{Minor changes}
- A new module gaussopt was added supporting the most basic constructions from Gaussian optics (ray tracing matrices, geometric rays and Gaussian beams).
- New classes were added to represent the following special functions: classical and generalized exponential integrals (Ei, expint), trigonometric ( \(\mathrm{Si}, \mathrm{Ci}\) ) and hyperbolic integrals (Shi, Chi), the polylogarithm (polylog) and the Lerch transcendent (lerchphi). In addition to providing all the standard sympy functionality (differentiation, numerical evaluation, rewriting ...), they are supported by both the new meijerint module and the existing hypergeometric function simplification module.
- An ImmutableMatrix class was created. It has the same interface and functionality of the old Matrix but is immutable and inherits from Basic.
- A new function in geometry.util named centroid was added which will calculate the centroid of a collection of geometric entities. And the polygon module now allows triangles to be instantiated from combinations of side lengths and angles (using keywords sss, asa, sas) and defines utility functions to convert between degrees and radians.
- In ntheory.modular there is a function (solve_congruence) to solve congruences such as "What number is \(2 \bmod 3,3 \bmod 5\) and \(2 \bmod 7\) ?"
- A utility function named find_unit has been added to physcis.units that allows one to find units that match a given pattern or contain a given unit.
- There have been some additions and modifications to Expr's methods:
- Although the problem of proving that two expressions are equal is in general a difficult one (since whatever algorithm is used, there will always be an expression that will slip through the algorithm) the new method of Expr named equals will do its best to answer whether A equals B: A.equals(B) might given True, False or None.
- coeff now supports a third argument n (which comes 2nd now, instead of right). This \(n\) is used to indicate the exponent on \(x\) which one seeks: \(\left(x^{* * 2}+3 * x+\right.\) 4). \(\operatorname{coeff}(x, 1)->3\). This makes it possible to extract the constant term from a polynomial: \(\left(x^{* *} 2+3 * x+4\right)\).coeff \((x, 0)->4\).
- The method round has been added to round a SymPy expression to a given a number of decimal places (to the left or right of the decimal point).
- divmod is now supported for all SymPy numbers.
- In the simplify module, the algorithms for denesting of radicals (sqrtdenest) and simplifying gamma functions (in combsimp) has been significantly improved.
- The mathematica-similar TableForm function has been added to the printing.tableform module so one can easily generate tables with headings.
- The expand API has been updated. expand() now officially supports arbitrary _eval_expand_hint() methods on custom objects. _eval_expand_hint() methods are \(\bar{n}\) now ōnly responsible for expanding the top-level expression. All deép=True related logic happens in expand() itself. See the docstring of expand() for more information and an example.
- Two options were added to isympy to aid in interactive usage. isympy -a automatically creates symbols, so that typing something like a will give Symbol ('a'), even if you never typed a = Symbol('a') or var('a'). isympy -i automatically wraps integer literals with Integer, so that \(1 / 2\) will give Rational \((1,2)\) instead of 0.5 . isympy \(-I\) is the same as isympy -a -i. isympy -I makes isympy act much more like a traditional interactive computer algebra system. These both require IPython.
- The official documentation at https://docs.sympy.org/ now includes an extension that automatically hooks the documentation examples in to SymPy Live.

In addition to the more noticeable changes listed above, there have been numerous smaller additions, improvements and bug fixes in the commits in this release. See the git log for a full list of all changes. The command git log sympy-0.7.1..sympy-0.7.2 will show all commits made between this release and the last. You can also see the issues closed since the last release here.

\subsection*{8.7.6 SymPy 0.7.1}

29 Jul 2011

\section*{Major changes}
- Python 2.4 is no longer supported. SymPy will not work at all in Python 2.4. If you still need to use SymPy under Python 2.4 for some reason, you will need to use SymPy 0.7.0 or earlier.
- The Pyglet plotting library is now an (optional) external dependency. Previously, we shipped a version of Pyglet with SymPy, but this was old and buggy. The plan is to eventually make the plotting in SymPy much more modular, so that it supports many backends, but this has not been done yet. For now, still only Pyglet is directly supported. Note that Pyglet is only an optional dependency and is only needed for plotting. The rest of SymPy can still be used without any dependencies (except for Python).
- isympy now works with the new IPython 0.11.
- mpmath has been updated to 0.17 . See the corresponding mpmath release notes.
- Added a Subs object for representing unevaluated substitutions. This finally lets us represent derivatives evaluated at a point, i.e., \(\operatorname{diff}(f(x), x) . \operatorname{subs}(x, 0)\) returns Subs (Derivative(f(_x), \(x\) ), (_x,), (0,)). This also means that SymPy can now correctly compute the chain rule when this functionality is required, such as with \(f(g(x)) . \operatorname{diff}(x)\).
- Hypergeometric functions/Meijer G-Functions
- Added classes hyper() and meijerg() to represent Hypergeometric and Meijer Gfunctions, respectively. They support numerical evaluation (using mpmath) and symbolic differentiation (not with respect to the parameters).
- Added an algorithm for rewriting hypergeometric and meijer g-functions in terms of more familiar, named special functions. It is accessible via the function hyperexpand(), or also via expand_func(). This algorithm recognises many elementary functions, and also complete and incomplete gamma functions, bessel functions, and error functions. It can easily be extended to handle more classes of special functions.
- Sets
- Added FiniteSet class to mimic python set behavior while also interacting with existing Intervals and Unions
- FiniteSets and Intervals interact so that, for example Interval(0, 10) FiniteSet (0, 5) produces (0, 5) U (5, 10]
- FiniteSets also handle non-numerical objects so the following is possible \(\{1,2\), 'one', 'two', \{a, b\}\}
- Added ProductSet to handle Cartesian products of sets
- Create using the \(*\) operator, i.e. twodice \(=\) FiniteSet(1, 2, 3, 4, 5, 6) * FiniteSet(1, 2, 3, 4, 5, 6) or square = Interval(0, 1) * Interval(0, 1)
- pow operator also works as expected: R3 = Interval(-00, 00)**3 ; (3, -5, 0) in R3 == True
- Subtraction, union, measurement all work taking complex intersections into account.
- Added as relational method to sets, producing boolean statements using And, Or, \(\mathrm{Eq}, \mathrm{Lt}, \mathrm{Gt}\), etc.
- Changed reduce_poly_inequalities to return unions of sets rather than lists of sets
- Iterables
- Added generating routines for integer partitions and binary partitions. The routine for integer partitions takes 3 arguments, the number itself, the maximum possible element allowed in the partitions generated and the maximum possible number of elements that will be in the partition. Binary partitions are characterized by containing only powers of two.
- Added generating routine for multi-set partitions. Given a multiset, the algorithm implemented will generate all possible partitions of that multi-set.
- Added generating routines for bell permutations, derangements, and involutions. A bell permutation is one in which the cycles that compose it consist of integers in a decreasing order. A derangement is a permutation such that the ith element is not at the ith position. An involution is a permutation that when multiplied by itself gives the identity permutation.
- Added generating routine for unrestricted necklaces. An unrestricted necklace is an a-ary string of n characters, each of a possible types. These have been characterized by the parameters n and k in the routine.
- Added generating routine for oriented forests. This is an implementation of algorithm S in TAOCP Vol 4A.
- xyz Spin bases
- The represent, rewrite and InnerProduct logic has been improved to work between any two spin bases. This was done by utilizing the Wigner-D matrix, implemented in the WignerD class, in defining the changes between the various bases. Representing a state, i.e. represent (JzKet ( 1,0 ), basis=Jx), can be used to give the vector representation of any get in any of the \(x / y / z\) bases for numerical values of \(j\) and \(m\) in the spin eigenstate. Similarly, rewriting states into different bases, i.e. JzKet ( 1,0 ) . rewrite('Jx' ), will write the states as a linear combination of elements of the given basis. Because this relies on the represent function, this only works for numerical j and \(m\) values. The inner product of two eigenstates in different bases can be evaluated, i.e. InnerProduct(JzKet \((1,0), \operatorname{JxKet}(1,1))\). When two different bases are
used, one state is rewritten into the other basis, so this requires numerical values of \(j\) and \(m\), but innerproducts of states in the same basis can still be done symbolically.
- The Rotation. D and Rotation.d methods, representing the Wigner-D function and the Wigner small-d function, return an instance of the WignerD class, which can be evaluated with the doit() method to give the corresponding matrix element of the Wigner-D matrix.
- Other changes
- We now use MathJax in our docs. MathJax renders LaTeX math entierly in the browser using Javascript. This means that the math is much more readable than the previous png math, which uses images. MathJax is only supported on modern browsers, so LaTeX math in the docs may not work on older browsers.
- nroots() now lets you set the precision of computations
- Added support for gmpy and mpmath's types to sympify()
- Fix some bugs with lambdify()
- Fix a bug with as_independent and non-commutative symbols.
- Fix a bug with collect (sympy/sympy\#5615)
- Many fixes relating to porting SymPy to Python 3. Thanks to our GSoC student Vladimir Perić, this task is almost completed.
- Some people were retroactively added to the AUTHORS file.
- Added a solver for a special case of the Riccati equation in the ODE module.
- Iterated derivatives are pretty printed in a concise way.
- Fix a bug with integrating functions with multiple DiracDeltas.
- Add support for Matrix. norm() that works for Matrices (not just vectors).
- Improvements to the Gröbner bases algorithm.
- Plot.saveimage now supports a StringIO outfile
- Expr.as_ordered_terms now supports non lex orderings.
- diff now canonicalizes the order of differentiation symbols. This is so it can simplify expressions like \(f(x, y) . \operatorname{diff}(x, y)-f(x, y) . \operatorname{diff}(y, x)\). If you want to create a Derivative object without sorting the args, you should create it explicitly with Derivative, so that you will get Derivative( \(f(x, y), x, y)!=\operatorname{Derivative(f(x,~}\) \(y), y, x)\). Note that internally, derivatives that can be computed are always computed in the order that they are given in.
- Added functions is_sequence() and iterable() for determining if something is an ordered iterable or normal iterable, respectively.
- Enabled an option in Sphinx that adds a source link next to each function, which links to a copy of the source code for that function.

In addition to the more noticeable changes listed above, there have been numerous other smaller additions, improvements and bug fixes in the \(\sim 300\) commits in this release. See the git log for a full list of all changes. The command git log sympy-0.7.0..sympy-0.7.1 will show all commits made between this release and the last. You can also see the issues closed since the last release here.

\subsection*{8.7.7 SymPy 0.7.0}

28 Jun 2011

\section*{Major Changes}
- Polys
- New internal representations of dense and sparse polynomials (see 6aecdb7, 31c9aa4)
- Implemented algorithms for real and complex root isolation and counting (see 3acac67, 4b75dae, fa1206e, 103b928, 45c9b22, 8870c8b, b348b30)
- Improved Gröbner bases algorithm (see ff65e9f, 891e4de, 310a585)
- Field isomorphism algorithm (see b097b01, 08482bf)
- Implemented efficient orthogonal polynomials (see b8fbd59)
- Added configuration framework for polys (see 33d8cdb, 7eb81c9)
- Function for computing minimal polynomials (see 88bf187, f800f95)
- Function for generating Viete's formulas (see 1027408)
- roots() supports more classes of polynomials (e.g. cyclotomic) (see d8c8768, 75c8d2d)
- Added a function for recognizing cyclotomic polynomials (see b9c2a9a)
- Added a function for computing Horner form of polynomials (see 8d235c7)
- Added a function for computing symmetric reductions of polynomials (see 6d560f3)
- Added generators of Swinnerton-Dyer, cyclotomic, symmetric, random and interpolating polynomials (see dad03dd, 6ccf20c, dc728d6, 2f17684, 3004db8)
- Added a function computing isolation intervals of algebraic numbers (see 37a58f1)
- Polynomial division (div(), rem(), quo()) now defaults to a field (see a72d188)
- Added wrappers for numerical root finding algorithms (see 0d98945, f638fcf)
- Added symbolic capabilities to factor(), sqf() and related functions (see d521c7f, 548120b, f6f74e6, b1c49cd, 3527b64)
- together() was significantly improved (see dc327fe)
- Added support for iterable containers to gcd () and lcm() (see e920870)
- Added a function for constructing domains from coefficient containers (see a8f20e6)
- Implemented greatest factorial factorization (see d4dbbb5)
- Added partial fraction decomposition algorithm based on undetermined coefficient approach (see 9769d49, 496f08f)
- RootOf and RootSum were significantly improved (see f3e432, 4c88be6, 41502d7)
- Added support for gmpy (GNU Multiple Precision Arithmetic Library) (see 38e1683)
- Allow to compile sympy. polys with Cython (see afb3886)
- Improved configuration of variables in Poly (see 22c4061)
- Added documentation based on Wester's examples (see 1c23792)
- Irreducibility testing over finite fields (see 17e8f1f)
- Allow symmetric and non-symmetric representations over finite fields (see 60fbff4)
- More consistent factorization forms from factor() and sqf() (see 5df77f5)
- Added support for automatic recognition algebraic extensions (see 7de602c)
- Implemented Collins' modular algorithm for computing resultants (see 950969b)
- Implemented Berlekamp's algorithm for factorization over finite fields (see 70353e9)
- Implemented Trager's algorithm for factorization over algebraic number fields (see bd0be06)
- Improved Wang's algorithm for efficient factorization of multivariate polynomials (see 425e225)
- Quantum
- Symbolic, abstract dirac notation in sympy.physics.quantum. This includes operators, states (bras and kets), commutators, anticommutators, dagger, inner products, outer products, tensor products and Hilbert spaces
- Symbolic quantum computing framework that is based on the general capabilities in sympy.physics.quantum. This includes qubits (sympy.physics.quantum.qubit), gates (sympy.physics.quantum.gate), Grover's algorithm (sympy.physics. quantum.grover), the quantum Fourier transform (sympy.physics.quantum.qft), Shor's algorithm (sympy.physics.quantum.shor) and circuit plotting (sympy. physics.quantum.circuitplot)
- Second quantization framework that inclues creation/anihilation operators for both Fermions and Bosons and Wick's theorem for Fermions (sympy.physics. secondquant).
- Symbolic quantum angular momentum (spin) algebra (sympy.physics.quantum. spin)
- Hydrogen wave functions (Schroedinger) and energies (both Schroedinger and Dirac)
- Wave functions and energies for 1D harmonic oscillator
- Wave functions and energies for 3D spherically symmetric harmonic oscillator
- Wigner and Clebsch Gordan coefficients
- Everything else
- Implement symarray, providing numpy nd-arrays of symbols.
- update mpmath to 0.16
- Add a tensor module (see this report)
- A lot of stuff was being imported with from sympy import * that shouldn't have been (like sys). This has been fixed.
- Assumptions:
- Refine
- Added predicates (see 7c0b857, 53f0e1a, d1dd6a3)
- Added query handlers for algebraic numbers (see f3bee7a)
- Implement a SAT solver (see this, 2d96329, acfbe75, etc)
- Concrete
- Finalized implementation of Gosper's algorithm (see 0f187e5, 5888024)
- Removed redundant Sum2 and related classes (see ef1f6a7)
- Core:
- Split Atom into Atom and AtomicExpr (see 965aa91)
- Various sympify() improvements
- Added functionality for action verbs (many functions can be called both as global functions and as methods e.g. a.simplify() == simplify(a))
- Improve handling of rational strings (see 053a045, sympy/sympy\#4877)
- Major changes to factoring of integers (see 273f450, sympy/sympy\#5102)
- Optimized .has() (see c83c9b0, sympy/sympy\#5079, d86d08f)
- Improvements to power (see c8661ef, sympy/sympy\#5062)
- Added range and lexicographic syntax to symbols() and var() (see f6452a8, 9aeb220, 957745a)
- Added modulus argument to expand() (see 1ea5be8)
- Allow to convert Interval to relational form (see 4c269fe)
- SymPy won't manipulate minus sign of expressions any more (see 6a26941, 9c6bf0f, e9f4a0a)
- Real and .is_Real were renamed to Float and .is_Float. Real and .is_Real still remain as deprecated shortcuts to Float and is_Float for backwards compatibility. (see abe1c49)
- Methods coeff and as_coefficient are now non-commutative aware. (see a4ea170)
- Geometry:
- Various improvements to Ellipse
- Updated documentation to numpy standard
- Polygon and Line improvements
- Allow all geometry objects to accept a tuple as Point args
- Integrals:
- Various improvements (see e.g. sympy/sympy\#4871, sympy/sympy\#5098, sympy/sympy\#5091, sympy/sympy\#5086)
- isympy
- Fixed the -p switch (see e8cb04a)
- Caching can be disabled using -C switch (see 0d8d748)
- Ground types can be set using -t switch (see 75734f8)
- Printing ordering can be set using -o switch (see fcc6b13, 4ec9dc5)
- Logic
- implies object adheres to negative normal form
- Create new boolean class, logic.boolalg.Boolean
- Added XOR operator (^) support
- Added If-then-else (ITE) support
- Added the dpll algorithm
- Functions:
- Added Piecewise, B-splines
- Spherical Bessel function of the second kind implemented
- Add series expansions of multivariate functions (see d4d351d)
- Matrices:
- Add elementwise product (Hadamard product)
- Extended QR factorization for general full ranked mxn matrices
- Remove deprecated functions zero(), zeronm(), one() (see 5da0884)
- Added cholesky and LDL factorizations, and respective solves.
- Added functions for efficient triangular and diagonal solves.
- SMatrix was renamed to SparseMatrix (see acd1685)
- Printing:
- Implemented pretty printing of binomials (see 58c1dad)
- Implemented pretty printing of Sum() (see 84f2c22, 95b4321)
- sympy.printing now supports ordering of terms and factors (see 859bb33)
- Lexicographic order is now the default. Now finally things will print as \(x^{* *} 2+x+\) 1 instead of \(1+x+x^{* *} 2\), however series still print using reversed ordering, e.g.
 the -o option to isympy (see 08b4932, a30c5a3)
- Series:
- Implement a function to calculate residues, residue()
- Implement nseries and lseries to handle x0 != 0, series should be more robust now (see 2c99999, sympy/sympy\#5221 - sympy/sympy\#5223)
- Improvements to Gruntz algorithm
- Simplify:
- Added use() (see 147c142)
- ratsimp() now uses cancel() and reduced() (see 108fb41)
- Implemented EPath (see 696139d, bf90689)
- a new keyword rational was added to nsimplify which will replace Floats with Rational approximations. (see 053a045)
- Solvers:
- ODE improvements (see d12a2aa, 3542041; 73fb9ac)
- Added support for solving inequalities (see 328eaba, 8455147, f8fcaa7)
- Utilities:
- Improve cartes, for generating the Cartesian product (see b1b10ed)
- Added a function computing topological sort of graphs (see b2ce27b)
- Allow to setup a customized printer in lambdify() (see c1ad905)
- flatten() was significantly improved (see 31ed8d7)
- Major improvements to the Fortran code generator (see report, 3383aa3, 7ab2da2, etc)

\section*{Compatibility breaks}
- This will be the last release of SymPy to support Python 2.4. Dropping support for Python 2.4 will let us move forward with things like supporting Python 3, and will let us use things that were introduced in Python 2.5, like with-statement context managers.
- no longer support creating matrices without brackets (see sympy/sympy\#4029)
- Renamed sum() to summation() (see 3e763a8, sympy/sympy\#4475, sympy/sympy\#4826). This was changed so that it no longer overrides the built-in sum(). The unevaluated summation is still called Sum().
- Renamed abs() to Abs() (see 64a12a4, sympy/sympy\#4826). This was also changed so that it no longer overrides the built-in abs(). Note that because of __abs__ magic, you can still do abs (expr) with the built-in abs(), and it will return Abs (expr).
- Renamed max_() and min_() to now Max() and Min() (see 99a271e, sympy/sympy\#5252)
- Changed behaviour of symbols(). symbols('xyz') gives now a single symbol ('xyz'), not three ('x', 'y' and 'z') (see f6452a8). Use symbols('x,y,z') or symbols('x y \(\left.z^{\prime}\right)\) to get three symbols. The each_char option will still work but is being deprecated.
- Split class Basic into new classes Expr, Boolean (see a0ab479, 635d89c). Classes that are designed to be part of standard symbolic expressions (like \(x^{* *} 2 * \sin (x)\) ) should subclass from Expr. More generic objects that do not work in symbolic expressions but still want the basic SymPy structure like . args and basic methods like . subs() should only subclass from Basic.
- as_basic() method was renamed to as_expr() to reflect changes in the core (see e61819d, 80dfe91)
- Methods as_coeff_terms and as_coeff_factors were renamed to as_coeff_mul and as_coeff_add, respectively.
- Removed the trim() function. The function is redundant with the new polys. Use the cancel() function instead.
- The assume_pos_real option to logcombine() was renamed to force to be consistant with similar force options to other functions.

In addition to the more noticeable changes listed above, there have been numerous other smaller additions, improvements and bug fixes in the \(\sim 2000\) commits in this release. See the git log for a full list of all changes. The command git log sympy-0.6.7..sympy-0.7.0 will show all commits made between this release and the last. You can also see the issues closed since the last release here.

\subsection*{8.7.8 SymPy 0.6.7}

17 Mar 2010
- fix a bug where bin/test and bin/doctest would be installed into /usr/bin
- fix an example for recent matplotlib versions
- some fixes for Python 2.4 and 2.5
- try to expand integrand if integration fails
- improved isprime() (pseudoprimes were falsely reported as being prime)
- runtests.py prints less when testing documentation
- ODE code clean-up and fixes
- runtests.py is now more verbose about expected failures to avoid confusion
- update mpmath to version 0.14
- improvements to second quantization module and coupled cluster example
- implement visual factorint()
- implement symarray (): numpy array of sympy symbols
- documentation fixes and some bugfixes

\subsection*{8.7.9 SymPy 0.6.6}

20 Dec 2009
- many documentation improvements, including docstrings and doctests
- new assumptions system (See assumptions documentation for more information or have a look at Fabian's blog.)
- improvements to test runner
- printing improvements (especially LaTeX, but also mathml and pretty printing)
- discriminant of polys
- block diagonal methods for matrices
- vast improvements to solving of ODEs (See ODE documentation for full details or Aaron's blog).
- logcombine function
- improvements to sets
- better trigonometric simplification
- improvements to piecewise functions
- improvements to solve() and nsolve()
- improvements to as_numer_denom()
- much better quartic and cubic polynomial rootfinding
- code refactoring and cleanup
- physics: coupled clusters and wick expansion
- matrices: symbolic QR solving
- mpmath updated
- pyglet updated
- many, many bug fixes and small improvements

\subsection*{8.7.10 SymPy 0.6.5}

17 Jul 2009
- Geometric Algebra Improvements
- Upgrade GA module with left and right contraction operations
- Add intersection test for the vertical segment, reimplementation of convex_hull
- Implement series() as function
- Core improvements
- Refactor Number.eval_power
- fix bugs in Number.eval_power
- Matrix improvements:
- Improve jacobian function, introduce vec and vech
- Solver improvements:
- solutions past linear factor found in tsolve
- refactor sympy.solvers.guess_solve_strategy
- Small cleanups to the ODE solver and tests
- Fix corner case for Bernoulli equation
- Improvements on partial differential equations solvers
- Added separation of variables for PDEs
- Expand improvements
- Refactoring
- \(\exp (x) \exp (y)\) is no longer automatically combined into \(\exp (x+y)\), use powsimp for that
- Documentation improvements:
- Test also documentation under doc/
- Added many docstrings
- Fix Sphinx complaints/warnings/errors
- Doctest coverage
- New logic module
- Efficient DPLL algorithm
- LaTeX printer improvements:
- Handle standard form in the LaTeX printer correctly
- Latex: print_Mul fix (sympy/sympy\#4381)
- Robust printing of latex sub and superscripts
- sorting print_Add output using a main variable
- Matrix printing improvements
- MathML printing improvements:
- MathML's printer extended
- Testing framework improvements
- Make tests pass without the "py" module
- Polynomial module improvements:
- Fixed subresultant PRS computation and ratint()
- Removed old module sympy. polynomials
- limit fixes:
- Compute the finite parts of the limit of a sum by direct substitution
- Test coverage script
- Code quality improvements (remove string exceptions, code quality test improvements)
- C code generation
- Update mpmath

\subsection*{8.7.11 SymPy 0.6.4}

4 Apr 2009
- robust and fast (still pure Python) multivariate factorization
- sympy works with pickle protocol 2 (thus works in ipython parallel)
- ./sympy test now uses our testing suite and it tests both regular tests and doctests
- examples directory tidied up
- more trigonometric simplifications
- polynomial roots finding and factoring vastly improved
- mpmath updated
- many bugfixes (more than 200 patches since the last release)

\subsection*{8.7.12 SymPy 0.6.3}

19 Nov 2008
- port to python2.6 (all tests pass)
- port to jython (all tests pass except those depending on the "ast" module)
- true division fixed (all tests pass with "-Qnew" Python option)
- http://buildbot.sympy.org created, sympy is now regularly tested on python2.4, 2.5, 2.6 on both i386 and amd64 architectures.
- py.bench - py.test based benchmarking added
- bin/test - simple py.test like testing framework, without external dependencies, nice colored output
- most limits now work
- factorization over \(Z[x]\) greatly improved
- Piecewise function added
- nsimplify() implemented
- symbols and var syntax unified
- C code printing
- many bugfixes

\subsection*{8.7.13 SymPy 0.6.2}

17 Aug 2008
- SymPy is now \(50 \%\) faster on average (cache:on) and \(130 \%\) (cache:off) compared to previous release.
- adaptive and faster evalf()
- evalf: numerical summation of hypergeometric series
- evalf: fast and accurate numerical summation
- evalf: oscillatory quadrature
- integrals now support variable transformation
- we can now integrate(f(x)•diff(f(x),x), x)
- we can now solve \(a \cdot \cos (x)=y\) and \(\exp (x)+\exp (-x)=y\)
- printing system refactored
- pprint: new symbol for multiply in unicode mode( \(\mathrm{x}^{*} \mathrm{y}\)-> \(\mathrm{x} \cdot \mathrm{y}\) )
- pprint: matrices now look much better
- printing of dicts and sets are now more human-friendly
- latex: now supports sub- and superscripts in symbol names
- RootSum.doit(), now works on all roots
- Wild can now have additional predicates
- numpy-like zeros and ones functions
- var('x,y,z') now works
- ( \((x+y+z)^{* * 50)}\). expand ( \()\) is now \(4.8 x\) faster
- big assumptions cleanup and rewrite
- access to all object attributes is now \(\sim 2.5\) times faster
- we try not to let 'is_commutative' to go through (slow) assumptions path
- Add/Mul were optimized (for some cases significantly)
- isympy and sympy.interactive code were merged
- multiple inheritance removed (NoArithMeths, NoRelMeths, RelMeths, ArithMeths are gone)
- .nseries() is now used as default in .series()
- doctesting was made more robust

\subsection*{8.7.14 SymPy 0.6.1}

22 Jul 2008
- almost all functions and constants can be converted to Sage
- univariate factorization algorithm was fixed
- .evalf() method fixed, pi.evalf(106) calculates 1000000 digits of pi
- @threaded decorator
- more robust solvers, polynomials and simplification
- better simplify, that makes a solver more robust
- optional compiling of functions to machine code
- msolve: solving of nonlinear equation systems using Newton's method
- (( \(x+y+z)^{* * 50) . e x p a n d() ~ i s ~ n o w ~} 3\) times faster
- caching was removed from the Order class: 1.5 x speedups in series tests

\subsection*{8.7.15 SymPy 0.6.0}

7 Jul 2008
- all documentation wiki pages moved to https://docs.sympy.org/
- mpmath was integrated in SymPy, numerics module removed
- mpmath can use gmpy optionally, thus calculating 1000000 digits of pi in 7.5 s
- Common subexpression elimination implemented
- roots, RootsOf, RootSum implemented
- lambdify() now accepts Matrices
- Matrices polished and spedup
- source command implemented
- Polys were made the default polynomials in SymPy
- Add, Mul, Pow now accept evaluate=False argument

\subsection*{8.7.16 SymPy 0.5.15}

24 May 2008
- all SymPy functions support vector arguments, e.g. \(\sin ([1,2,3])\)
- lambdify can now use numpy/math/mpmath
- the order of lambdify arguments has changed
- all SymPy objects are pickable
- simplify improved and made more robust
- broken limit_series was removed, we now have just one limit implementation
- limits now use .nseries()
- .nseries() improved a lot
- Polys improved
- Basic kronecker delta and Levi-Civita implementation

\subsection*{8.7.17 SymPy 0.5.14}

26 Apr 2008
- SymPy is now \(25 \%\) faster on average compared to the previous release
- \(\frac{\mathrm{eq}}{\text { pensive }}\) anymore _ne_ nonzero_ returns True/False directly so dict lookups are not ex-
- \(\operatorname{sum}\left(x^{*}{ }^{\mathrm{i}} / \mathrm{i}, \mathrm{i}=1 . .400\right.\) ) is now 4.8 x faster
- isinstance(term, C.Mul) was replaced by term.is_Mul and similarly for other basic classes
- Documentation was improved a lot. See https://docs.sympy.org/
- rsolve_poly \& rsolve_hyper fixed
- subs and subs_dict unified to . subs()
- faster and more robust polynomials module
- improved Matrix.det (), implemented Berkowitz algorithm
- improved isympy (interactive shell for SymPy)
- pretty-printing improved
- Rel, Eq, Ne, Lt, Le, Gt, Ge implemented
- Limit class represents unevaluated limits now
- Bailey-Borwein-Plouffe algorithm (finds the nth hexidecimal digit of pi without calculating the previous digits) implemented
- solver for transcendental equations added
- .nseries() methods implemented (more robust/faster than .oseries)
- multivariate Lambdas implemented

\subsection*{8.7.18 SymPy 0.5.13}

6 Mar 2008
- SymPy is now 2 x faster in average compared to the previous release
- first patches with \(25 \%\) speedup
- Basic.cos et. al. removed, use C.cos instead
- sympy. core now uses direct imports
- sympifyit decorator
- speedup Integers creation and arithmetic
- speedup unary operations for singleton numbers
- remove silly slowdowns from fast-path of mul and div
- significant speedup was achieved by reusing dummy variables
- is_dummy is not an assumption anymore
- Symbols \& Wilds are cached
- ((2+3*I)**1000). expand() is now at least 100x faster
- .expand() was made faster for cases where an expression is already expanded
- rational powers of integers are now computed more efficiently
- unknown assumptions are now cached as well as known assumptions
- integrate() can handle most of the basic integrals now
- interactive experience with isympy was improved through adding support for, () and \{\} to pretty-printer, and switching to it as the default ipython printer
- new trim() function to map all non-atomic expressions, ie. functions, derivatives and more complex objects, to symbols and remove common factors from numerator and denominator. also cancel() was improved
- .expand() for noncommutative symbols fixed
- bug in \((x+y+\sin (x))\).as_independent() fixed
- .subs_dict() improved
- support for plotting geometry objects added
- bug in .tangent_line() of ellipse fixed
- new atan2 function and assotiated fixes for .arg() and expanding rational powers
- new . coeff() method for returning coefficient of a poly
- pretty-printer now uses unicode by default
- recognition of geometric sums were generalized
- .is_positive and .is_negative now fallback to evalf() when appropriate
- as the result \(00^{*}\) (pi-1) now correctly simplifies to oo
- support for objects which provide \(\qquad\) int \(\qquad\) method was added
- we finally started SymPy User's Guide
- BasicMeths merged into Basic
- cache subsystem was cleaned up - now it supports only immutable objects

\subsection*{8.7.19 SymPy 0.5.12}

27 Jan 2008
- SymPy works with NumPy out of the box.
- RootOf implemented.
- Lambda support works now.
- Heuristic Risch method improved.
- cancel() function implemented.
- sqrt(x) is now equivalent to \(x^{* *}(1 / 2)\).
- Derivative is now unevaluated.
- list2numpy() implemented.
- Series expansion of hyperbolic functions fixed.
- sympify('lambda x: 2*x') works, plus other fixes.
- Simple maxima parser implemented.
- \(\sin (x)\) [0] idiom changed to \(\sin (x)\).args [0]
- \(\sin (x) . \operatorname{series}(x, 5)\) idiom changed to \(\sin (x) . \operatorname{series}(x, 0,5)\)
- Caching refactored.
- Integration of trigonometry expressions improved
- Pretty-printing for list and tuples implemented.
- Python printing implemented.
- 2D plots now don't rotate in 3D, but translate instead.

\subsection*{8.7.20 SymPy 0.5.11}

7 Jan 2008
- ./setup.py install installs pyglet correctly now.
- var("k") fixed.
- Script for automatic testing of plotting in pure environment added.

\subsection*{8.7.21 SymPy 0.5.10}

4 Jan 2008
- view renamed to preview, pngview, pdfview, dviview added.
- Latex printer was rewritten, preview uses builtin pyglet.
- Square root denesting implemented.
- Parser of simple Mathematica expressions added.
- TeXmacs interface written.
- Some integration fixes.
- Line width in 2D plotting can be specified.
- README was updated.
- pyglet and mpmath were updated and moved to sympy/thirdparty
- All sys.path hacks were moved to just 2 places.
- SymPy objects should work in numpy arrays now.
- Hand written sympify () parser was rewritten and simplified using Python AST.

\subsection*{8.7.22 SymPy 0.5.9}

22 Dec 2007
- Differential solvers were polished.
- isympy now predefines \(f\) as a function.
- Matrix printing improved.
- Printing internals were documented.

\subsection*{8.7.23 SymPy 0.5.8}

6 Dec 2007
- _eval_apply() method was renamed to canonize().
- Added var from SAGE.
- Added more number theory functions.
- Spherical harmonics (Ylm) implemented.
- Functions interface simplified (SingleValuedFunction removed, nofargs -> nargs).
- Draw negative powers in denominator nicely.
- Integration of polynomials is 10 x faster.
- pyglet updated to 1.Obeta2.

\subsection*{8.7.24 SymPy 0.5.7}

17 Nov 2007
- isympy now uses 2D unicode pretty-printing by default.
- Convergence acceleration / extrapolation methods for series and sequences.
- SymPy was made ready to work nicely with SAGE.

\subsection*{8.7.25 SymPy 0.5.6}

30 Oct 2007
- _sage_() methods implemented to convert any SymPy expression to a SAGE expression.
- isympy fixed so that it always tries the local unpacked sympy first (the one in the directory where isympy sits) and only then the system wide installation of sympy (Debian package for example).

\subsection*{8.7.26 SymPy 0.5.5}

20 Oct 2007
- sympy . abc module for quickly importing predefined symbols.
- Nice pretty printing when a unicode terminal is available.
- isympy - c python now also supports true division.
- Documentation improved (sympy module, bin/isympy and it's man page).
- A lot of problems with series expansion fixed.
- Patched pyglet to conform to Debian policy.

\subsection*{8.7.27 SymPy 0.5.4}

5 Oct 2007
- Log and ApplyLog classes were simplified to log, as was in the 0.4 .3 version (the same for all other classes, like sin or cos).
- Limits algorithm was fixed and it works very reliably (there are some bugs in the series facility though that make some limits fail), see this post for more details.
- All functions arguments are now accessed using the \(\sin (x)\) [:] idiom again, as in the 0.4.3 version (instead of the old \(\sin (x)\)._args or \(\sin (x)\). args which was briefly introduced in the 0.5.x series).

\subsection*{8.7.28 SymPy 0.5.3}

8 Sep 2007
- Faster import sympy statement.
- Using the integrate ( \(3^{*} t * * 2\), ( \(\left.t, 0, x\right)\) ) syntax again (as was in the 0.4 .3 version).
- Using true division in isympy ( \(1 / 2\) returns 0.5 instead of 0 , example).
- Plotting module can save images.
- Implemented extended Risch-Norman heuristic.
- Full partial fraction decomposition via apart ().
- Added a complete set of rewrite rules for trigonometric and hyperbolic functions.
- ComplexInfinity renamed to zoo.

\subsection*{8.7.29 SymPy 0.5.2}

20 Aug 2007
- concrete mathematics module written
- geometry module
- make the tarball conform to Debian policy
- many small bugs fixed

\subsection*{8.7.30 SymPy 0.5.1}

12 Aug 2007
- importing sympy (import sympy) was made a lot faster (2.4s against 0.1 s )

\subsection*{8.7.31 SymPy 0.5.0}

12 Aug 2007
- New core (from 10x to 100x speedup compared to 0.4.3).
- Multivariate functions.
- Pattern matching uses the Wild and WildFunction classes.
- Numerics module for fast arbitrary-precision numerical computations.
- Plotting module improved (colormaps, middle mouse button for zooming and more).
- sympy/modules/* was moved to sympy/* and the sympy/modules directory was deleted.

\section*{BIBLIOGRAPHY}
[APPM90] Yu. A. Brychkov A. P. Prudnikov and O. I. Marichev. More Special Functions. Volume 3 of Integrals and Series. Gordon and Breach, 1990.
[Abr71] S.A. Abramov. On the summation of rational functions. USSR Computational Mathematics and Mathematical Physics, 11(4):324-330, 1971. URL: https://www.sciencedirect.com/science/article/abs/pii/0041555371900280, doi:10.1016/0041-5553(71)90028-0.
[Abr95] Sergei A. Abramov. Rational Solutions of Linear Difference and q-difference Equations with Polynomial Coefficients. In ISSAC '95: Proceedings of the 1995 International Symposium on Symbolic and Algebraic Computation, 285-289. New York, NY, USA, 1995. ACM Press. doi:10.1145/220346.220383.
[ABPetkovvsek95] Sergei A. Abramov, Manuel Bronstein, and Marko Petkovšek. On Polynomial Solutions of Linear Operator Equations. In ISSAC '95: Proceedings of the 1995 International Symposium on Symbolic and Algebraic Computation, 290296. New York, NY, USA, 1995. ACM Press. doi:10.1145/220346.220384.
[AL94] William Wells Adams and Philippe Loustaunau. An Introduction to Gröbner Bases. American Mathematical Society, Boston, MA, USA, July 1994. ISBN 0-821-838040 .
[ALW95] Iyad A. Ajwa, Zhuojun Liu, and Paul S. Wang. Gröbner Bases Algorithm. Technical Report ICM-199502-00, ICM Technical Reports Series, 1995.
[ARW96] Steven Arno, M.L. Robinson, and Ferell S. Wheeler. On denominators of algebraic numbers and integer polynomials. Journal of Number Theory, 57(2):292-302, 1996. URL: https://www.sciencedirect.com/science/article/pii/ S0022314X96900499, doi:10.1006/jnth.1996.0049.
[BW93] Thomas Becker and Volker Weispfenning. Gröbner Bases: A Computational Approach to Commutative Algebra. Volume 141 of Graduate Texts in Mathematics. Springer-Verlag, New York, NY, USA, 1993. ISBN 0-387-97971-9. In Cooperation with Heinz Kredel.
[Bro] Manuel Bronstein. Poor Man's Integrator. URL: http://www-sop.inria.fr/cafe/ Manuel.Bronstein/pmint/index.htm.
[Bro05] Manuel Bronstein. Symbolic Integration I: Transcendental Functions. SpringerVerlag, New York, NY, USA, second edition, 2005. ISBN 3-540-21493-3.
[BS93] Manuel Bronstein and Bruno Salvy. Full Partial Fraction Decomposition of Rational Functions. In ISSAC '93: Proceedings of the 1993 International Symposium on Symbolic and Algebraic Computation, 157-160. New York, NY, USA, 1993. ACM Press. doi:10.1145/164081.164114.
[Bro71] W. S. Brown. On Euclid's Algorithm and the Computation of Polynomial Greatest Common Divisors. In SYMSAC '71: Proceedings of the second ACM Symposium on Symbolic and Algebraic Computation, 195-211. New York, NY, USA, 1971. ACM Press. doi:10.1145/800204.806288.
[Bro78] W. S. Brown. The subresultant prs algorithm. ACM Transactions on Mathematical Software, 4(3):237-249, September 1978. URL: https://dl.acm.org/doi/10.1145/ 355791.355795, doi:10.1145/355791.355795.
[BT71] W. S. Brown and J. F. Traub. On Euclid's Algorithm and the Theory of Subresultants. Journal of the ACM, 18(4):505-514, 1971. doi:10.1145/321662.321665.
[Buc01] Bruno Buchberger. Gröbner Bases: A Short Introduction for Systems Theorists. In Computer Aided Systems Theory - EUROCAST 2001-Revised Papers, 1-19. London, UK, 2001. Springer-Verlag.
[Col67] George E. Collins. Subresultants and reduced polynomial remainder sequences. Journal of the ACM, 14(1):128-142, January 1967. URL: https://dl.acm.org/ citation.cfm?doid=321371.321381, doi:10.1145/321371.321381.
[CLOShea15] David Cox, John Little, and Donald O'Shea. Ideals, Varieties and Algorithms. Undergraduate Texts in Mathematics. Springer-Verlag, New York, NY, USA, fourth edition, 2015. ISBN 978-3-319-16720-6.
[DST88] J. H. Davenport, Y. Siret, and E. Tournier. Computer algebra: systems and algorithms for algebraic computation. Academic Press, New York, NY, USA, 1988. ISBN 0-12-204230-1.
[FaugereGLM93] J.C. Faugère, P. Gianni, D. Lazard, and T. Mora. Efficient computation of zero-dimensional gröbner bases by change of ordering. Journal of Symbolic Computation, 16(4):329-344, October 1993. URL: https://www.sciencedirect.com/ science/article/pii/S0747717183710515, doi:10.1006/jsco.1993.1051.
[GMN+91] Alessandro Giovini, Teo Mora, Gianfranco Niesi, Lorenzo Robbiano, and Carlo Traverso. "One sugar cube, please" or selection strategies in the Buchberger algorithm. In ISSAC '91: Proceedings of the 1991 International Symposium on Symbolic and Algebraic Computation, 49-54. New York, NY, USA, 1991. ACM Press. doi:10.1145/120694.120701.
[GB73] M.E. Goldstein and W.H. Braun. Advanced Methods for the Solution of Differential Equations. NASA (United States. National Aeronautics and Space Administration). Scientific and Technical Information Office, National Aeronautics and Space Administration, 1973.
[Gru96] Dominik Gruntz. On Computing Limits in a Symbolic Manipulation System. PhD thesis, Swiss Federal Institute of Technology, Zürich, Switzerland, 1996.
[HNorsettW14] E. Hairer, S.P. Nørsett, and G. Wanner. Solving Ordinary Differential Equations I: Nonstiff Problems. Springer Series in Computational Mathematics. Springer-Verlag, 2014. ISBN 9783642052330.
[JM09] Seyed Mohammad Mahdi Javadi and Michael Monagan. On Factorization of Multivariate Polynomials over Algebraic Number and Function Fields. In ISSAC '09: Proceedings of the 2009 International Symposium on Symbolic and Algebraic Computation, 199-206. New York, NY, USA, 2009. ACM Press. doi:10.1145/1576702.1576731.
[Kar81] Michael Karr. Summation in Finite Terms. Journal of the ACM, 28(2):305-350, 1981. doi:10.1145/322248.322255.
[Knu85] Donald E. Knuth. The Art of Computer Programming: Seminumerical Algorithms. Addison-Wesley, Reading, MA, USA, second edition, 1985. ISBN 0-201-03822-6.
[Koe98] W. Koepf. Hypergeometric Summation: An Algorithmic Approach to Summation and Special Function Identities. Braunschweig, 1998.
[KL89] Dexter Kozen and Susan Landau. Polynomial Decomposition Algorithms. Journal of Symbolic Computation, 7(5):445-456, 1989. doi:10.1016/S0747-7171(89)80027-6.
[KW88] Heinz Kredel and Volker Weispfenning. Computing dimension and independent sets for polynomial ideals. Journal of Symbolic Computation, 6(2):231-247, 1988. URL: https://www.sciencedirect.com/science/article/pii/S0747717188800452, doi:10.1016/S0747-7171(88)80045-2.
[LF95] Hsin-Chao Liao and Richard J. Fateman. Evaluation of the heuristic polynomial GCD. In ISSAC '95: Proceedings of the 1995 International Symposium on Symbolic and Algebraic Computation, 240-247. New York, NY, USA, 1995. ACM Press. doi:10.1145/220346.220376.
[Luk69] Yudell L. Luke. The Special Functions and Their Approximations. Volume 1. Academic Press, New York, NY, USA, 1969.
[Man93] Yiu-Kwong Man. On computing closed forms for indefinite summations. Journal of Symbolic Computation, 16(4):355-376, October 1993. URL: https://www.sciencedirect.com/science/article/pii/S0747717183710539, doi:10.1006/jsco.1993.1053.
[MW94] Yiu-Kwong Man and Francis J. Wright. Fast polynomial dispersion computation and its application to indefinite summation. In Proceedings of the International Symposium on Symbolic and Algebraic Computation, ISSAC '94, 175-180. New York, NY, USA, 1994. ACM Press. URL: https://dl.acm.org/citation.cfm?doid= 190347.190413, doi:10.1145/190347.190413.
[MVV97] A. J. Menezes, O. P. C. Van, and S. A. Vanstone. Handbook of applied cryptography. CRC Press, Boca Raton, Florida, USA, 1997.
[MvH04] Michael Monagan and Mark van Hoeij. Algorithms for Polynomial GCD Computation over Algebraic Function Fields. In ISSAC '04: Proceedings of the 2004 International Symposium on Symbolic and Algebraic Computation, 297-304. New York, NY, USA, 2004. ACM Press. doi:10.1145/1005285.1005328.
[MW00] Michael B. Monagan and Allan D. Wittkopf. On the design and implementation of brown's algorithm over the integers and number fields. In Proceedings of the 2000 International Symposium on Symbolic and Algebraic Computation, ISSAC '00, 225-233. New York, NY, USA, 2000. ACM Press. URL: https://dl.acm.org/ citation.cfm?doid=345542.345639, doi:10.1145/345542.345639.
[NKBG03] B. Buchberger N.K. Bose and J.P. Guiver. Multidimensional Systems Theory and Applications. Springer, second edition, 2003.
[Petkovvsek92] Marko Petkovšek. Hypergeometric Solutions of Linear Recurrences with Polynomial Coefficients. Journal of Symbolic Computation, 14(2-3):243-264, 1992. doi:10.1016/0747-7171(92)90038-6.
[PetkovvsekWZ97] Marko Petkovšek, Herbert S. Wilf, and Doron Zeilberger. A \(\mid=1\) ) B. AK Peters, Ltd., Wellesley, MA, USA, 1997. URL: http://sites.math.rutgers.edu/ ~zeilberg/AeqB.pdf.
[Roa96] Kelly Roach. Hypergeometric function representations. In Proceedings of the 1996 International Symposium on Symbolic and Algebraic Computation, ISSAC
'96, 301-308. New York, NY, USA, 1996. ACM Press. URL: https://dl.acm.org/ citation.cfm?doid=236869.237088, doi:10.1145/236869.237088.
[Roa97] Kelly Roach. Meijer g function representations. In Proceedings of the 1997 International Symposium on Symbolic and Algebraic Computation, ISSAC '97, 205211. New York, NY, USA, 1997. ACM Press. URL: https://dl.acm.org/citation.cfm? doid \(=258726.258784\), doi:10.1145/258726.258784.
[Sim16] G.F. Simmons. Differential Equations with Applications and Historical Notes, Third Edition. Textbooks in Mathematics. CRC Press, 2016. ISBN 9781498702621.
[SW10] Yao Sun and Dingkang Wang. A new proof of the F5 algorithm. CoRR, 2010. URL: https://arxiv.org/abs/1004.0084, arXiv:1004.0084.
[TP63] M. Tenenbaum and H. Pollard. Ordinary Differential Equations. Dover Publications, 1963.
[vHM02] Mark van Hoeij and Michael Monagan. A Modular GCD Algorithm over Number Fields Presented with Multiple Extensions. In ISSAC '02: Proceedings of the 2002 International Symposium on Symbolic and Algebraic Computation, 109-116. New York, NY, USA, 2002. ACM Press. doi:10.1145/780506.780520.
[Wan81] Paul S. Wang. A p-adic Algorithm for Univariate Partial Fractions. In SYMSAC '81: Proceedings of the fourth ACM Symposium on Symbolic and Algebraic Computation, 212-217. New York, NY, USA, 1981. ACM Press. doi:10.1145/800206.806398.
[YNT89] Kazuhiro Yokoyama, Masayuki Noro, and Taku Takeshima. Computing primitive elements of extension fields. Journal of Symbolic Computation, 8(6):553-580, 1989. URL: https://www.sciencedirect.com/science/article/pii/ S0747717189800616, doi:10.1016/S0747-7171(89)80061-6.

\section*{PYTHON MODULE INDEX}
d
diofant, 41
diofant.calculus, 908
diofant.calculus.euler, 908
diofant.calculus.finite diff, 910
diofant.calculus.optimization, 910
diofant.calculus.singularities, 909
diofant.combinatorics.generators, 175
diofant.combinatorics.graycode, 216
diofant.combinatorics.group_constructs,
        228
diofant.combinatorics.named_groups, 220
diofant.combinatorics.partitions, 148
diofant.combinatorics.perm_groups, 176
diofant.combinatorics.permutations, 152
diofant.combinatorics.polyhedron, 203
diofant.combinatorics.prufer, 205
diofant.combinatorics.subsets, 209
diofant.combinatorics.tensor can, 230
diofant.combinatorics.testutīl, 229
diofant.combinatorics.util, 223
diofant.config, 41
diofant.core, 41
diofant.core.add, 106
diofant.core.assumptions, 44
diofant.core.basic, 46
diofant.core.cache, 45
diofant.core.compatibility, 144
diofant.core.containers, 143
diofant.core.core, 56
diofant.core.evalf, 142
diofant.core.evaluate, 57
diofant.core.expr, 57
diofant.core.exprtools, 146
diofant.core.function, 124
diofant.core.mod, 108
diofant.core.mul, 103
diofant.core.multidimensional, 124
diofant.core.numbers, 86
diofant.core.power, 100
diofant.core.relational, 109
diofant.core.singleton, 56
diofant.core.symbol, 82
diofant.core.sympify, 41
diofant.diffgeom, 915
diofant.domains, 503
diofant.functions, 282
diofant.functions.special.bessel, 362
diofant.functions.special.beta_functions, 340
diofant.functions.special.elliptic_integrals, 383
diofant.functions.special.error functions, 342
diofant.functions.special.gamma_functions, 333
diofant.functions.special.polynomials, 385
diofant.functions.special.zeta_functions, 373
diofant.geometry, 403
diofant.geometry.curve, 433
diofant.geometry.ellipse, 436
diofant.geometry.entity, 406
diofant.geometry.exceptions, 412
diofant.geometry.line, 417
diofant.geometry.point, 412
diofant.geometry.polygon, 449
diofant.geometry.util, 408
diofant.integrals, 468
diofant.integrals.meijerint_doc, 1017
diofant.integrals.quadrature, 487
diofant.integrals.transforms, 469
diofant.interactive, 647
diofant.interactive.printing, 647
diofant.interactive.session, 648
diofant.logic, 493
diofant.matrices, 509
diofant.matrices.dense, 559
diofant.matrices.expressions, 581
diofant.matrices.expressions.blockmatrix, 584
diofant.matrices.immutable, 579
diofant.matrices.matrices, 509
diofant.matrices.sparse, 567
diofant.ntheory.continued_fraction, 264
diofant.ntheory.egyptian_fraction, 267
diofant.ntheory.factor_, 241
diofant.ntheory.generā̄e, 236
diofant.ntheory.modular, 254
diofant.ntheory.multinomial, 256
diofant.ntheory.partitions_, 258
diofant.ntheory.primetest, 258
diofant.ntheory.residue_ntheory, 259
diofant.parsing, 905
diofant.plotting, 648
diofant. polys, 586
diofant.polys.constructor, 620
diofant. polys.euclidtools, 972
diofant. polys.factorization_alg_field, 979
diofant. polys.factortools, 974
diofant. polys.groebnertools, 975
diofant.polys.modulargcd, 983
diofant.polys.monomials, 621
diofant. polys.numberfields, 620
diofant. polys.orderings, 621
diofant. polys.orthopolys, 624
diofant.polys.partfrac, 626
diofant. polys. polyerrors, 993
diofant. polys.polyfuncs, 618
diofant. polys.polyoptions, 992
diofant. polys. polyroots, 623
diofant. polys. polytools, 586
diofant.polys.rationaltools, 625
diofant. polys. rootisolation, 991
diofant. polys.rootoftools, 622
diofant.polys.specialpolys, 624
diofant.polys.sqfreetools, 992
diofant.printing, 629
diofant.printing.ccode, 632
diofant.printing.codeprinter, 643
diofant.printing. conventions, 643
diofant.printing.fcode, 635
diofant.printing. lambdarepr, 639
diofant.printing.latex, 639
diofant.printing.mathematica, 638
diofant.printing.mathml, 641
diofant.printing.precedence, 643
diofant.printing.pretty.pretty, 632
diofant.printing.pretty.pretty_symbologydiofant.utilities.memoization, 904 643
diofant.printing.pretty.stringpict, 644
diofant.printing.printer, 629
diofant.printing.python, 642
diofant.printing.repr, 642
diofant.printing.str, 642
diofant.series.gruntz, 995
diofant.series.limits, 661
diofant.series.order, 662
diofant.series.residues, 664
diofant.series.series, 662
diofant.sets.fancysets, 676
diofant.sets.sets, 664
diofant.simplify. combsimp, 697
diofant.simplify.cse_main, 699
diofant.simplify.epathtools, 702
diofant.simplify.fu, 693
diofant.simplify.hyperexpand, 702
diofant.simplify.hyperexpand_doc, 1005
diofant.simplify.powsimp, 694
diofant.simplify.radsimp, 685
diofant.simplify. ratsimp, 691
diofant.simplify.sqrtdenest, 698
diofant.simplify.traversaltools, 702
diofant.simplify.trigsimp, 692
diofant.solvers, 742
diofant.solvers.deutils, 833
diofant.solvers.diophantine, 746
diofant.solvers.inequalities, 746
diofant.solvers.ode, 817
diofant.solvers.pde, 832
diofant.solvers.polysys, 744
diofant.solvers.recurr, 821
diofant.solvers.solvers, 742
diofant.solvers.utils, 832
diofant.stats, 705
diofant.stats.crv, 740
diofant.stats.crv_types, 740
diofant.stats.frv, 740
diofant.stats.frv_types, 740
diofant.stats.rv, 739
diofant.tensor, 834
diofant.tensor.array, 834
diofant.tensor.index_methods, 845
diofant.tensor.indexed, 839
diofant.tensor.tensor, 848
diofant.utilities, 863
diofant.utilities.autowrap, 864
diofant.utilities.codegen, 869
diofant.utilities.decorator, 878
diofant.utilities.enumerative, 878
diofant.utilities.iterables, 884
diofant.utilities.lambdify, 901
diofant.utilities.misc, 904
diofant.utilities.randtest, 904
diofant. vector, 930
diofant.vector.orienters, 955

\section*{Symbols}
_TensorManager (class in diofant.tensor.tensor), 848
__add__() (diofant.polys.rings.PolyElement method), 966
contains () (diofant.combinatorics.perm_groups.PermutationGroup method), 178 _alpha_to_z() (in module dio-
__eq_( ) (diofant.combinatorics.perm_groups.Permutafl \(\ddagger\) method), 178
__eq_() (diofant.polys.rings.PolyElement method), 966
_getitem_()
- fant.matrices.dense.DenseMatrix method), 559
_getitem_()
fant.polys.rings.PolyElement method), 967
(dio-
(dio-
_base_ordering() (in module diofant.combinatorics.util), 223
__init__()(diofant.vector.coordsysrect.CoordSysCart ésqnarcombinatorics.testutil), 229 method), 945 _denominator() (in module dio_init__() (diofant.vector.orienters.AxisOrienter fant.polys.factorization_alg_field), method), 956
_init__()(diofant.vector.orienters.BodyOrientej̇ophantine() (in module diomethod), 956
__init__()(diofant.vector.orienters.QuaternionOrienter 9 method), 958
diophantine_univariate() (in module _init__()(diofant.vector.orienters.SpaceOrienter diofant.polys.factorization_alg_field), method), 957
__mul_()(diofant.combinatorics.perm_groups.ferstithatiohtime divisors() (in module method), 178
__mul_()(diofant.matrices.dense.DenseMatrix method), 559
__mul__() (diofant.polys.rings.PolyElement method), 967
 static method), 178
__pow__() (diofant.polys.rings.PolyElement method), 967
__rmul__() (diofant.polys.rings.PolyElement
method), 967
__rsub__() (diofant.polys.rings.PolyElement
method), 967
__rsub__() (diofant.polys.rings.PolyElement method), 967
_euclidean_algorithm() (in module diofant.polys.modulargcd), 984年
_evaluate_ground() (in module diofant.polys.modulargcd), 984
_extended_euclidean_algorithm()
(in module
dio-
fant.polys.factorization_alg_field),
979 (in module
factor() dio-
fant.polys.factorization_alg_field),
979
fant.polys.factorization_alg_field), 979
_factor() (in module diofant.polys.factorization_alg_field), 979
func_field_modgcd_m() (in module diofant.polys.mod̄ulargcd), 984
func_field_modgcd_p() (in module diofant.polys.modulargcd), 985
\[
\text { fant.polys.modulargcd), } 985
\]
_handle_Integral() (in module diofant.solvers.ode), 821
_handle_precomputed_bsgs() (in module diofant.combinatorics.util), 224
hensel_lift() (in module diofant.polys.factorization_alg_field), 980
_interpolate() (in module diofant.polys.modulargcd), 985
_leading_coeffs() (in module diofant.polys.factorization_alg_field), 980
_linear_2eq_order1_type3() (in module diofant.solvers.ode), 805
_linear_2eq_order1_type4() (in module diofant.solvers.ode), 806
_linear_2eq_order1_type5() (in module diofant.solvers.ode), 806
_linear_2eq_order1_type6() (in module diofant.solvers.ode), 806
_linear_2eq_order1_type7() (in module diofant.solvers.ode), 807
_linear_2eq_order2_type1() (in module diofant.solvers.ode), 807
_linear_2eq_order2_type11() (in module diofant.solvers.ode), 813
_linear_2eq_order2_type2() (in module diofant.solvers.ode), 808
_linear_2eq_order2_type3() (in module diofant.solvers.ode), 809
_linear_2eq_order2_type5() (in module diofant.solvers.ode), 809
_linear_2eq_order2_type6() (in module diofant.solvers.ode), 810
_linear_2eq_order2_type7() (in module diofant.solvers.ode), 811
_linear_2eq_order2_type8() (in module diofant.solvers.ode), 811
_linear_2eq_order2_type9() (in module diofant.solvers.ode), 812
_linear_3eq_order1_type4() (in module diofant.solvers.ode), 813
_minpoly_from_dense() (in module dio-
fant.polys.modulargcd), 986
_modgcd_p() (in module diofant.polys.modulargcd), 986
_monic_associate() (in module diofant.polys.factorization_alg_field), 981
_naive_list_centralizer() (in module diofant.combinatorics.testutil), 229
_nonlinear_2eq_order1_type1() (in module diofant.solvers.ode), 814
_nonlinear_2eq_order1_type2() (in module diofānt.solvers.ode), 814
_nonlinear_2eq_order1_type3() (in module diofānt.solvers.ōe), 815
nonlinear_2eq_order1_type4() (in module diofant.solvers.ode), 815
_nonlinear_2eq_order1_type5() (in module diofant.solvers.ode), 816
_nonlinear_3eq_order1_type1() (in module diofant.solvers.ode), 816
_nonlinear_3eq_order1_type2() (in module diofant.solvers.ode), 816
_orbits_transversals_from_bsgs() (in module diofant.combinatorics.util), 225
padic_lift() (in module diofant.polys.factorization_alg_field), 981
_primitive_in_x0() (in module diofant.polys.modulargcd), 986
_print() (diofant.printing.printer.Printer method), 631
_rational_function_reconstruction() (in module diofant.polys.modulargcd), 986
_rational_reconstruction_func_coeffs() (in \({ }^{-}\)module diofant.polys.modulargcd), 987
rational_reconstruction_int_coeffs() (in \({ }^{-}\)module - diofant.polys.modulargcd), 987
remove_gens() (in module diofant.combinatorics.util), 226
_sqf_p() (in module diofant.polys.factorization_alg_field), 981
_strip() (in module diofant.combinatorics.util), 227
strong_gens_from_distr() (in module diofant.combinātorics.util), 228
subs_ground() (in module diofant.polys.factorization_alg_field), 981
test_evaluation_points() (in module
diofant.polys.factorization_alg_field), 981
_test_prime() (in module diofant.polys.factorization_alg_field), 982
_to_ANP_poly() (in module dio fant.polys.modulargcd), 988
_to_ZZ_poly() (in module dio- Abs fant.polys.modulargcd), 988
```

_trunc() (in module

``` fant.polys.modulargcd), 988
_undetermined_coefficients_match() (in module diofant.solvers.ode), 820
_union_find_merge() fant.combinatorics.perm_groups.PermutationGZorip method), 179 acosh (class in dio_union_find_rep()
(diofant.combinatorics.perm_groups.PermutationGROUP method), 179
_verify_bsgs() (in module diofant.combinatorics.testutil), 229
_verify_centralizer() (in module diofant.combinatorics.testutil), 229
_verify_normal_closure() (in module diofant.combinatorics.testutil), 230
_z_to_alpha() (in module diofant.polys.factorization_alg_field), 982
_zz_heu_gcd()
(dio\(\overline{\text { fant.polys.euclidtools._GCD method), }}\) 990
- -auto-symbols
python--m-diofant command line option, 39
--help
python--m-diofant command line option, 39
--no-ipython
python--m-diofant command line option, 39
--no-wrap-division
python--m-diofant command line option, 39
-a
python--m-diofant command line option, 39
-h
python--m-diofant command line option, 39
A
a (diofant.polys.rootisolation.RealInterval property), 991
a2idx() (in module diofant.matrices.matrices), 559
AbelianGroup() (in module diofant.combinatorics.named_groups), 222
above() (diofant.printing.pretty.stringpict.stringPict method), 644
(class in diofant.functions.elementary.complexes), 285
accepted_latex_functions (in module diofant.printing.latex), 639
acos (class in diofant.functions.elementary.trigonometric),
acot (class in diofant.functions.elementary.trigonometric), 298
acoth (class in diofant.functions.elementary.hyperbolic), 304
acsc (class in diofant.functions.elementary.trigonometric), 298
Add (class in diofant.core.add), 106
add () (diofant.matrices.matrices.MatrixBase method), 521
add() (diofant.matrices.sparse.SparseMatrixBase method), 571
add_formulae() (in module diofant.simplify.hyperexpand), 1007
adjoint (class in diofant.functions.elementary.complexes), 286
adjoint() (diofant.core.expr.Expr method), 57
adjoint() (diofant.matrices.immutable.ImmutableMatrix method), 579
adjoint() (diofant.matrices.matrices.MatrixBase method), 521
adjugate() (diofant.matrices.matrices.MatrixBase method), 521
airyai (class in diofant.functions.special.bessel), 367 airyaiprime (class in diofant.functions.special.bessel), 369 AiryBase (class in diofant.functions.special.bessel), 367
airybi (class in diofant.functions.special.bessel), 368 airybiprime (class in dio-
fant.functions.special.bessel), 371 ap (diofant.functions.special.hyper.hyper
algebraic_field()
(dio-
fant.domains.AlgebraicField method), 506
algebraic_field()
(dio-
fant.domains.RationalField method), 506
AlgebraicField (class in diofant.domains), 506
all_coeffs() (diofant.polys.polytools.Poly method), 589
all_roots() (diofant.polys.polytools.Poly method), 590
all_roots() (diofant.polys.rootoftools.RootOf append() (diofant.plotting.plot.Plot method), class method), 622
allhints (in module diofant.solvers.ode), apply() (diofant.simplify.epathtools.EPath
antidivisor_count() (in module dio- area (diofant.geometry.polygon.RegularPolygon fant.ntheory.factor_), 241
antidivisors() (in module dio- arg (class in diofant.ntheory.factor_), 242 aother (diofant.functions.special.hyper.meijerg property), 382

779
almosteq() (diofant.domains.ComplexField method), 508
almosteq() (diofant.domains.RealField method), 508
alternating() (diofant.combinatorics.generators method), 176
AlternatingGroup() (in module diofant.combinatorics.named_groups), 222
altitudes (diofant.geometry.polygon.Triangle property), 462

ambient_dimension (dio-
fant.geometry.entity.GeometryEntity property), 406
ambient dimension
(diofant.geometry.point.Point property), 412
an (diofant.functions.special.hyper.meijerg property), 382
And (class in diofant.logic.boolalg), 496
angle_between()
fant.geometry.line.LinearEntity method), 417
angles (diofant.geometry.polygon.Polygon property), 450
angles (diofant.geometry.polygon.RegularPolygon property), 455 (in module diofant.printing.pretty.pretty_symbology), area (diofant.geometry.polygon.Polygon 644 method), 703
apply_finite_diff() (in module diofant.calculus.finite_diff), 910
applyfunc() (diofant.matrices.dense.DenseMatrix method), 559
applyfunc() (diofant.matrices.sparse.SparseMatrixBase method), 571
approximation_interval() (diofant.core.numbers.NumberSymbol method), 92
arbitrary_point() (diofant.geometry.curve.Curve method), 433
arbitrary_point()
(dio-
fant.geometry.ellipse.Ellipse method), 437
arbitrary_point() (diofant.geometry.line.LinearEntity method), 418
arbitrary_point() (diofant.geometry.polygon.Polygon method), 450
(dio- Arcsin() (in module diofant.stats), 709
are_concurrent() (diofant.geometry.line.LinearEntity static method), 418
are_similar() (in module dio-
area (diofant.geometry.ellipse.Ellipse prop-
annotated() (in module dio- erty), 438 property), 451
fant.functions.elementary.complexes), 286
args (diofant.core.basic.Basic property), 46
```

args (diofant.core.containers.Dict property), method),59
M,
5
Argument (class in diofant.utilities.codegen),
8 7 0 as_coefficient() (diofant.core.expr.Expr
argument (diofant.functions.special.bessel.BesselBase method),59
property), 362 as_coefficients_dict() (dio-
argument (diofant.functions.special.hyper.hyper - fant.core.add.Add method), }10
property), 380 as_coefficients_dict() (dio-
argument (diofant.functions.special.hyper.meijerg- fant.core.expr.Expr method), }6
property), 382 as_content_primitive() (dio-
Array (class in diofant.tensor.array), 837 fant.core.add.Add method), }10
array_form(diofant.combinatorics.permutatiormsPeommt\&atiopmrimitive() (dio-
property),157 fant.core.expr.Expr method),60
array_form(diofant.combinatorics.polyhedron.Polydoentrent_primitive() (dio-
property), 203
as_base_exp() (diofant.core.expr.Expr as_content_primitive() (dio-
method),58 fant.core.numbers.Rational method),
as_base_exp()
(dio-
fant.core.function.Function method),
131
as_base_exp() (diofant.core.mul.Mul
method),103
as_base_exp() (diofant.core.power.Pow
method),102
as_base_exp() (dio-
fant.functions.elementary.exponential.log
method), }30
as_coeff_Add() (diofant.core.add.Add
method), }10
as_coeff_add() (diofant.core.add.Add
method), 106
as_coeff_Add() (diofant.core.expr.Expr
method), }5
as_coeff_add() (diofant.core.expr.Expr
method), 58
as_coeff_Add() (dio-
fant.core.numbers.Number method),
86
as_coeff_add() (dio-
fant.core.numbers.Number method),
86
as_coeff_exponent() (dio-
fant.core.expr.Expr method),59
as_coeff_Mul() (diofant.core.expr.Expr
method), }5
as_coeff_mul() (diofant.core.expr.Expr

```
```

as_independent() (diofant.core.expr.Expr as_relational() (diofant.sets.sets.FiniteSet
method),}6
as_int() (in module dio- as_relational() (dio-
fant.core.compatibility), 144 fant.sets.sets.Intersection method),
as leading term() (diofant.core.expr.Expr
method), }6
as_mutable() (dio-
fant.matrices.dense.DenseMatrix
method),560
as mutable()
fant.matrices.expressions.MatrixExpr
method),582
as_mutable()
(dio-
fant.matrices.immutable.ImmutableMata\dot{xx}terms() (diofant.core.expr.Expr method),
method),579
as_mutable() (dio- as_tuple()(diofant.polys.rootisolation.ComplexInterval
fant.matrices.sparse.SparseMatrixBase - method), 991
method),571 as tuple() (diofant.polys.rootisolation.RealInterval
as_numer_denom() (diofant.core.expr.Expr
method),64
as_ordered_factors() (dio-
fant.core.expr.Expr method),64 as_two_terms() (diofant.core.mul.Mul
as_ordered_factors() (dio-
fant.core.mul.Mul method),}10
as_ordered_terms() (diofant.core.expr.Expr
met\overline{h}od), }6
as_poly() (diofant.core.expr.Expr method),
64
as_powers_dict() (diofant.core.expr.Expr aseries() (diofant.core.expr.Expr method),
method), }6
as_powers_dict() (diofant.core.mul.Mul asin
method), 104
as_property() (in module dio-
fant.core.assumptions), 45
method),107
as_real_imag() (diofant.core.expr.Expr
method), }6
as real imag() (diofant.core.mul.Mul
method), 104
as_real_imag() (diofant.core.power.Pow
method),103
as_real_imag() (dio- assoc_legendre (class in dio-
fant.functions.elementary.complexes.im fant.functions.special.polynomials),
method),284 392
as_real_imag() (dio- atan (class in dio-
fant.functions.elementary.complexes.re
method),284
as_real_imag() (dio- atan2 (class in dio-
\overline{fant.functions.elementary.exponential.log fant.functions.elementary.trigonometric),}
method), 307 299
as real_imag() (dio- atanh
fant.functions.elementary.hyperbolic.sinh
method), }30
dio-
fant.functions.elementary.hyperbolic),
304

```

Atom (class in diofant.core.basic), 46
AtomicExpr (class in diofant.core.expr), 81
atoms () (diofant.combinatorics.permutations.PBassiutataikass in diofant.core.basic), 46 method), 158
atoms() (diofant.core.basic.Basic method), 46
atoms() (diofant.matrices.matrices.MatrixBasebasic_stabilizers property), 181 fant.combinatorics.perm_groups.PermutationGroup property), 181
basic_transversals (dio-
auto_symbol() (in module diofant.parsing.sympy_parser), 908
AutomaticSymbols (class in dio- bell (class in diofant.interactive.session), 648 fant.functions.combinatorial.numbers),
autowrap() (in module diofant.utilities.autowrap), 866
ax (diofant.polys.rootisolation.ComplexInterval property), 991
AxisOrienter (class in dio- berkowitz() (diofant.matrices.matrices.MatrixBase fant.vector.orienters), 956 method), 522
ay (diofant.polys.rootisolation.ComplexInterval berkowitz_charpoly() (dioproperty), 991

B
b (diofant.polys.rootisolation.RealInterval property), 992
base (diofant.combinatorics.perm_groups.Perm property), 179
base (diofant.core.power.Pow property), 103
base (diofant.tensor.indexed.Indexed property), 843
base_oneform()
(diofant.diffgeom.CoordSystem method), 917
base_oneforms() (diofant.diffgeom.CoordSystem method), 917
base_solution_linear() (in module diofant.solvers.diophantine), 754
base_vector() (diofant.diffgeom.CoordSystem method), 917
base_vectors() (diofant.diffgeom.CoordSystem method), 917
BaseCovarDerivative0p (class in diofant.diffgeom), 923
BasePolynomialError, 993
BaseScalarField (class in diofant.diffgeom), 918
BaseSeries (class in diofant.plotting.plot), 660
baseswap () (diofant.combinatorics.perm group method), 180
fant.matrices.matrices.MatrixBase method), 522
berkowitz_det() (diofant.matrices.matrices.MatrixBase method), 523
 fant.matrices.matrices.MatrixBase method), 523
berkowitz_minors()
(dio-
fant.matrices.matrices.MatrixBase method), 523
bernoulli (class in diofant.functions.combinatorial.numbers), 315
Bernoulli() (in module diofant.stats), 706
BesselBase (class in diofant.functions.special.bessel), 362
besseli (class in diofant.functions.special.bessel), 363
besselj (class in diofant.functions.special.bessel), 362
besselk (class in diofant.functions.special.bessel), 364
besselsimp() (in module diofant.simplify.simplify), 682
bessely (class in diofant.functions.special.bessel), 363
beta (class in diofant.functions.special.beta functions), 340
Beta() (in module diofant.stats), 710
Refterpritattion(igrougdule diofant.stats), 711 bin_to_gray() (dio-
fant.combinatorics.graycode method), 219
binary_function() (in module diofant.utilities.autowrap), 867
binary_partitions() (in module diofant.utilities.iterables), 884
binomial (class in dio- bx (diofant.polys.rootisolation.ComplexInterval fant.functions.combinatorial.factorials), 316
Binomial() (in module diofant.stats), 706
binomial_coefficients() (in module diofant.ntheory.multinomial), 256
binomial_coefficients_list() (in module diofant.ntheory.multinomial), 256
bisectors() (diofant.geometry.polygon.Triangle method), 462
bitlist from subset() (dio\(\overline{\text { fant.combinatorics.subsets.Subset }}\) class method), 209
block collapse() (in module dio fant.matrices.expressions.blockmatrix), 585
BlockDiagMatrix (class in dio(class in dio- method), 967
fant.matrices.expressions.blockmatrix), cancel() (in module diofant.polys.polytools), 585
BlockMatrix (class in diofant.matrices.expressions.blockmatrix), 584
bm (diofant.functions.special.hyper.meijerg property), 382
BodyOrienter (class in diofant.vector.orienters), 956
bool_map() (in module diofant.logic.boolalg), 502
BooleanFalse (class in diofant.logic.boolalg), 495
BooleanTrue (class in diofant.logic.boolalg), 494
bother (diofant.functions.special.hyper.meijer property), 382
boundary (diofant.sets.sets.Set property), 664
bounds (diofant.geometry.point.Point property), 412
bq (diofant.functions.special.hyper.hyper property), 380
bq (diofant.functions.special.hyper.meijerg property), 382
bracelets() (in module diofant.utilities.iterables), 884
bsgs_direct_product() (in module diofant.combinatorics.tensor_can), 235
bspline_basis() (in module dio\(\overline{f a n t . f u n c t i o n s . s p e c i a l . b s p l i n e s), ~}\)

372
bspline_basis_set() (in module diofant.functions.special.bsplines), 373
buchberger() (in module diofant.polys.groebnertools), 975
by (diofant.polys.rootisolation.ComplexInterval property), 991
C
C (diofant.matrices.immutable.ImmutableMatrix property), 579
(diofant.matrices.matrices.MatrixBase property), 517
cacheit() (in module diofant.core.cache), 45
cancel() (diofant.core.expr.Expr method), 66
cancel() (diofant.polys.polytools.Poly method), 590
cancel() (diofant.polys.rings.PolyElement 608
canon_bp() (diofant.tensor.tensor.TensAdd method), 859
canon_bp() (diofant.tensor.tensor.TensMul method), 861
canon_bp() (in module diofant.tensor.tensor), 863
canonical (diofant.core.relational.Relational property), 110
canonical_variables fant.core.expr.Expr property), 66
canonicalize() (in module diofant.combinatorics.tensor_can), 230
\(g_{\text {cantor_product() (in module dio- }}\) fant.utilities.iterables), 884
capture() (in module diofant.utilities.iterables), 884
cardinality (diofant.combinatorics.permutations.Permutat property), 158
cardinality (diofant.combinatorics.subsets.Subset property), 210
casoratian() (in module diofant.matrices.dense), 555
Catalan (class in diofant.core.numbers), 99
catalan (class in diofant.functions.combinatorial.numbers), 318
Cauchy() (in module diofant.stats), 711
ccode() (in module diofant.printing.ccode), chebyshevu_root (class in dio633
CCodeGen (class in diofant.utilities.codegen), 870
CCodePrinter (class in diofant.printing.ccode), 632
check_assumptions() (in module diofant.core.assumptions), 45
checkinfsol() (in module dio-
ceiling (class in diofant.functions.elementary.integers), 304
ceiling() (diofant.core.numbers.Float method), 89
center (diofant.geometry.ellipse.Ellipse property), 438
center (diofant.geometry.polygon.RegularPolygchni (class in dioproperty), 456
center (diofant.polys.rootisolation.ComplexInterval 360 property), \(991 \quad\) Chi () (in module diofant.stats), 712
center (diofant.polys.rootisolation.RealIntervalChiNoncentral() (in module diofant.stats), property), 992
center() (diofant.combinatorics.perm_groups.Redvirsquatiod(G)rфiupmodule diofant.stats), 713 method), 182 cholesky() (diofant.matrices.matrices.MatrixBase
centralizer() (dio- method), 524
fant.combinatorics.perm_groups.Permutbatide\%qu(1)p(diofant.matrices.sparse.SparseMatrixBase method), 183 method), 572
centroid (diofant.geometry.polygon.Polygon cholesky_solve() (dioproperty), 451
centroid (diofant.geometry.polygon.RegularPolygon fant.matrices.matrices.MatrixBase property), 457 Ci
centroid() (in module dio-
fant.geometry.util), 411 method), 524
(class in diofant.functions.special.error functions), 358
change_index() (dio- Circle (class in diofant.geometry.ellipse), fant.concrete.expr_with_intlimits.ExprWithIntLinitis method), 276
circumcenter
(dio-
characteristic (dio-
fant.domains.ring.CommutativeRing property), 505
- property), 45
circumcenter (dio-
fant.geometry.polygon.Triangle property), 463 fant.domains.characteristiczero), 505
circumcircle
(dio-
charpoly()(diofant.matrices.matrices.MatrixBase fant.geometry.polygon.RegularPolygon method), 523 property), 457
chebyshevt (class in dio
fant.functions.special.polynomials), 388
chebyshevt_poly() (in module dio fant.polys.orthopolys), 624
chebyshevt_root (class in diofant.functions.special.polynomials), 390
chebyshevu (class in diofant.functions.special.polynomials), 389
chebyshevu_poly() (in module diofant.polys.orthopolys), 624
circumcircle
(dio-
fant.geometry.polygon.Triangle property), 463
circumference (diofant.geometry.ellipse.Circle property), 447
circumference (diofant.geometry.ellipse.Ellipse property), 438
circumradius (diofant.geometry.polygon.RegularPolygon property), 458
circumradius (dio-
fant.geometry.polygon.Triangle property), 463
CL (diofant.matrices.sparse.SparseMatrixBase property), 570
class_key() (diofant.core.add.Add class method), 107
class_key() (diofant.core.basic.Atom class method), 46
class_key() (diofant.core.basic.Basic class method), 47
class_key() (diofant.core.function.Function class method), 131
class_key() (diofant.core.mul.Mul class method), 104
class_key() (diofant.core.numbers.Number class method), 87
class key() (diofant.core.power.Pow class method), 103
class_key() (diofant.core.symbol.Dummy class method), 83
classify_diop() (in module diofant.solvers.diophantine), 752
classify_ode() (in module diofant.solvers.ode), 774
classify_pde() (in module diofant.solvers.pde), 827
classof() (in module diofant.matrices.matrices), 551
clear() (diofant.tensor.tensor.TensorManager method), 848
clear_denoms() (diofant.polys.polytools.Poly method), 591
clone() (diofant.polys.polyoptions.Options method), 993
closure (diofant.sets.sets.Set property), 665
CodeGen (class in diofant.utilities.codegen), 871
codegen() (in module diofant.utilities.codegen), 874
CodePrinter (class in diofant.printing.codeprinter), 643
CodeWrapError, 865
CodeWrapper (class in diofant.utilities.autowrap), 865
coeff() (diofant.core.expr.Expr method), 66
coeff_monomial()
(dio-
fant.polys.polytools.Poly method), 591
coefficients
(dio-
fant.geometry.line.LinearEntity property), 419
coeffs() (diofant.polys.polytools.Poly method), 591
CoercionFailed, 993
cofactor() (diofant.matrices.matrices.MatrixBase method), 524
cofactorMatrix()
(dio-
fant.matrices.matrices.MatrixBase method), 525
cofactors() (diofant.core.numbers.Number method), 87
cofactors() (diofant.domains.ring.CommutativeRing method), 505
cofactors() (diofant.polys.polytools.Poly method), 592
cofactors() (in module diofant.polys.polytools), 609
Coin() (in module diofant.stats), 706
col_insert() (diofant.matrices.matrices.MatrixBase method), 525
col_join() (diofant.matrices.matrices.MatrixBase method), 525
col_join() (diofant.matrices.sparse.MutableSparseMatrix method), 567
col_list() (diofant.matrices.sparse.SparseMatrixBase method), 572
col_op() (diofant.matrices.dense.MutableDenseMatrix method), 561
col_op() (diofant.matrices.sparse.MutableSparseMatrix method), 567
col_swap() (diofant.matrices.dense.MutableDenseMatrix method), 562
col_swap() (diofant.matrices.sparse.MutableSparseMatrix method), 568
collect() (diofant.core.expr.Expr method), 67
collect() (in module diofant.simplify.radsimp), 687
collect_const() (in module diofant.simplify.radsimp), 690
collect_sqrt() (in module diofant.simplify.radsimp), 689
combsimp() (diofant.core.expr.Expr method), 67
combsimp() (in module diofant.simplify.combsimp), 697
comm_i2symbol() (diofant.tensor.tensor._TensorManager method), 848
comm_symbols2i() (diofant.tensor.tensor._TensorManager method), 848
common_prefix() (in module diofant.utilities.iterables), 884
common_suffix() (in module diofant.utilities.iterables), 885
CommutativeRing (class in dio-
fant.domains.ring), 505
Commutator (class in diofant.diffgeom), 920
commutator()
fant.combinatorics.perm_groups.PermutationGmonoperty), 150
method), 183 conjugate() (diofant.core.expr.Expr
commutator() (dio- method), 68
fant.combinatorics.permutations.Permutatijungate() (diofant.matrices.immutable.ImmutableMatri> method), 158
commutes_with()
fant.combinatorics.permutations.Permutation method), 526
method), 159
commutes_with() (dio-
fant.tensor.tensor.TensorHead method), 857
compare() (in module diofant.series.gruntz), 996
Complement (class in diofant.sets.sets), 675
complement() (diofant.sets.sets.Set method), 665
ComplexAlgebraicField (class in diofant.domains), 506
ComplexField (class in diofant.domains), 508
ComplexInfinity (class in diofant.core.numbers), 97
ComplexInterval (class in diofant.polys.rootisolation), 991
components (diofant.vector.dyadic.Dyadic property), 953
components (diofant.vector.vector.Vector property), 950
components() (in module diofant.integrals.heurisch), 479
compose() (diofant.polys.fields.FracElement method), 994
compose() (diofant.polys.polytools.Poly method), 592
compose() (diofant.polys.rings.PolyElement method), 967
compose() (in module diofant.polys.polytools), 609
CompositeDomain (class in diofant.domains.compositedomain), 505
ComputationFailed, 993
compute leading_term() fant.core expr.Expr method), 67 (dio-
cond (diofant.functions.elementary.piecewise.E property), 307
condition_number() (diofant.matrices.matrices.MatrixBase method), 525
ConditionalDomain (class in diofant.stats.rv), 739
conjugate (class in dio-
(dio- conjugate() (diofant.matrices.matrices.MatrixBase
fant.functions.elementary.complexes), 287
conjugate (diofant.combinatorics.partitions.IntegerPartitio
method), 579
conjugate() (diofant.polys.rootisolation.ComplexInterval method), 991
connect_to() (dio-
fant.diffgeom.CoordSystem method), 917
conserve_mpmath_dps() (in module diofant.utilities.decorator), 878
constant_renumber() (in module diofant.solvers.ode), 780
constantsimp() (in module diofant.solvers.ode), 781
construct_domain() (in module diofant.polys.constructor), 620
contains() (diofant.combinatorics.perm_groups.Permutatic method), 184
contains() (diofant.geometry.line.Line method), 426
contains() (diofant.geometry.line.LinearEntity method), 419
contains() (diofant.geometry.line.Ray method), 428
contains() (diofant.geometry.line.Segment method), 431
contains() (diofant.polys.polytools.GroebnerBasis method), 586
contains() (diofant.series.order.Order method), 664
contains() (diofant.sets.sets.Set method), 665
content() (diofant.polys.polytools.Poly method), 592
content() (diofant.polys.rings.PolyElement method), 967
content() (in module diofant.polys.polytools), 609
continued_fraction_convergents() module diofant.ntheory.continued fraction), 264
continued_fraction_iterator() (in module diofant.ntheory.continued fraction), 265
continued_fraction_periodic() (in module dioffant.ntheory.continued fraction),

265
continued_fraction_reduce() (in module diofant.ntheory.continued fraction), 266
ContinuousDomain (class in diofant.stats.crv), 740
ContinuousPSpace (class in diofant.stats.crv), 740
ContinuousRV() (in module diofant.stats), 734
contract_metric() (diofant.tensor.tensor.TensAdd method), 859
contract metric() (diofant.tensor.tensor.TensMul method), 861
convergence statement (diofant.functions.special.hyper.hyper property), 380
convert() (diofant.domains.domain.Domain method), 504
convert_from() (dio-
fant.domains.domain.Domain method), 504
convert xor() (in module diofant.parsing.sympy_parser), 908
convex_hull() (in module diofant.geometry.util), 410
coord_function()
(diofant.diffgeom.CoordSystem method), 917
coord_functions() (diofant.diffgeom.CoordSystem method), 917
coord_tuple_transform_to() (diofant.diffgeom.CoordSystem method), 917
coords() (diofant.diffgeom.Point method), 918
CoordSysCartesian (class in diofant.vector.coordsysrect), 945
CoordSystem (class in diofant.diffgeom), 915
copy() (diofant.core.basic.Basic method), 47
copy () (diofant.matrices.matrices.MatrixBase method), 526
copy() (diofant.polys.rings.PolyElement method), 968
copyin_list() (dio- CovarDerivativeOp (class in diofant.matrices.dense.MutableDenseMatrix fant.diffgeom), 923 method), 562 cp_key() (in module dio-
copyin_matrix() (dio- fant.polys.groebnertools), 975 fant.matrices.dense.MutableDenseMatrixitical_pair() (in module diomethod), 562
core() (in module diofant.ntheory.factor_), cross() (diofant.matrices.matrices.MatrixBase
method), 526
cross() (diofant.vector.deloperator.Del method), 954
cross() (diofant.vector.dyadic.Dyadic method), 953
cross() (diofant.vector.vector.Vector method), 951
crt() (in module diofant.ntheory.modular), 254
crt1() (in module diofant.ntheory.modular), 254
crt2() (in module diofant.ntheory.modular), 255
csc (class in diofant.functions.elementary.trigonometricdegree() (diofant.polys.rings.PolyElement 293
csch (class in diofant.functions.elementary.hyperbolic), 303
cse() (in module diofant.simplify.cse_main), 699
curl() (in module diofant.vector), 960
current (diofant.combinatorics.graycode.GrayC property), 216
(class in diofant.geometry.curve), 433
\(\begin{array}{lc}\text { Curve (class in diofant.geometry.curve), } & 433 \\ \text { Cycle } & \text { (class in } \\ \text { dio- }\end{array}\) fant.combinatorics.permutations), 173
cycle_length() (in module diofant.ntheory.generate), 237
cycle_structure property), 159
(dio-
DataType (class in diofant.utilities.codegen), 872
decompose() (diofant.polys.polytools.Poly method), 592
decompose() (diofant.polys.univar.UnivarPolyElement method), 970
decompose() (in module diofant.polys.polytools), 609
default_sort_key() (in module diofant.utilities.iterables), 885
degree (diofant.combinatorics.perm_groups.PermutationGr property), 186
degree() (diofant.polys.polytools.Poly method), 593 method), 968
degree() (in module diofant.polys.polytools), 610
Del (class in diofant.vector.deloperator), 954
delta (diofant.functions.special.hyper.meijerg property), 382
deltaintegrate() (in module dioCode fant.integrals.deltafunctions), 477
DenseMatrix (class in diofant.matrices.dense), 559
density() (in module diofant.stats), 736
dependent() (in module diofant.stats.rv), 741
Derivative (class in diofant.core.function),
126
derive_by_array() (in module diofant.tensor.array), 837
(diofant.combinatorics.permutations.Permutationethod), 186
derived_subgroup() (diofant.combinatorics.perm_groups.PermutationGroup method), 187
cyclic() (diofant.combinatorics.generators method), 175
cyclic_form (diofant.combinatorics.permutatiodessRenthlutation (in module dioproperty), 159 fant.solvers.diophantine), 760
cyclic_form (diofant.combinatorics.polyhedrordebgemectrionn(diofant.combinatorics.permutations.Permutati property), 203
CyclicGroup() (in module diofant.combinatorics.named_groups), 221
cyclotomic_poly() (in module diofant.polys.specialpolys), 624
CythonCodeWrapper (class in fant.utilities.autowrap), 865

D
D (diofant.matrices.matrices.MatrixBase property), 517
Dagum () (in module diofant.stats), 714
method), 160
\(\operatorname{det}()\) (diofant.matrices.matrices.MatrixBase method), 526
det_bareiss() (diofant.matrices.matrices.MatrixBase method), 526
det_LU_decomposition() (diofant.matrices.matrices.MatrixBase method), 526
diag() (in module diofant.matrices.dense), 552
diagonal_solve()
(dio-
fant.matrices.matrices.MatrixBase method), 527
diagonalize()
fant.matrices.matrices.MatrixBase method), 527
Dict (class in diofant.core.containers), 144
Die() (in module diofant.stats), 706
DiePSpace (class in diofant.stats.frv_types), 740
diff() (diofant.core.expr.Expr method), 68
diff() (diofant.matrices.immutable.Immutable Motfrixnt.combinatorics.testutil method), 579
diff()(diofant.matrices.matrices.MatrixBase diofant.combinatorics.util method), 527
diff() (diofant.polys.fields.FracElement method), 994
diff() (diofant.polys.rings.PolyElement method), 968
diff() (in module diofant.core.function), 128
Differential (class in diofant.diffgeom), 921
digamma() (in module dio- diofant.core.assumptions fant.functions.special.gamma functions), module, 44 337
dihedral() (diofant.combinatorics.generators method), 176
DihedralGroup() (in module diofant.combinatorics.named_groups), diofant.core.compatibility 221
dimension (diofant.polys.polytools.GroebnerBaslisofant.core.containers property), 586
diofant
module, 41
diofant.calculus
module, 908
diofant.calculus.euler
module, 908
diofant.calculus.finite_diff
module, 910
diofant.calculus.optimization module, 910
diofant.calculus.singularities
module, 909
diofant.combinatorics.generators module, 175
diofant.combinatorics.graycode module, 216
diofant.combinatorics.group_constructs module, 228
diofant.combinatorics.named_groups module, 220
diofant.combinatorics.partitions module, 148
diofant.combinatorics.perm_groups module, 176
diofant.combinatorics.permutations module, 152
(dio- diofant.combinatorics.polyhedron module, 203
diofant.combinatorics.prufer module, 205
diofant.combinatorics.subsets module, 209
diofant.combinatorics.tensor_can
module, 230
module, 229
module, 223
diofant.config
module, 41
diofant.core
module, 41
diofant.core.add
module, 106
diofant.core.basic
module, 46
diofant.core.cache
module, 45
module, 144
module, 143
diofant.core.core
module, 56
diofant.core.evalf module, 142
diofant.core.evaluate module, 57
diofant.core.expr module, 57
diofant.core.exprtools
module, 146
diofant.core.function module, 124
diofant.core.mod module, 108
diofant.core.mul module, 103
diofant.core.multidimensional module, 124
diofant.core.numbers module, 86
diofant.core.power module, 100
diofant.core.relational module, 109
diofant.core.singleton module, 56
```

diofant.core.symbol
module, }8
diofant.core.sympify
module, 41
diofant.diffgeom
module, }91
diofant.domains
module, }50
diofant.functions
module, 282
diofant.functions.special.bessel
module, 362
diofant.functions.special.beta_functionsdiofant.matrices.immutable
module, 340
diofant.functions.special.elliptic_integoḋd\&ant.matrices.matrices
module, 383 module, 509
diofant.functions.special.error_function@iofant.matrices.sparse
module, 342 module, 567
diofant.functions.special.gamma_function@iofant.ntheory.continued_fraction
module, 333 module, 264
diofant.functions.special.polynomials diofant.ntheory.egyptian_fraction
module, 385
module, 267
diofant.functions.special.zeta_functionsdiofant.ntheory.factor_
module, 373
diofant.geometry
module, 403
diofant.geometry.curve
module, 433
diofant.geometry.ellipse
module, 436
diofant.geometry.entity
module, 406
diofant.geometry.exceptions
module, 412
diofant.geometry.line
module, 417
diofant.geometry.point
module, 412
diofant.geometry.polygon
module, 449
diofant.geometry.util
module, 408
diofant.integrals
module, 468
diofant.integrals.meijerint_doc
module, }101
diofant.integrals.quadrature
module, 487
diofant.integrals.transforms
module, 469
diofant.interactive
module, }64
diofant.interactive.printing
module, 647
diofant.interactive.session
module, 648
diofant.logic
module, 493
diofant.matrices
module, 509
diofant.matrices.dense
module, 559
diofant.matrices.expressions
module, 581
diofant.matrices.expressions.blockmatrix module, 584
diofant.functions.special.beta_functionsdiofant.matrices.immutable module, 340
module, 579
diofant.functions.special.elliptic_integotad $\underset{\text { fant.matrices.matrices }}{ }$ module, 383 module, 509
diofant.functions.special.error_functiondiofant.matrices.sparse module, 342 module, 567
diofant.functions.special.gamma_functiondiofant.ntheory.continued_fraction
module, 333 module, 264
diofant.functions.special.polynomials diofant.ntheory.egyptian_fraction
module, 267
diofant.functions.special.zeta_functionsdiofant.ntheory.factor_ module, 373
diofant.geometry
module, 403
diofant.geometry.curve module, 433
diofant.geometry.ellipse module, 436
diofant.geometry.entity module, 406
diofant.geometry.exceptions
module, 412
diofant.geometry.line module, 417
diofant.geometry.point module, 412
diofant.geometry.polygon
module, 449
diofant.geometry.util
module, 408
diofant.integrals
module, 468
diofant.integrals.meijerint_doc module, 1017
diofant.integrals.quadrature module, 487
diofant.integrals.transforms module, 469
diofant.interactive
module, 647
diofant.interactive.printing module, 647

```
module, 241
diofant.ntheory.generate
module, 236
diofant. ntheory.modular module, 254
diofant.ntheory.multinomial
module, 256
diofant.ntheory.partitions
module, 258
diofant.ntheory.primetest module, 258
diofant.ntheory.residue_ntheory
module, 259
diofant.parsing
module, 905
diofant.plotting
module, 648
diofant.polys
module, 586
diofant. polys.constructor module, 620
diofant.polys.euclidtools module, 972
diofant.polys.factorization_alg_field module, 979
diofant.polys.factortools module, 974
diofant. polys.groebnertools module, 975
diofant. polys.modulargcd module, 983
diofant.polys.monomials module, 621
diofant.polys.numberfields module, 620
diofant.polys.orderings module, 621
diofant.polys.orthopolys module, 624
diofant.polys.partfrac module, 626
diofant.polys.polyerrors module, 993
diofant.polys.polyfuncs module, 618
diofant.polys.polyoptions module, 992
diofant.polys.polyroots module, 623
diofant.polys.polytools module, 586
diofant.polys.rationaltools module, 625
diofant.polys.rootisolation module, 991
diofant.polys.rootoftools module, 622
diofant.polys.specialpolys module, 624
diofant.polys.sqfreetools module, 992
diofant.printing module, 629
diofant.printing.ccode module, 632
diofant.printing.codeprinter module, 643
diofant.printing.conventions module, 643
diofant.printing.fcode module, 635
diofant.printing.lambdarepr module, 639
diofant.printing.latex module, 639
diofant.printing.mathematica module, 638
diofant.printing.mathml module, 641
diofant.printing.precedence module, 643
diofant.printing.pretty.pretty module, 632
diofant.printing.pretty.pretty_symbologydiofant.solvers.diophantine module, 643
diofant.printing.pretty.stringpict module, 644
diofant.printing.printer module, 629
diofant.printing.python module, 642
diofant.printing.repr module, 642
diofant.printing.str module, 642
diofant.series.gruntz module, 995
diofant.series.limits
module, 661
diofant.series.order module, 662
diofant.series.residues module, 664
diofant.series.series module, 662
diofant.sets.fancysets module, 676
diofant.sets.sets module, 664
diofant.simplify.combsimp module, 697
diofant.simplify.cse_main module, 699
diofant.simplify.epathtools module, 702
diofant.simplify.fu module, 693
diofant.simplify.hyperexpand module, 702
diofant.simplify.hyperexpand_doc module, 1005
diofant.simplify.powsimp module, 694
diofant.simplify.radsimp module, 685
diofant.simplify.ratsimp module, 691
diofant.simplify.sqrtdenest module, 698
diofant.simplify.traversaltools module, 702
diofant.simplify.trigsimp module, 692
diofant.solvers module, 742
diofant.solvers.deutils module, 833
module, 746
diofant.solvers.inequalities
module, 746
diofant.solvers.ode
module, 817
diofant.solvers.pde
module, 832
diofant.solvers.polysys
module, 744
diofant.solvers.recurr
module, 821
diofant.solvers.solvers
module, 742
diofant.solvers.utils
module, 832
diofant.stats
module, 705
diofant.stats.crv
module, 740
diofant.stats.crv_types
module, 740
diofant.stats.Die() (in module diofant.stats.crv_types), 740
diofant.stats.frv
module, 740
diofant.stats.frv_types
module, 740
diofant.stats.Normal() (in module diofant.stats.crv_types), 740
diofant.stats.rv
module, 739
diofant.tensor
module, 834
diofant.tensor.array
module, 834
diofant.tensor.index_methods module, 845
diofant.tensor.indexed module, 839
diofant.tensor.tensor
module, 848
diofant.utilities
module, 863
diofant.utilities.autowrap module, 864
diofant.utilities.codegen module, 869
diofant.utilities.decorator module, 878
diofant.utilities.enumerative module, 878
diofant.utilities.iterables module, 884
diofant.utilities.lambdify module, 901
diofant.utilities.memoization
module, 904
diofant.utilities.misc
module, 904
diofant.utilities.randtest
module, 904
diofant.vector
module, 930
diofant.vector.orienters
module, 955
diop_bf_DN() (in module diofant.solvers.diophantine), 757
diop_DN() (in module diofant.solvers.diophantine), 755
diop_general_pythagorean() (in module diofant.solvers.diophantine), 760
diop general_sum of even powers() (in module diofant.solvers.diophantine), 761
diop_general_sum_of_squares() (in module diofant.solvers.diophantine), 761
diop_linear() (in module diofant.solvers.diophantine), 754
diop_quadratic() (in module diofant.solvers.diophantine), 755
diop_solve() (in module diofant.solvers.diophantine), 753
diop_ternary_quadratic() (in module diofant.solvers.diophantine), 759
diop_ternary_quadratic_normal() (in module diofant.solvers.diophantine), 767
diophantine() (in module diofant.solvers.diophantine), 751
DiracDelta (class in diofant.functions.special.delta functions), 331
direction (diofant.geometry.line.Ray property), 428
DirectProduct() (in module diofant.combinatorics.group_constructs), 228
dirichlet_eta (class in diofant.functions.special.zeta functions), 375
discrete_log() (in module diofant.ntheory.residue_ntheory), 259
DiscreteUniform() (in module diofant.stats), 705
discriminant() (diofant.polys.polytools.Poly method), 593
discriminant() (diofant.polys.rings.PolyElement method), 968
discriminant() (in module dio-
```

 fant.polys.polytools), }61
 dispersionset() (dio-
fant.polys.polytools.Poly
593
dispersionset() (dio-
fant.polys.univar.UnivarPolynomialRingdomain (diofant.polys.polytools.Poly prop-
method),507
distance() (diofant.geometry.line.Line
method),426
distance() (diofant.geometry.line.Ray
method),429
distance() (diofant.geometry.line.Segment
method),431
distance() (diofant.geometry.point.Point
method),412
distance()(diofant.geometry.polygon.Polygon
method),451
div() (diofant.domains.field.Field method),
504
div()(diofant.domains.ring.CommutativeRing
method),505
div() (diofant.polys.polytools.Poly method),
593
div() (diofant.polys.rings.PolyElement
method),968
div() (in module diofant.polys.polytools),
610
divergence() (in module diofant.vector), 960
divides() (diofant.polys.monomials.Monomia
method), }62
divisible() (in module dio-
fant.solvers.diophantine), 766
divisor count() (in module
fant.ntheory.factor_), 243
divisor_sigma (class in
fant.ntheory.factor_), 243
divisors() (in module dio-
fant.ntheory.factor_), 244
doctest_depends_on() (in module dio-
\overline{fant.utilities.decorator), 878}
doit() (diofant.core.basic.Atom method), 46
doit() (diofant.core.basic.Basic method), 48
doit() (diofant.core.function.Derivative
method),128
doit() (diofant.core.function.Subs method),
132
doit() (diofant.functions.elementary.piecewise
method), }30
doit() (diofant.integrals.integrals.Integral
method),482
doit()(diofant.integrals.transforms.IntegralTr
method),485
doit() (diofant.series.limits.Limit method),
6 6 2
doit_numerically()
(dio-
(dio- fant.core.function.Derivative method),
(dio-
Domain (class in diofant.domains.domain), - 504 (diofant.polys.polytools.Poly property), 593
DomainError, 993
doprint() (diofant.printing.mathematica.MCodePrinter method), 638
doprint() (diofant.printing.mathml.MathMLPrinter method), 641
doprint() (diofant.printing.printer.Printer method), 631
dot () (diofant.geometry.point.Point method), 413
dot() (diofant.matrices.matrices.MatrixBase method), 528
dot() (diofant.vector.deloperator.Del method), 954
dot() (diofant.vector.dyadic.Dyadic method), 953
dot() (diofant.vector.vector.Vector method), 951
dotprint() (in module diofant.printing.dot), 646
double_coset_can_rep() (in module diofant.combinatorics.tensor_can), 232 (diofant.polys.rings.PolynomialRing method), 506
dio- dsolve() (in module diofant.solvers.ode), 771
dio- dtype (diofant.domains.ExpressionDomain attribute), 508
dio- dual()(diofant.matrices.matrices.MatrixBase method), 528
dio- Dummy (class in diofant.core.symbol), 83
DummyWrapper (class in diofant.utilities.autowrap), 865
dump_c() (diofant.utilities.autowrap.UfuncifyCodeWrapper method), 866
dump_c() (diofant.utilities.codegen.CCodeGen method), 871
dump_code() (diofant.utilities.codegen.CodeGen method), 871
dump_f95() (diofant.utilities.codegen.FCodeGen
doit() (diofant.functions.elementary.piecewise.Piecewiswethod), 872 method), 308 method), 482
dump_h() (diofant.utilities.codegen.CCodeGen method), 871
dump_h() (diofant.utilities.codegen.FCodeGen
doit() (diofant.integrals.transforms.IntegralTransformmethod), 873
dump m() (diofant.utilities.codegen.OctaveCodeGen method), 873
dump_pyx() (diofant.utilities.autowrap.CythonCodeWrappeı

```
method), 865
Dyadic (class in diofant.vector.dyadic), 953

\section*{E}

E() (in module diofant.stats), 735
E1() (in module diofant.functions.special.error_functions), 354
EC() (diofant.polys.polytools.Poly method), 588
eccentricity ,ometry.ellipse.Ellipse property), 438
edges (diofant.combinatorics.polyhedron.Polyhedron method), 452 property), 204
edges() (diofant.combinatorics.prufer.Prufer static method), 206
efactor() (in module diofant.polys.factorization_alg_field), 982
egyptian_fraction() (in module diofant.ntheory.egyptian fraction), 267
Ei (class in dio- enum_range() (diofant.functions.special.error_functions), fant.utilities.enumerative.MultisetPartitionTraverse 351
 (diomethod), 528
eigenvects()
(diofant.matrices.matrices.MatrixBase method), 528
Eijk() (in module dio- epath() (in module diofant.functions.special.tensor functions), 398
eject() (diofant.polys.polytools.Poly method), 593
eject() (diofant.polys.rings.PolynomialRing method), 506
 property), 187
Ellipse (class in diofant.geometry.ellipse), 436
elliptic_e (class in dio- equals() (diofant.core.relational.Relational fant.functions.special.elliptic_integrals), 384
elliptic_f (class in diofant.functions.special.elliptic_integrals), equals() (diofant.matrices.expressions.MatrixExpr 383
elliptic_k (class in dio- equals()(diofant.matrices.immutable.ImmutableMatrix fant.functions.special.elliptic_integrals), method), 579
383 equation() (diofant.geometry.ellipse.Circle
elliptic_pi (class in dio- method), 447
 384
equation() (diofant.geometry.line.Line evalf() (diofant.core.evalf.EvalfMixin method), 426
Equivalent (class in diofant.logic.boolalg), evalf() (diofant.core.function.Subs 499
equivalent() (in module dio- evalf() (diofant.geometry.point.Point fant.solvers.diophantine), 766 method), 413
erf (class in dio- evalf() (diofant.matrices.matrices.MatrixBase fant.functions.special.error functions), 342

EvalfMixin (class in diofant.core.evalf), 142
erf2 (class in dio- evaluate() (in module diofant.functions.special.error functions), fant.core.evaluate), 57 345

EvaluationFailed, 993
erf2inv (class in dio- evolute() (diofant.geometry.ellipse.Ellipse fant.functions.special.error functions), method), 439 348 ExactQuotientFailed, 993
erfc (class in dio- exclude() (diofant.polys.polytools.Poly fant.functions.special.error functions), method), 594 343 exp (diofant.core.power.Pow property), 103
erfcinv (class in dio- exp (diofant.functions.elementary.exponential.exp_polar fant.functions.special.error_functions), 347
erfi (class in dio-
\(\exp ()\) (diofant.matrices.matrices.MatrixBase fant.functions.special.error functions), \(\exp ()\) (in module dio344
erfinv (class in dio- 305
fant.functions.special.error functions), Exp1 (class in diofant.core.numbers), 97 346 exp_polar (class in dio-

Erlang() (in module diofant.stats), 715
ET() (diofant.polys.polytools.Poly method), 588
eta (diofant.functions.special.hyper.hyper property), 380
euler (class in diofant.functions.combinatorial.numbers), expand() (in module diofant.core.function), 319
euler equations() (in module dio- expand complex() (in module diofant.calculus.euler), 908 fant.core.function), 140
euler_maclaurin() (dio- expand_func() (in module diofant.concrete.summations.Sum method), 271
EulerGamma (class in diofant.core.numbers), 99 ()
eval () (diofant.functions.special.tensor functions.Kronfealteannelfaunction), 139 class method), 400
(diofant.polys.polytools.Poly method), 594
eval_expr() (in module diofant.parsing.sympy_parser), 906
eval_levicivita() (in module diofant.functions.special.tensor_functions)expand_trig() (in module dio399
eval_rational() fant.polys.rootoftools.RootOf method), 622 fant.functions.elementary.exponential), 306
expand() (diofant.core.expr.Expr method), 68
expand() (diofant.matrices.matrices.MatrixBase method), 529 133 fant.core.function), 139
expand_log() (in module diofant.core.function), 139
expand_mul() (in module dio-
eval() (diofant.polys.polytools.Poly method),
    expand_multinomial() (in module dio-
        fant.core.function), 140
            expand_power_base() (in module dio-
        fant.core.function), 141
    expand_power_exp() (in module dio-
\({ }_{3} \quad\) fant.functions.special.tensor_functions)
(dio- expint (class in dio-
    fant.functions.special.error functions),
    353

Exponential() (in module diofant.stats), 716
Expr (class in diofant.core.expr), 57
expr (diofant.core.function.Derivative property), 128
expr (diofant.core.function.Lambda property), 124
expr (diofant.core.function.Subs property), 132
expr (diofant.functions.elementary.piecewise.E property), 307
ExprCondPair (class in diofant.functions.elementary.piecewise), 307
express() (in module diofant.vector), 959
ExpressionDomain (class in diofant.domains), 508
ExpressionDomain. Expression (class in diofant.domains), 508
ExprWithIntLimits (class in diofant.concrete.expr_with_intlimits), 276
ExprWithLimits (class in diofant.concrete.expr_with_limits), 275
exquo () (diofant.domains.field.Field method), 504
exquo() (diofant.domains.ring.CommutativeRing method), 505
exquo() (diofant.polys.polytools.Poly method), 594
exquo() (in module diofant.polys.polytools), 610
exquo_ground() (diofant.polys.polytools.Poly method), 595
extend() (diofant.ntheory.generate.Sieve method), 236
extend() (diofant.plotting.plot.Plot method), 650
extend_to_no() (diofant.ntheory.generate.Sieve method), 236
ExtendedReals (class in diofant.sets.fancysets), 678
exterior_angle (diofant.geometry.polygon.RegularPolygon property), 458
extract() (diofant.matrices.matrices.MatrixBas method), 529
extract() (diofant.matrices.sparse.SparseMatrfiषd\&\&) (in module diofant.printing.fcode), method), 572
extract_additively() (diofant.core.expr.Expr method), 68
extract_branch_factor() (diofant.core.expr.Expr method), 69
extract_leading_order()
(dio-
fant.core.add.Add method), 107
extract_multiplicatively() (dio-
fant.core.expr.Expr method), 69
ExtraneousFactors, 993
eye() (diofant.matrices.dense.DenseMatrix class method), 560
eye() (diofant.matrices.sparse.SparseMatrixBase
ExprCond\&Haiss method), 573
eye() (in module diofant.matrices.dense),
552
F
F2PyCodeWrapper (class in diofant.utilities.autowrap), 865
f5 reduce() (in module diofant.polys.groebnertools), 975
f5b () (in module diofant.polys.groebnertools), 976
faces (diofant.combinatorics.polyhedron.Polyhedron property), 204
factor() (diofant.core.expr.Expr method), 70
factor() (in module diofant.polys.polytools), 610
factor_list() (diofant.polys.polytools.Poly
method), 595
factor_list() (in module diofant.polys.polytools), 611
factor terms() (in module diofant.core.exprtools), 147
factorial (class in diofant.functions.combinatorial.factorials), 320
factorial2 (class in diofant.functions.combinatorial.factorials), 322
factoring_visitor() (in module diofant.utilities.enumerative), 879
factorint() (in module diofant.ntheory.factor_), 245
factorrat() (in module diofant.ntheory.factor_), 247
factors() (diofant.core.numbers.Rational method), 90
FallingFactorial (class in dio-
se fant.functions.combinatorial.factorials), 322

FCodeGen (class in diofant.utilities.codegen), 872
FCodePrinter (class in diofant.printing.fcode), 636
fdiff() (diofant.core.function.Function flatten() (diofant.core.add.Add class method), 131 method), 107
fdiff() (diofant.functions.elementary.Complexeflatbien () (diofant.core.mul.Mul class method), 286 method), 104
fdiff() (diofant.functions.elementary.exponentiibaさteembèrtW (in module diomethod), 307 fant.utilities.iterables), 887
fdiff() (diofant.functions.elementary.exponentibhadg(class in diofant.core.numbers), 87 method), 307 FloatRationalizer (class in dio-
fdiff() (diofant.functions.elementary.hyperbolic.csch fant.interactive.session), 648 method), 303 floor (class in dio-
fdiff() (diofant.functions.elementary.hyperbolic.sinh fant.functions.elementary.integers), method), 301 305
FDistribution() (in module diofant.stats), floor() (diofant.core.numbers.Float 717
fibonacci (class in dio- foci (diofant.geometry.ellipse.Ellipse propfant.functions.combinatorial.numbers), 323
Field (class in diofant.domains.field), 504
field (diofant.domains.field.Field property), 504
field (diofant.domains.IntegerRing property), 506
field (diofant.polys.rings.PolynomialRing property), 506
field_isomorphism() (in module diofant.polys.numberfields), 620
focus distance fant.geometry.ellipse.Ellipse property), 440
fourier transform() (in module dio\(\overline{\text { fant.integrals.transforms), } 471}\)
FourierTransform (class in diofant.integrals.transforms), 486
frac_field()
(diofant.domains.domain.Domain method), 504
fill() (diofant.matrices.dense.MutableDenseMぁataxlement (class in diofant.polys.fields), method), 563 994
fill()(diofant.matrices.sparse.MutableSparseffatrixion() (in module diomethod), 568
filldedent() (in module dio- FractionField (class in diofant.polys.fields), fant.utilities.misc), 904
filter_symbols() (in module diofant.utilities.iterables), 887
find() (diofant.core.basic.Basic method), 48
find_DN() (in module diofant.solvers.diophantine), 759
free_symbols (diofant.core.basic.Basic prop-
findrecur() (diofant.concrete.summations.Sum method), 271
finite_diff_weights() (in module diofant.calculus.finite_diff), 912
finite_field() (diofant.domains.IntegerRing method), 506
finite_ring()
fant.domains.IntegerRing method), 506
FiniteDomain (class in diofant.stats.frv), 740
FiniteField (class in diofant.domains), 506
FinitePSpace (class in diofant.stats.frv), 740
FiniteRV() (in module diofant.stats), 707
FiniteSet (class in diofant.sets.sets), 672
FisherZ() (in module diofant.stats), 717
FlagError, 993 fant.simplify.radsimp), 691
free_symbols (diofant.core.function.Derivative property), 128
free_symbols (diofant.core.function.Lambda property), 124
free_symbols (diofant.core.function.Subs property), 132
free_symbols (diofant.geometry.curve.Curve property), 434
free_symbols (dio-
fant.integrals.integrals.Integral property), 482
free_symbols
(diofant.integrals.transforms.IntegralTransform property), 485
free_symbols
(dio-
fant.matrices.matrices.MatrixBase property), 529
free_symbols (diofant.polys.polytools.Poly property), 595
free_symbols (diofant.polys.polytools.PurePoly property), 608
free_symbols_in_domain (diofant.polys.polytools.Poly property), 595
fresnelc (class in diofant.matrices.expressions), 584 fant.functions.special.error functions), functions (diofant.geometry.curve.Curve 350
FresnelIntegral (class in dio- futrig() (in module diofant.functions.special.error functions), fant.simplify.trigsimp), 693 349
fresnels (class in dio- G fant.functions.special.error functions), G() 349
from_dict() (diofant.polys.polytools.Poly class method), 596
from_expr() (diofant.domains.domain.Domain method), 504
from_expr() (diofant.polys.polytools.Poly class method), 596
from_inversion_vector() (diofant.comb̄inatorics.permutations.Permutation class method), 160
from_list() (diofant.polys.polytools.Poly class method), 596
from_poly() (diofant.polys.polytools.Poly class method), 596
from_rgs() (diofant.combinatorics.partitions.P class method), 148
from_sequence() (diofant combinatorics.permutations. fant.integrals.quadrature), 491 class method), 160
from TIDS list() (diofant.tensor.tensor.TensAdd static method), 859
fu() (in module diofant.simplify.fu), 693
full_cyclic_form (diofant.combinatorics.permutations.Permu property), 160
fun_eval() (diofant.tensor.tensor.TensAdd method), 859
fun_eval() (diofant.tensor.tensor.TensMul method), 862
func (diofant.core.basic.Basic property), 48
func_field_modgcd() (in module diofant.polys.modulargcd), 988
Function (class in diofant.core.function), 130 function (diofant.concrete.expr_with_limits.ExprWithLíquits property), 275
function (diofant.integrals.transforms.IntegralTransform property), 485
function_exponentiation() (in module diofā̄t.parsing.sympy_parser), 907
function_variable (diofā̄t.integrals.transforms.IntegralTransform property), 485
FunctionClass (class in diofant.core.function), 129
FunctionMatrix (class in dioproperty), 434
\(\qquad\)
(in fant printing pretty prety symbology) fant.printing.pretty.pretty_symbology), 643
(in module diofant.printing.pretty.pretty_symbology), 643
GaloisFieldElement (class in diofant.domains.finitefield), 509
gamma (class in diofant.functions.special.gamma functions), 333
Gamma () (in module diofant.stats), 719
GammaInverse() (in module diofant.stats), 720
gauss_chebyshev_t() (in module dio-
artition fant.integrals.quadrature), 490
gauss_chebyshev_u() (in module diofant.integrals.quadrature), 491
gatios_gen_laguerre() (in module diofant.integrals.quadrature), 489
gauss_hermite() (in module dio-- fant.integrals.quadrature), 488
gauss_jacobi() (in module diofant.integrals.quadrature), 492
gauss_laguerre() (in module diogauss_legendre() (in module diofant.integrals.quadrature), 487
gaussian_reduce() (in module diofā̄t.solvers.diophantine), 768
gcd() (diofant.core.numbers.Number method), 87
gcd() (diofant.core.numbers.Rational method), 91
\(\operatorname{gcd}()\) (diofant.domains.field.Field method), property), 275
gcd() (diofant.polys.monomials.Monomial method), 621
gcd() (diofant.polys.polytools.Poly method), 596
gcd() (in module diofant.polys.polytools), 612
gcd_terms() (in module diofant.core.exprtools), 146
gcdex() (diofant.polys.polytools.Poly method), 596
gcdex() (diofant.polys.rings.PolyElement method), 969
gcdex() (diofant.polys.rings.PolynomialRing method), 506
gcdex() (in module diofant.polys.polytools), 612
Ge (in module diofant.core.relational), 110
gegenbauer (class in diofant.functions.special.polynomials), 387
gegenbauer_poly() (in module diofant.polys.orthopolys), 624
gen (diofant.polys.polytools.Poly property), 596
method), 161
get_comm() (diofant.tensor.tensor._TensorManager method), 848
get_contraction_structure() (in module diofant.tensor.index_methods), 845
get_default_datatype() (in module diofant.utilities.codegen), 876
get_diag_blocks() (diofant.matrices.matrices.MatrixBase method), 530
get_indices() (dio-
fant.tensor.tensor.TensMul method), 862
get_indices() (in module diofant.tensor.index_methods), 847
get_interface() (diofant.utilities.codegen.FCodeGen method), 873
get_matrix() (diofant.tensor.tensor.TensExpr method), 857
get_modulus() (diofant.polys.polytools.Poly method), 597
get_period() (dio-
generate() (diofant.combinatorics.perm_groups.Permuftatticuactions.special.hyper.meijerg method), 187
generate_derangements() (in module diofant.utilities.iterables), 887
generate_dimino() (diofant.combinatorics.perm_groups.Permugettion@ereqtence_distance() (diomethod), 188 fant.combinatorics.permutations.Permutation
generate_gray() (dio- method), 162 fant.combinatorics.graycode.GrayCodeget_precedence_matrix() (diomethod), 216
generate_involutions() (in module diofant.utilities.iterables), 888
generate_schreier_sims() (dio- fant.utilities.codegen.CCodeGen
method), 382
method), 382
get_positional_distance() (diofant.combinatorics.permutations.Permutation method), 161 fant.combinatorics.permutations.Permutation method), 162
get_prototype() (dio- fant.combinatorics.perm_groups.PermutationGmathod), 871 method), 188 get_segments() (dio-
generators (diofant.combinatorics.perm_groups.Permuftatiqulduttimug.plot.LineOver1DRangeSeries property), 189
GeneratorsError, 993
GeneratorsNeeded, 993
Geometric() (in module diofant.stats), 707
GeometryEntity (class in dio- get_subset_from_bitstring() (diofant.geometry.entity), 406
GeometryError, 412 method), 660
get_segments() (diofant.plotting.plot.Parametric2DLineSeries method), 660
get() (diofant.core.containers.Dict method), get_symmetric_group_sgs() (in module dio144
fant.combinatorics.graycode method), 219
get_adjacency_distance() (dio- getn() (diofant.core.expr.Expr method), 70 fant.combinatorics.permutations.Permugation() (diofant.core.add.Add method), 107 method), 161
get_adjacency_matrix() (dio- given() (in module diofant.stats), 736 fant.combinatorics.permutations.PermuGMPBFiniteField (class in dio-
fant.domains.finitefield), 508
GMPYIntegerRing (class in diofant.domains.integerring), 508
GMPYRationalField (class in diofant.domains.rationalfield), 508
GoldenRatio (class in diofant.core.numbers), 100
gosper_normal() (in module diofant.concrete.gosper), 281
gosper_sum() (in module diofant.concrete.gosper), 281
gosper_term() (in module diofant.concrete.gosper), 281
GradedLexOrder (class in diofant.polys.orderings), 621
gradient() (diofant.vector.deloperator.Del method), 955
gradient() (in module diofant.vector), 961
GramSchmidt() (in module diofant.matrices.dense), 554
gray_to_bin()
(diofant.combinatorics.graycode method), 219
GrayCode (class in diofant.combinatorics.graycode), 216
graycode_subsets()
(diofant.combinatorics.graycode method), 220
GreaterThan (class in diofant.core.relational), 112
greek_letters (in module diofant.printing.pretty.pretty_symbology), 643
groebner() (in module diofant.polys.groebnertools), 976
groebner() (in module diofant.polys.polytools), 612
groebner_gcd() (in module diofant.polys.groebnertools), 976
groebner_lcm() (in module diofānt.polys.groebnertools), 976
GroebnerBasis (class in fant.polys.polytools), 586
group() (in module fant.utilities.iterables), 888
Gt (in module diofant.core.relational), 109

\section*{H}

H (diofant.matrices.matrices.MatrixBase property), 518
Half (class in diofant.core.numbers), 95
half_gcdex()
(diofant.domains.ring.CommutativeRing method), 505
half_gcdex() (diofant.polys.polytools.Poly method), 597
half_gcdex()
(dio-
fant.polys.rings.PolynomialRing method), 506
half_gcdex()
(diofant.polys.univar.UnivarPolyElement method), 971
half_gcdex() (in module diofant.polys.polytools), 613
hankell (class in diofant.functions.special.bessel), 364
hankel2 (class in diofant.functions.special.bessel), 365
hankel_transform() (in module diofant.integrals.transforms), 473
HankelTransform (class in diofant.integrals.transforms), 486
harmonic (class in diofant.functions.combinatorial.numbers), 324
has() (diofant.core.basic.Basic method), 48
has() (diofant.matrices.matrices.MatrixBase method), 530
has() (diofant.matrices.sparse.SparseMatrixBase method), 573
has_dups() (in module diofant.utilities.iterables), 888
has only gens() (diofant.polys.polytools.Poly method), 597
has_variety() (in module diofant.utilities.iterables), 889
Heaviside (class in diofant.functions.special.delta functions), 333
height() (diofant.printing.pretty.stringpict.stringPict method), 645
hermite (class in diofant.functions.special.polynomials), 393
dio- hermite_poly() (in module diofant.polys.orthopolys), 624
dio- hessian() (in module diofant.matrices.dense), 554
heurisch() (in module diofant.integrals.heurisch), 479
heurisch_wrapper() (in module diofant.integrals.heurisch), 480
HeuristicGCDFailed, 993
hobj() (in module diofant.printing.pretty.pretty_symbology), 644
holzer() (in module dio-
fant.solvers.diophantine), 769
homogeneous_order() (in module diofant.solvers.ode), 777
HomomorphismFailed, 993
horner() (in module diofant.polys.polyfuncs), 618
hradius (diofant.geometry.ellipse.Ellipse property), 440
hstack() (diofant.matrices.matrices.MatrixBas class method), 530
hyper (class in diofant.functions.special.hyper), 378
HyperbolicFunction (class in diofant.functions.elementary.hyperbolic), 301
hyperexpand() (in module diofant.simplify.hyperexpand), 702
Hypergeometric() (in module diofant.stats), 707
hypersimilar() (in module diofant.simplify.simplify), 683
hypersimp() (in module diofant.simplify.simplify), 682

I
Identity (class in diofant.matrices.expressions), 584
IdentityFunction (class in diofant.functions.elementary.miscellaneous) 309
idiff() (in module diofant.geometry.util), 408
Idx (class in diofant.tensor.indexed), 840
im (class in diofant.functions.elementary.complexes), 284
ImageSet (class in diofant.sets.fancysets), 677
imageset() (in module diofant.sets.sets), 669
ImaginaryUnit (class in diofant.core.numbers), 98
ImmutableDenseNDimArray (class in diofant.tensor.array), 837
ImmutableMatrix (class in diofant.matrices.immutable), 579
ImmutableSparseMatrix (class in diofant.matrices.immutable), 577
ImmutableSparseNDimArray (class in diofant.tensor.array), 837
implemented_function() (in module diofant.utilities.lambdify), 901
implicit_application() (in module diofant.parsing.sympy_parser), 907
implicit_multiplication() (in module diofant.parsing.sympy_parser), 907
implicit_multiplication_application() (in module diofant.parsing.sympy_parser), 908
ImplicitSeries (class in diofant.plotting.plot_implicit), 661
Implies (class in diofant.logic.boolalg), 499
séncenter (diofant.geometry.polygon.Triangle property), 464
incircle (diofant.geometry.polygon.RegularPolygon property), 459
incircle (diofant.geometry.polygon.Triangle property), 464
indent_code() (diofant.printing.ccode.CCodePrinter method), 633
indent_code()
(diofant.printing.fcode.FCodePrinter method), 637
independent() (in module diofant.stats.rv), 741
independent_sets (diofant.polys.polytools.GroebnerBasis property), 586
index() (diofant.combinatorics.permutations.Permutation method), 163
index() (diofant.concrete.expr_with_intlimits.ExprWithIntL method), 278
index() (diofant.core.containers.Tuple method), 143
index() (diofant.polys.rings.PolynomialRing method), 506
IndexConformanceException, 845
Indexed (class in diofant.tensor.indexed), 842
IndexedBase (class in diofant.tensor.indexed), 844
IndexException, 842
indices (diofant.tensor.indexed.Indexed property), 843
indices contain equal information (dio\(\overline{\text { fant.functions.spēcial.tensor functions.KroneckerD }}\) property), 400
inf (diofant.sets.sets.Interval property), 671
inf (diofant.sets.sets.Set property), 665
infinitesimals() (in module diofant.solvers.ode), 777
Infinity (class in diofant.core.numbers), 96
init_printing() (in module diofant.interactive.printing), 647
inject() (diofant.domains.compositedomain.CompositeDol method), 505
inject() (diofant.domains.simpledomain.SimpleDomain method), 505
inject() (diofant.polys.polytools.Poly interpolate() (in module diomethod), 597
InputArgument (class in dio- interpolating_poly() (in module diofant.utilities.codegen), 873 fant.polys.specialpolys), 624
inradius (diofant.geometry.polygon.RegularPoЩngbersection (class in diofant.sets.sets), 673 property), 459
inradius (diofant.geometry.polygon.Triangle property), 464
intcurve_diffequ() (in module diofant.diffgeom), 925
intcurve_series() (in module diofant.diffgeom), 923
Integer (class in diofant.core.numbers), 91
integer_digits() (in module diofant.core.numbers), 93
integer_nthroot() (in module diofant.core.power), 103
integer rational reconstruction() (in module diofant.ntheory.modular), 255
IntegerDivisionWrapper (class in diofant.interactive.session), 648
IntegerModRing (class in diofant.domains), 506
IntegerPartition (class in diofant.combinatorics.partitions), 149
IntegerRing (class in diofant.domains), 506
Integers (class in diofant.sets.fancysets), 677
Integral (class in diofant.integrals.integrals), 481
Integral.is_commutative (in module diofant.integrals.integrals), 481
IntegralTransform (class in diofant.integrals.transforms), 484 Inverse (class in dio-
integrand() (diofant.functions.special.hyper.meijerg fant.matrices.expressions), 583 method), 382
integrate() (diofant.core.expr.Expr method), 70
inverse() (diofant.functions.elementary.exponential.log method), 307
inverse() (diofant.functions.elementary.hyperbolic.acosh
integrate() (diofant.matrices.immutable.ImmutableMatetkod), 303 method), 580
integrate() (diofant.matrices.matrices.Matrix method), 531
integrate() (diofant.polys.polytools.Poly method), 597
integrate() (diofant.polys.rings.PolyElement method), 969
integrate() (in module diofant.integrals.integrals), 475
interior (diofant.sets.sets.Set property), 666
interior_angle (dio-
inverse() (diofant.functions.elementary.hyperbolic.acoth
Base method), 304
inverse() (diofant.functions.elementary.hyperbolic.asinh method), 303
inverse() (diofant.functions.elementary.hyperbolic.atanh method), 304
inverse() (diofant.functions.elementary.hyperbolic.coth method), 302
inverse() (diofant.functions.elementary.hyperbolic.sinh method), 301
inverse() (diofant.functions.elementary.hyperbolic.tanh fant.geometry.polygon.RegularPolygon inverse() (diofant.functions.elementary.trigonometric.acos property), 459 method), 296
inverse() (diofant.functions.elementary.trigonometric. \({ }^{6} 0\) ot
method), 298 invert() (diofant.domains.ring.CommutativeRing
inverse() (diofant.functions.elementary.trigonometric.anesthod), 505
method), 299 invert() (diofant.polys.polytools.Poly
inverse() (diofant.functions.elementary.trigonometric.aneethod), 598
method), 297 invert() (in module diofant.polys.polytools),
inverse() (diofant.functions.elementary.trigonometric. \(\mathbf{6}\) \$īn method), 295
is_abelian (diofant.combinatorics.perm_groups.Permutati
inverse() (diofant.functions.elementary.trigonometric.ataperty), 189
method), 298 is_above_fermi (dio-
inverse( ) (diofant.functions.elementary.trigonometric.fantt.functions.special.tensor_functions.KroneckerD method), 292 property), 400
inverse() (diofant.functions.elementary.trigonánetkigetanic (diofant.core.expr.Expr prop-
method), 291
inverse_ADJ() (dio fant.matrices.matrices.MatrixBase method), 532
inverse_cosine_transform() (in module diofant.integrals.transforms), 473
inverse_fourier_transform() (in module diofant.integrals.transforms), 471
inverse_GE()
(dio-
fant.matrices.matrices.MatrixBase method), 532
inverse_hankel_transform() (in module diofant.integrals.transforms), 474
inverse_laplace_transform() (in module diofant.integrals.transforms), 470
inverse LU()
(diofant.matrices.matrices.MatrixBase method), 532
inverse_mellin_transform() (in module diofant.integrals.transforms), 469
inverse_sine_transform() (in module dio\(\overline{\text { fant.integrals.transforms), } 472}\)
InverseCosineTransform (class in diofant.integrals.transforms), 486
InverseFourierTransform (class in diofant.integrals.transforms), 486
InverseHankelTransform (class in diofant.integrals.transforms), 486
InverseLaplaceTransform (class in diofant.integrals.transforms), 485
InverseMellinTransform (class in diofant.integrals.transforms), 485
InverseSineTransform (class in diofant.integrals.transforms), 486
inversion_vector() (dio- is_constant() (diofant.core.expr.Expr fant.combinatorics.permutations.Permutation method), 72 method), 163 is_constant()
inversions() (dio- - fant.core.numbers.Number method), fant.combinatorics.permutations.Permutation 87 method), 163
() (diofant.core.expr.Expr method),
(dioerty), 70
is_algebraic_expr() (diofant.core.expr.Expr method), 70
is_alt_sym() (dio-- fant.combinatorics.perm_groups.PermutationGroup method), 189
is_anti_symmetric() (diofant.matrices.matrices.MatrixBase method), 532
is_below_fermi (diofant.functions.special.tensor functions.KroneckerD property), 401
is_closed (diofant.sets.sets.Set property), 666
is_cnf() (in module diofant.logic.boolalg), 501
is_collinear() (diofant.geometry.point.Point method), 413
is_commutative (diofant.core.expr.Expr property), 71
is_comparable (diofant.core.expr.Expr property), 71
is_complex (diofant.core.expr.Expr property), 71
is_composite (diofant.core.expr.Expr property), 71
is_composite (diofant.core.numbers.Integer property), 91
is_concyclic() (diofant.geometry.point.Point method), 414
is_conservative() (in module diofant.vector), 961
is_convex() (diofant.geometry.polygon.Polygon method), 453
is_cyclotomic (diofant.polys.polytools.Poly is_integer (diofant.core.expr.Expr propproperty), 598
is_diagonal() (dio- is_irrational (diofant.core.expr.Expr propfant.matrices.matrices.MatrixBase method), 533
is_diagonalizable()
(dio-
fant.matrices.matrices.MatrixBase method), 534
is_disjoint() (dio-
fant.polys.rootisolation.ComplexIntervais_left_unbounded (diomethod), 991
is_disjoint()
(dio-
fant.polys.rootisolation.RealInterval
method), 992
is_disjoint() (diofant.sets.sets.Set
method), 666
is_dnf() (in module diofant.logic.boolalg), 501
is_Empty (diofant.combinatorics.permutations.Permutaфiøゅperty), 535
property), 164
(dio-
fant.geometry.polygon.Triangle is_multivariate (diomethod), 465
is_minimal() (in module dio-
is_equilateral()
fant.geometry.polygon.Triangle
is_even (diofant.combinatorics.permutations.Permutatmon
property), 165
is_even (diofant.core.expr.Expr property), 73
is_even (diofant.core.numbers.Integer property), 91
is_extended_real (diofant.core.expr.Expr property), 73
is_finite (diofant.core.expr.Expr property), 73
is_groebner() (in module diofant.polys.groebnertools), 977
is_ground (diofant.polys.polytools.Poly property), 598
is_hermitian (diofant.matrices.matrices.MatrixBase property), 534
is_hermitian (dio- - erty), 74 property), 573 - property), 92
is_homogeneous (diofant.polys.polytools.Poly is_normal() (diofant.combinatorics.perm_groups.Permutat property), 598
is_negative (diofant.core.expr.Expr prop-
is_linear (diofant.polys.polytools.Poly property), 599
is_lower(diofant.matrices.matrices.MatrixBase property), 535
is_lower_hessenberg (diofā̄t.matrices.matrices.MatrixBase
erty), 74
is_nilpotent (diofant.combinatorics.perm_groups.PermutationGroup property), 190
is_nilpotent()
(dio-
fant.matrices.matrices.MatrixBase method), 536
is_noninteger (diofant.core.expr.Expr property), 74
is_nonnegative (diofant.core.expr.Expr property), 74
is_nonpositive (diofant.core.expr.Expr property), 74
is_nonzero (diofant.core.expr.Expr prop-
fant.matrices.sparse.SparseMatrixBaseis_nonzero (diofant.core.numbers.Integer property), 573
ogeneous (diofant.polys.polytools.Poly method), 190
is_hypergeometric() (dio- is_normal() (diofant.domains.ring.CommutativeRing fant.core.expr.Expr method), 73 method), 505
is_Identity (diofant.combinatorics.permutatioiss.R\&troontatiosidue() (in module dioproperty), 164 fant.ntheory.residue_ntheory), 260
is_imaginary (diofant.core.expr.Expr prop- is_number (diofant.concrete.expr_with_limits.ExprWithLimi erty), 73
is_imaginary (diofant.core.numbers.Integer property), 91
is_infinite (diofant.core.expr.Expr prop- is_odd (diofant.combinatorics.permutations.Permutation erty), 74
is_odd (diofant.core.expr.Expr property), 75
is_odd (diofant.core.numbers.Integer property), 92
is_one (diofant.polys.polytools.Poly property), 599
is_only_above_fermi fant.functions.special.tensor functions.Kroneckfentidedeømetry.polygon.Triangle property), 401
s only below fermi fant.functions.special.tensor functions.Kroneckfermiteldae.compatibility), 145 property), 402
is_open (diofant.sets.sets.Set property), 666
is_parallel()
fant.geometry.line.LinearEntity method), 420
is_perpendicular() fant.geometry.line.LinearEntity method), 420
is_polar (diofant.core.expr.Expr property), 75
is_polynomial() (diofant.core.expr.Expr method), 75
is_positive (diofant.core.expr.Expr property), 76
is_prime (diofant.core.expr.Expr property), 76
is_prime (diofant.core.numbers.Integer property), 92
is_primitive (diofant.domains.finitefield.ModularInteger property), 509
is_primitive() (diofant.combinatorics.perm_groups.PermutstiөqЩa@erforee (diofant.polys.polytools.Poly method), 190
is_primitive_root() (in module diofant.ntheory.residue_ntheory), 260
is_proper_subset() (diofant.sets.sets.Set method), 667
is_proper_superset() (diofant.sets.sets.Set method), 667
is_quad_residue() (in module diofant.ntheory.residue_ntheory), 260
is_quadratic (diofant.polys.polytools.Poly property), 600
is_rational (diofant.core.expr.Expr property), 76
is_rational_function() fant.core.expr.Expr method), 76
is_real (diofant.core.expr.Expr property), 77
is_rewritable_or_comparable() (in module diofant.polys.groebnertools), 977
is_right() (diofant.geometry.polygon.Triangle method), 465
is_right_unbounded
(dio- is scalene()
fant.sets.sets.Interval property), 671
is_scalar_multiple() (diofant.geometry.point.Point method), 415 method), 466
is_similar() (dio-
fant.geometry.entity.GeometryEntity method), 407
is_similar() (diofant.geometry.line.LinearEntity
dio- method), 421
is_similar() (diofant.geometry.polygon.Triangle
method), 466
is_simple() (diofant.functions.special.delta functions.Dira method), 332
is_Singleton (diofant.combinatorics.permutations.Permutation property), 165
is_solenoidal() (in module diofant.vector), 962
is_solvable (diofant.combinatorics.perm_groups.Permutat property), 191
is_square (diofant.matrices.matrices.MatrixBase property), 536
is_square() (in module diofant.ntheory.primetest), 258 property), 600
is_subgroup () (diofant.combinatorics.perm_groups.PermutationGroup method), 191
is_subset() (diofant.sets.sets.Set method), 667
is_superset() (diofant.sets.sets.Set method), 667
is_symbolic() (diofant.matrices.matrices.MatrixBase method), 536
is_symmetric() (diofant.matrices.matrices.MatrixBase method), 537
is_symmetric()
(dio-
fant.matrices.sparse.SparseMatrixBase method), 574
is_tangent() (diofant.geometry.ellipse.Ellipse method), 441
(dio- is_term (diofant.polys.polytools.Poly prop-

Diofant Documentation, Release 0.13.0
```

erty), 600
is_transcendental (diofant.core.expr.Expr property), 77
is_transitive() (diofant.combinatorics.perm_groups.Permutatioblanoup (diofant.diffgeom.CoordSystem method), 192

```

``` property), 192
is_univariate (diofant.polys.polytools.Poly jn (class in diofant.functions.special.bessel), property), 600365
is_upper(diofant.matrices.matrices.MatrixBasén_zeros() (in module dio-
```

property), 537
is_upper_hessenberg (diofant.matrices.matrices.MatrixBase property), 538
is_zero (diofant.core.expr.Expr property), 78
is_zero (diofant.core.numbers.Integer property), 92
is_zero (diofant.geometry.point.Point property), 415
is_zero (diofant.matrices.matrices.MatrixBase property), 538
is_zero (diofant.polys.polytools.Poly property), 600
isdisjoint() (diofant.sets.sets.Set method), 667
IsomorphismFailed, 993
isprime() (in module diofant.ntheory.primetest), 258
issubset() (diofant.sets.sets.Set method), 667
issuperset() (diofant.sets.sets.Set method), 667
ITE (class in diofant.logic.boolalg), 500
items() (diofant.core.containers.Dict method), 144
iterable() (in module diofant.core.compatibility), 145
iterate binary() (dio$\overline{\text { fant.combinatorics.subsets.Subset }}$ method), 210
iterate_graycode() (diofant.combinatorics.subsets.Subset method), 210
itermonomials() (in module diofant.polys.monomials), 621

J
jacobi (class in diofant.functions.special.polynomials), 385
jacobi_normalized() (in module diofant.functions.special.polynomials), 386

```
jacobi_poly() (in module dio-
jacobi_symbol() (in module dio-
```

```
method), 918
```

```
- fant.functions.special.bessel), 366
jordan_cell() (in module diofant.matrices.dense), 553
jordan_cells() (diofant.matrices.matrices.MatrixBase method), 539
jordan_form() (diofant.matrices.matrices.MatrixBase method), 540
josephus() (diofant.combinatorics.permutations.Permutati class method), 165
K
key2bounds() (dio-
fant.matrices.matrices.MatrixBase method), 540
key2ij() (diofant.matrices.matrices.MatrixBase method), 541
keys() method), 144
killable_index (diofant.functions.special.tensor functions.KroneckerD property), 402
KroneckerDelta (class in diofant.functions.special.tensor functions), 399
ksubsets() (diofant.combinatorics.subsets method), 215
Kumaraswamy () (in module diofant.stats), 721
L
label (diofant.tensor.indexed.Idx property), 842
label (diofant.tensor.indexed.IndexedBase property), 845
laguerre (class in diofant.functions.special.polynomials), 393
laguerre_poly() (in module diofant.polys.orthopolys), 624
Lambda (class in diofant.core.function), 124
LambdaPrinter (class in diofant.printing.lambdarepr), 639
```

lambdarepr() (in module diofant.printing.lambdarepr), 639
lambdastr() (in module fant.utilities.lambdify), 902
lambdify() (in module fant.utilities.lambdify), 902
LambertW (class in dio- left() (diofant.printing.pretty.stringpict.stringPict fant.functions.elementary.exponential), 306
Laplace() (in module diofant.stats), 721
laplace_transform() (in module diofant.integrals.transforms), 470
LaplaceTransform (class in diofant.integrals.transforms), 485
latex() (in module diofant.printing.latex), 639
LatexPrinter (class in diofant.printing.latex), 639
lbp_cmp() (in module diofant.polys.groebnertools), 977
lbp_key() (in module diofant.polys.groebnertools), 977
lbp_mul_term() (in module diofant.polys.groebnertools), 977
lbp_sub() (in module diofant.polys.groebnertools), 977
LC() (diofant.polys.polytools.Poly method), 589
LC( ) (in module diofant.polys.polytools), 587
lcm() (diofant.core.numbers.Number method), 87
lcm() (diofant.core.numbers.Rational method), 91
lcm() (diofant.domains.ring.CommutativeRing method), 505
lcm() (diofant.polys.monomials.Monomial method), 621
lcm() (diofant.polys.polytools.Poly method), 601
lcm() (in module diofant.polys.polytools), 613
ldescent() (in module dio- Li fant.solvers.diophantine), 768
LDLdecomposition() (diofant.matrices.matrices.MatrixBase li method), 518
LDLdecomposition() (dio- method), 570 ule diofant.solvers.ode), 802
LDLsolve() (diofant.matrices.matrices.MatrixBláe_heuristic_abacol_simple() (in module method), 519 - diofant.solvers.ōde), 801
Le (in module diofant.core.relational), 109 lie_heuristic_abaco2_similar() (in modleading_expv() (diofant.polys.rings.PolyElement lie_heuristic_abaco2_unique_unknown()
(in module diofant.solvers.ode), 804 lo
lie_heuristic_bivariate() (in module diofant.solvers.ode), 802
lie_heuristic_chi() (in module dio- logcombine() (in module diofant.solvers.ode), 802 fant.simplify.simplify), 684
lie_heuristic_function_sum() (in module loggamma (class in diodiofant.solvers.odē), 803
lie_heuristic_linear() (in module diofant.solvers.ode), 805
LieDerivative (class in diofant.diffgeom), 922
Limit (class in diofant.series.limits), 661
limit() (diofant.core.expr.Expr method), 78
limit() (diofant.matrices.immutable.Immutab method), 580
limit() (diofant.matrices.matrices.MatrixBase method), 541
limit() (in module diofant.series.limits), 662
limit_denominator() (diofant.core.numbers.Rational method), 91
limitinf() (in module diofant.series.gruntz), 996
lowergamma (class in diofant.functions.special.gamma functions), 340
limits (diofant.concrete.expr_with_limits.ExprUtt(inimítsule diofant.core.relational), 109 property), 276 LT() (diofant.polys.polytools.Poly method),
limits (diofant.geometry.curve.Curve property), 434
Line (class in diofant.geometry.line), 425
Line2DBaseSeries (class in diofant.plotting.plot), 660
Line3DBaseSeries (class in diofant.plotting.plot), 661
line_integrate() (in module diofant.integrals.integrals), 477
LinearEntity (class in diofant.geometry.line), 417
Line0ver1DRangeSeries (class in diofant.plotting.plot), 660
list() (atanase
list() (diofant.combinatorics.permutations.Cycle method), 519 method), 174

LUsolve() (diofant.matrices.matrices.MatrixBase
list() (diofant.combinatorics.permutations.Permutationethod), 520 method), 166
list2numpy() (in module dio- M fant.matrices.dense), 556
list_visitor() (in module diofant.utilities.enumerative), 879 major (diofant.geometry.ellipse.Ellipse prop-
liupc() (diofant.matrices.sparse.SparseMatrixBase erty), 442 method), 574
LM() (diofant.polys.polytools.Poly method), 589
LM ( ) (in module diofant.polys.polytools), 588
locate_new() (dio- make_routine() (in module diofant.vector.coordsysrect.CoordSysCartesian ${ }^{-}$fant.utilities.codegen), 876 method), 945

ManagedProperties (class in diofant.core.assumptions), 45
Manifold (class in diofant.diffgeom), 915
MatAdd (class in diofant.matrices.expressions), 582
match() (diofant.core.basic.Basic method), 49
mathematica() (in module diofant.parsing.mathematica), 906
mathematica_code() (in module diofant.printing.mathematica), 638
mathml() (in module diofant.printing.mathml), 641
mathml_tag()
(diofant.printing.mathml.MathMLPrinter method), 641
MathMLPrinter (class in diofant.printing.mathml), 641
MatMul (class in diofant.matrices.expressions), 583
MatPow (class in fant.matrices.expressions), 583
Matrix (class in diofant.matrices), 509
matrix2numpy() (in module diofant.matrices.dense), 556
matrix_fglm() (in module diofant.polys.groebnertools), 977
matrix_multiply_elementwise() (in module diofant.matrices.dense), 551
matrix to vector() (in module diofant.vector), 959
MatrixBase (class in diofant.matrices.matrices), 517
MatrixError (class in diofant.matrices.matrices), 551
MatrixExpr (class in diofant.matrices.expressions), 581
MatrixSymbol (class in diofant.matrices.expressions), 582
Max (class in diofant.functions.elementary.miscellaneous 309
$\max ()$ (diofant.combinatorics.permutations.Permutatiorfant.matrices.matrices.MatrixBase method), 167
max_div(diofant.combinatorics.perm_groups.PeximpodtiogGoobmper() (in module dio-

- property), 193
maximize() (in module diofant.calculus.optimization), 910
Maxwell() (in module diofant.stats), 724
MCodePrinter (class in diofant.printing.mathematica), 638
measure (diofant.sets.sets.Set property), 668 medial (diofant.geometry.polygon.Triangle property), 466
medians (diofant.geometry.polygon.Triangle property), 467
meijerg (class in diofant.functions.special.hyper), 380
mellin transform() (in module dio--fant.integrals.transforms), 469
MellinTransform (class in diofant.integrals.transforms), 485
merge_solution() (in module diofant.solvers.diophantine), 765
metric_to_Christoffel_1st() (in module diofant.diffgeom), 927
metric_to_Christoffel_2nd() (in module diofant.diffgeom), 927
metric_to_Ricci_components() (in module diofant.diffgeom), 928
metric_to_Riemann_components() (in module diofant.diffgeom), 927
midpoint (diofant.geometry.line.Segment property), 432
midpoint() (diofant.geometry.point.Point method), 415
Min (class in diofant.functions.elementary.miscellaneous), 309
$\min ()$ (diofant.combinatorics.permutations.Permutation method), 167
minimal_block() (dio$\overline{\text { fant.combinatorics.perm_groups.PermutationGroup }}$ method), 194
minimal_polynomial() (in module diofant.polys.numberfields), 620
minimize() (in module diofant.calculus.optimization), 910
minlex() (in module diofant.utilities.iterables), 889
minor (diofant.geometry.ellipse.Ellipse property), 442
minorEntry() (diofant.matrices.matrices.MatrixBase method), 541
minorMatrix()
(diomethod), 541
fant.polys.numberfields), 978
minsolve_linear_system() (in module diofānt.solvers.solvers), 742
mobius (class in diofant.ntheory.residue_ntheory), 262
Mod (class in diofant.core.mod), 108
mod_inverse() (in module diofant.core.numbers), 93
modgcd() (in module dio-
fant.polys.modulargcd), 989
ModularGCDFailed, 993
ModularInteger (class in dio fant.domains.finitefield), 509
module
diofant, 41
diofant.calculus, 908
diofant.calculus.euler, 908
diofant.calculus.finite_diff, 910
diofant.calculus.optimization, 910
diofant.calculus.singularities, 909
diofant.combinatorics.generators, 175
diofant. combinatorics.graycode, 216
diofant.combinatorics.group_constructs, 228
diofant.combinatorics.named_groups, 220
diofant.combinatorics.partitions, 148
diofant.combinatorics.perm_groups, 176
diofant.combinatorics.permutations, 152
diofant.combinatorics.polyhedron, 203
diofant.combinatorics.prufer, 205
diofant.combinatorics.subsets, 209
diofant.combinatorics.tensor_can, 230
diofant.combinatorics.testutil, 229
diofant.combinatorics.util, 223
diofant.config, 41
diofant.core, 41
diofant. core.add, 106
diofant.core.assumptions, 44
diofant.core.basic, 46
diofant.core.cache, 45
diofant.core.compatibility, 144
diofant.core.containers, 143
diofant.core.core, 56
diofant.core.evalf, 142
diofant.core.evaluate, 57
diofant.core.expr, 57
diofant.core.exprtools, 146
diofant.core.function, 124
diofant.core.mod, 108
diofant.core.mul, 103
diofant.core.multidimensional, 124
diofant.core.numbers, 86
diofant.core.power, 100
diofant.core.relational, 109
diofant.core.singleton, 56
diofant.core.symbol, 82
diofant.core.sympify, 41
diofant.diffgeom, 915
diofant.domains, 503
diofant.functions, 282
diofant.functions.special.bessel, 362
diofant.functions.special.beta_functions, 340
diofant.functions.special.elliptic_integrals, 383
diofant.functions.special.error_functions, 342
diofant.functions.special.gamma_functions, 333
diofant.functions.special.polynomials, 385
diofant.functions.special.zeta_functions, 373
diofant.geometry, 403
diofant.geometry.curve, 433
diofant.geometry.ellipse, 436
diofant.geometry.entity, 406
diofant.geometry.exceptions, 412
diofant.geometry.line, 417
diofant.geometry.point, 412
diofant.geometry.polygon, 449
diofant.geometry.util, 408
diofant.integrals, 468
diofant.integrals.meijerint_doc, 1017
diofant.integrals.quadrature, 487
diofant.integrals.transforms, 469
diofant.interactive, 647
diofant.interactive.printing, 647
diofant.interactive.session, 648
diofant.logic, 493
diofant.matrices, 509
diofant.matrices.dense, 559
diofant.matrices.expressions, 581
diofant.matrices.expressions.blockmatrix, 584
diofant.matrices.immutable, 579
diofant.matrices.matrices, 509
diofant.matrices.sparse, 567
diofant.ntheory.continued_fraction, 264
diofant.ntheory.egyptian_fraction, 267
diofant.ntheory.factor_, 241
diofant.ntheory.generate, 236
diofant.ntheory.modular, 254
diofant.ntheory.multinomial, 256
diofant.ntheory.partitions_, 258
diofant.ntheory.primetest, $\overline{2} 58$
diofant.ntheory.residue_ntheory, 259
diofant.parsing, 905
diofant.plotting, 648
diofant.polys, 586
diofant.polys.constructor, 620
diofant.polys.euclidtools, 972
diofant.polys.factorization_alg_field, 979
diofant.polys.factortools, 974
diofant.polys.groebnertools, 975
diofant.polys.modulargcd, 983
diofant.polys.monomials, 621
diofant.polys.numberfields, 620
diofant.polys.orderings, 621
diofant.polys.orthopolys, 624
diofant.polys.partfrac, 626
diofant.polys.polyerrors, 993
diofant.polys.polyfuncs, 618
diofant.polys.polyoptions, 992
diofant.polys.polyroots, 623
diofant.polys.polytools, 586
diofant.polys.rationaltools, 625
diofant.polys.rootisolation, 991
diofant.polys.rootoftools, 622
diofant.polys.specialpolys, 624
diofant.polys.sqfreetools, 992
diofant.printing, 629
diofant.printing.ccode, 632
diofant.printing.codeprinter, 643
diofant.printing.conventions, 643
diofant.printing.fcode, 635
diofant.printing.lambdarepr, 639
diofant.printing.latex, 639
diofant.printing.mathematica, 638
diofant.printing.mathml, 641
diofant.printing.precedence, 643
diofant.printing.pretty.pretty, 632
diofant.printing.pretty.pretty symbolog
diofant.printing.pretty.stringpict, 644
diofant.printing.printer, 629
diofant.printing.python, 642
diofant.printing.repr, 642
diofant.printing.str, 642
diofant.series.gruntz, 995
diofant.series.limits, 661
diofant.series.order, 662
diofant.series.residues, 664
diofant.series.series, 662
diofant.sets.fancysets, 676
diofant.sets.sets, 664
diofant.simplify.combsimp, 697
diofant.simplify.cse_main, 699
diofant.simplify.epā̄htools, 702
diofant.simplify.fu, 693
diofant.simplify.hyperexpand, 702
diofant.simplify.hyperexpand_doc, 1005
diofant.simplify.powsimp, 694
diofant.simplify.radsimp, 685
diofant.simplify.ratsimp, 691
diofant.simplify.sqrtdenest, 698
diofant.simplify.traversaltools, 702
diofant.simplify.trigsimp, 692
diofant.solvers, 742
diofant.solvers.deutils, 833
diofant.solvers.diophantine, 746
diofant.solvers.inequalities, 746
diofant.solvers.ode, 817
diofant.solvers.pde, 832
diofant.solvers.polysys, 744
diofant.solvers.recurr, 821
diofant.solvers.solvers, 742
diofant.solvers.utils, 832
diofant.stats, 705
diofant.stats.crv, 740
diofant.stats.crv_types, 740
diofant.stats.frv, 740
diofant.stats.frv_types, 740
diofant.stats.rv, $\overline{7} 39$
diofant.tensor, 834
diofant.tensor.array, 834
diofant.tensor.index_methods, 845
diofant.tensor.indexed, 839
diofant.tensor.tensor, 848
diofant.utilities, 863
diofant.utilities.autowrap, 864
diofant.utilities.codegen, 869
diofant.utilities.decorator, 878
ydiofant.utilities.enumerative, 878
diofant.utilities.iterables, 884
diofant.utilities.lambdify, 901
diofant.utilities.memoization, 904
diofant.utilities.misc, 904
diofant.utilities.randtest, 904
diofant.vector, 930
diofant.vector.orienters, 955
monic() (diofant.polys.polytools.Poly method), 601
monic() (diofant.polys.rings.PolyElement method), 969
monic() (in module diofant.polys.polytools), 614
Monomial (class in diofant.polys.monomials), 621
monoms() (diofant.polys.polytools.Poly n() (diofant.geometry.point.Point method), method), 601
mr() (in module diofant.ntheory.primetest 259
mrv() (in module diofant.series.gruntz), 996
mrv_leadterm() (in module diofant.series.gruntz), 996
mrv_max() (in module diofant.series.gruntz), 997
Mul (class in diofant.core.mul), 103
mul_inv() (diofant.combinatorics.permutationsnReggsutddiimfant.core.function.FunctionClass method), 167
multinomial_coefficients() (in module diofant.ntheory.multinomial), 257
multinomial_coefficients_iterator() (in module diofant.ntheory.multinomial), 257
multiplicity() (in module diofant.ntheory.factor_), 247 property), 129
Naturals (class in diofant.sets.fancysets), 676
Naturals0 (class in diofant.sets.fancysets), 677
nC() (in module diofant.functions.combinatorial.numbers), 328
multiply() (diofant.matrices.matrices.MatrixBdedin module diofant.core.relational), 109 method), 541 necklaces() (in module dio-
multiply()(diofant.matrices.sparse.SparseMatrixBasefant.utilities.iterables), 891
method), 574
multiply_elementwise() (diofant.matrices.matrices.MatrixBase method), 541
multiset() (in module diofant.utilities.iterables), 889
multiset_combinations() (in module diofant.utilities.iterables), 890
multiset_partitions() (in module diofant.utilities.iterables), 890
multiset_partitions_taocp() (in module diofant.utilities.enumerative), 878
multiset_permutations() (in module diofant.utilities.iterables), 891
MultisetPartitionTraverser (class in diofant.utilities.enumerative), 879
MultivariatePolynomialError, 993
MutableDenseMatrix (class in diofant.matrices.dense), 561
MutableDenseNDimArray (class in diofant.tensor.array), 837
MutableMatrix (in module diofant.matrices.dense), 559
MutableSparseMatrix (class in diofant.matrices.sparse), 567
MutableSparseNDimArray (class in diofant.tensor.array), 837


## N

n (diofant.combinatorics.graycode.GrayCode property), 217
n () (diofant.core.function.Subs method), 133

NegativeInfinity (class in diofant.core.numbers), 97
NegativeOne (class in diofant.core.numbers), 94
new() (diofant.polys.polytools.Poly class method), 601
new() (diofant.polys.rootoftools.RootSum class method), 623
next() (diofant.combinatorics.graycode.GrayCode method), 217
next() (diofant.combinatorics.prufer.Prufer method), 206
next() (diofant.printing.pretty.stringpict.stringPict static method), 645
next_binary() (diofant.combinatorics.subsets.Subset method), 210
next_gray() (diofant.combinatorics.subsets.Subset method), 211
next_lex() (diofant.combinatorics.partitions.IntegerPartiti method), 150
next_lex() (diofant.combinatorics.permutations.Permutati method), 167
next_lexicographic() (dio-
fant.combinatorics.subsets.Subset method), 211
next_nonlex()
(diofant.combinatorics.permutations.Permutation method), 167
next_trotterjohnson()
(diofant.combinatorics.permutations.Permutation method), 168
nextprime() (in module diofant.ntheory.generate), 238
$n f l o a t()$ (in module diofant.core.function), 142
nnz() (diofant.matrices.sparse.SparseMatrixBase
330
nthroot() (in module diofant.simplify.simplify), 681
nthroot_mod() (in module diomethod), 575
no_attrs_in_subclass (class in diofant.utilities.decorator), 878
nodes (diofant.combinatorics.prufer.Prufer property), 206
NonSquareMatrixError (class in diofant.matrices.matrices), 551
Nor (class in diofant.logic.boolalg), 498
norm() (diofant.matrices.matrices.MatrixBase method), 542
normal() (diofant.core.expr.Expr method), 78
Normal() (in module diofant.stats), 725
normal_closure()
(dio-
fant.combinatorics.perm_groups.Permu method), 194
normal_lines()
(dio-
fant.geometry.ellipse.Ellipse method), 443
normalize() (diofant.vector.vector.Vector method), 952
normalized()
(diofant.matrices.matrices.MatrixBase method), 543
NormalPSpace (class in diofant.stats.crv_types), 740
Not (class in diofant.logic.boolalg), 497
NotAlgebraic, 994
NotInvertible, 994
NotIterable (class in diofant.core.compatibility), 144
NotReversible, 994
nP() (in module diofant.functions.combinatorial.numbers), 329
npartitions() (in module diofant.ntheory.partitions_), 258
nroots() (diofant.polys.polytools.Poly method), 601
nroots() (in module diofant.polys.polytools), 614
nseries() (diofant.core.expr.Expr method), 78
nsimplify() (diofant.core.expr.Expr method), 79
nsimplify() (in module diofant.simplify.simplify), 683
nT() (in module diofant.functions.combinatorial.numbers),
fant.ntheory.residue ntheory), 263
nu (diofant.functions.special.hyper.meijerg property), 382
nullspace() (diofant.matrices.matrices.MatrixBase method), 543
num (diofant.core.numbers.Float property), 89
Number (class in diofant.core.numbers), 86
numbered_symbols() (in module diofant.utilities.iterables), 892
NumberSymbol (class in diofant.core.numbers), 92

## 0

0 (in module diofant.series.order), 662
 fant.utilities.codegen), 873
ode_1st_exact() (in module diofant.solvers.ode), 783
ode_1st_homogeneous_coeff_best() (in module diofant.solvers.ode), 784
ode_1st_homogeneous_coeff_subs_dep_div_indep() (in module diofant.solvers.ode), $\overline{7} 85$
ode_1st_homogeneous_coeff_subs_indep_div_dep() (in module diofant.solvers.ode), $78 \overline{6}$
ode_1st_linear() (in module diofant.solvers.ode), 787
ode_1st_power_series() (in module diofant.solvers.ode), 799
ode_2nd_power_series_ordinary() (in module diofant.solvers.ode), 799
ode_2nd_power_series_regular() (in module diofant.solvers.ode), 800
ode_almost_linear() (in module diofant.solvers.ode), 795
ode_Bernoulli() (in module diofant.solvers.ode), 788
ode_lie_group() (in module diofant.solvers.ode), 798
ode_linear_coefficients() (in module diofant.solvers.ode), 796
ode_Liouville() (in module diofant.solvers.ode), 789
ode nth linear constant coeff homogeneous() (in module diofant.-solvers.ōde), 791
ode_nth_linear_constant_coeff_undetermined_coeffic (in module diofant.solvers.ode), 792
ode_nth_linear_constant_coeff_variation_of_paramet (in module diofant.solvers.ōde), 793
ode_order() (in module diofant.solvers.deutils), 833
ccati_special_minus2() (in module diofant.solvers.ode), 790
ode_separable() (in module diofant.solvers.ode), 794
ode separable reduced() (in module diofant.solvers.ode), 797
ode_sol_simplicity() (in module diofant.solvers.ode), 782
odesimp() (in module diofant.solvers.ode), 779
One (class in diofant.core.numbers), 94
ones() (in module diofant.matrices.dense), 552
open() (diofant.sets.sets.Interval class method), 671
OperationNotSupported, 994
opt_cse() (in module diofant.simplify.cse_main), 701
OptionError, 994
Options (class in diofant.polys.polyoptions), 992
Or (class in diofant.logic.boolalg), 496
orbit() (diofant.combinatorics.perm_groups.Pepratatiqn(TR method), 195 fānt.geometry.line.LinearEntity
orbit_rep() (diofant.combinatorics.perm_groups.Perm, het method), 196
orbit_transversal() (diofant.combinatorics.perm_groups.Permu $\ddagger$ tidiameteqp (diofant.geometry.curve.Curve method), 196 property), 435
 method), 196
Order (class in diofant.polys.polyoptions), 993
Order (class in diofant.series.order), 662
order (diofant.functions.special.bessel.BesselBase property), 362 fant.plotting.plot), 660
Parametric3DLineSeries (class in diofant.plotting.plot), 661
ParametricSurfaceSeries (class in dio-
fant.plotting.plot), 661
parametrize_ternary_quadratic() (in mod-
 method), 197
parens() (diofant.printing.pretty.stringpict.stringPict
order() (diofant.combinatorics.permutations.Permutatiqethod), 645 method), 168
ordered() (in module dio- parity()(diofant.combinatorics.permutations.Permutation fant.utilities.iterables), 892
ordered_partitions() (in module diofant.utilities.iterables), 893
orient_new() (dio- parse_maxima() (in module diofant.vector.coordsysrect.CoordSysCartesian - fant.parsing.maxima), 906 method), 946 Partition (class in dio-
orient_new_axis() (dio- fant.combinatorics.partitions), 148 fant.vector.coordsysrect.CoordSysCartefáquition (diofant.combinatorics.partitions.Partition method), 947 property), 149
orient_new_body() (dio- partition() (in module diofant.vector.coordsysrect.CoordSysCartesian fant.solvers.diophantine), 762
partitions() (in module dio-
fant.utilities.iterables), 895
Patch (class in diofant.diffgeom), 915
pde_1st_linear_constant_coeff() (in modūle diofant.solvers. $\bar{p} d e$ ), 830
pde_1st_linear_constant_coeff_homogeneouBì̀cewise (class in dio(in module diofant.s-solvers. $\bar{p}$ de), 829
pde_1st_linear_variable_coeff() (in module diofant.solvers.pde), 831
pde_separate() (in module diofant.solvers.pde), 824
pde_separate_add() (in module diofant.solvers.pde), 825
pde_separate_mul() (in module diofant.solvers.pde), 825
pdsolve() (in module diofant.solvers.pde), 826
per() (diofant.polys.polytools.Poly method), 602
perfect_power() (in module diofant.ntheory.factor_), 247
periapsis (diofant.geometry.ellipse.Ellipse property), 443
perimeter (diofant.geometry.polygon.Polygon property), 453
periodic_argument (class in diofant.functions.elementary.complexes), 288
perm2tensor()
(diofant.tensor.tensor.TensMul method), 862
Permutation (class in diofant.combinatorics.permutations), 152
PermutationGroup (class in diofant.combinatorics.perm_groups), 176
permute_signs() (in module diofant.utilities.iterables), 896
permuteBkwd() fant.matrices.matrices.MatrixBase method), 543
permutedims() (in module diofant.tensor.array), 838
permuteFwd() fant.matrices.matrices.MatrixBase method), 543
perpendicular_bisector() (diofant.geometry.line.Segment method), 432
perpendicular_line() fant.geōmetry.line.LinearEntity method), 422
perpendicular_segment() (dio-
fant.geometry.line.LinearEntity method), 423
pgroup (diofant.combinatorics.polyhedron.Polyhedron property), 204
Pi (class in diofant.core.numbers), 98 fant.functions.elementary.piecewise), 308
piecewise_fold() (in module diofant.functions.elementary.piecewise), 308
pinv() (diofant.matrices.matrices.MatrixBase method), 543
pinv_solve()
(dio-
fant.matrices.matrices.MatrixBase method), 544
Plot (class in diofant.plotting.plot), 649
plot() (in module diofant.plotting.plot), 651
plot3d() (in module diofant.plotting.plot), 654
plot3d_parametric_line() (in module diofant.plotting.plot), 656
plot3d_parametric_surface() (in module diofant.plotting.plot), 657
plot_implicit() (in module diofant.plotting.plot_implicit), 658
plot_interval() (diofant.geometry.curve.Curve method), 435
plot_interval()
(diofant.geometry.ellipse.Ellipse method), 444
plot_interval() (diofant.geometry.line.Line method), 427
plot_interval() (diofant.geometry.line.Ray method), 429
plot_interval() (diofant.geometry.line.Segment method), 432
plot_interval()
(diofant.geometry.polygon.Polygon method), 453
plot_parametric() (in module diofant.plotting.plot), 653
Point (class in diofant.diffgeom), 918
Point (class in diofant.geometry.point), 412
point (diofant.core.function.Subs property), 133
point() (diofant.diffgeom.CoordSystem method), 918
point_to_coords() (diofant.diffgeom.CoordSystem method), 918
points (diofant.geometry.line.LinearEntity
property), 423
pointwise_stabilizer() fant.combinatorics.perm_groups.PermutationGFoup method), 197
Poisson() (in module diofant.stats), 708
polar_lift (class in diofant.functions.elementary.complexes), 287
PoleError (class in diofant.core.function), 138
PolificationFailed, 994
pollard_pm1() (in module fant.ntheory.factor_), 248
pollard_rho() (in module diofant.ntheory.factor_), 250
Poly (class in diofant.polys.polytools), 588 poly() (in module diofant.polys.polytools), 614
poly_ring() (diofant.domains.domain.Domain preorder_traversal (class in diomethod), 504
fant.core.basic), 55
PolyElement (class in diofant.polys.rings), pretty() (in module dio966
fant.printing.pretty.pretty), 632
polygamma (class in dio- pretty_atom() (in module diofant.functions.special.gamma functions), fant.printing.pretty.pretty_symbology), 336
Polygon (class in diofant.geometry.polygon), 449
Polyhedron (class in dio fant.combinatorics.polyhedron), 203
polylog (class in dio- pretty_use_unicode() (in module diofant.functions.special.zeta functions), 375
PolynomialDivisionFailed, 994
PolynomialError, 994
PolynomialRing (class in diofant.polys.rings), 506
POSform() (in module diofant.logic.boolalg), 494
posify() (in module diofant.simplify.simplify), 684
position_wrt() fant.vector.coordsysrect.CoordSysCartessi̊n_gray() (diofant.combinatorics.subsets.Subset method), 949
postfixes() (in module dio- prev_lex()(diofant.combinatorics.partitions.IntegerPartiti fant.utilities.iterables), 896
postorder_traversal() (in module dio- prev_lexicographic(
fant.combinatorics.subsets.Subset method), 212
Pow (class in diofant.core.power), 100
powdenest() (in module fant.simplify.powsimp), 696
power_representation() (in module diofant.solvers.diophantine), 764
powerset() (diofant.sets.sets.Set method), prime_as_sum_of_two_squares() (in module

quo() (in module diofant.polys.polytools), Range (class in diofant.sets.fancysets), 678

615
quo_ground() (diofant.polys.polytools.Poly method), 602

## R

rad_rationalize() (in module diofant.simplify.radsimp), 686
radius (diofant.geometry.ellipse.Circle property), 448
radius (diofant.geometry.polygon.RegularPolygon property), 460
radius_of_convergence (dio-
fant.functions.special.hyper.hyper
property), 380
radsimp() (diofant.core.expr.Expr method), 79
radsimp() (in module diofant.simplify.radsimp), 685
RaisedCosine() (in module diofant.stats), 728
randMatrix() (in module diofant.matrices.dense), 555
random() (diofant.combinatorics.perm_groups. method), 198
 class method), 169
random_bitstring() fant.combinatorics.graycode method), 219
random_complex_number() (in module dio--fant.utilities.randtest), 904
random_integer_partition() (in module diofant.combinatorics.partitions), 151
random_point()
fant.geometry.ellipse.Ellipse method), 444
random_point()
fant.geometry.line.LinearEntity method), 424
random_poly() (in module diofant.polys.specialpolys), 624 Rationals (class in diofant.sets.fancysets),
random_pr() (diofant.combinatorics.perm_groups.PermitationGroup method), 198 ratsimp() (diofant.core.expr.Expr method),
random_stab()
fant.combinatorics.perm_groups.Permulatidexarblıp (in module diomethod), 198
random_symbols() (in module diofant.stats.rv), 740
RandomDomain (class in diofant.stats.rv), 739
RandomSymbol (class in diofant.stats.rv), 739
randprime() (in module diofant.ntheory.generate), 241
fant.combinatorics.permutations.Permutation
(dio-
ranges (diofant.tensor.indexed.Indexed property), 843
rank (diofant.combinatorics.graycode.GrayCode property), 217
rank (diofant.combinatorics.partitions.Partition property), 149
rank (diofant.combinatorics.prufer.Prufer property), 207
rank (diofant.tensor.indexed.Indexed property), 843
rank() (diofant.combinatorics.permutations.Permutation method), 169
rank() (diofant.matrices.matrices.MatrixBase method), 545
rank_binary (diofant.combinatorics.subsets.Subset property), 212
rank_gray (diofant.combinatorics.subsets.Subset property), 212
rank_lexicographic (diofant.combinatorics.subsets.Subset property), 213
rank_nonlex()
(dio-
 method), 169

dio-
rat_clear_denoms() (diofant.polys.polytools.Poly method), 603
ratint() (in module diofant.integrals.rationaltools), 478
ratint_logpart() (in module diofant.integrals.rationaltools), 478
ratint_ratpart() (in module diofant.integrals.rationaltools), 479
Rational (class in diofant.core.numbers), 89
(dio- RationalField (class in diofant.domains), 506
rationalize() (in module diofant.parsing.sympy_parser), 908 79
fant.simplify.ratsimp), 691
Ray (class in diofant.geometry.line), 427
Rayleigh() (in module diofant.stats), 728
rcall() (diofant.core.basic.Basic method), 49
rcollect() (in module diofant.simplify.radsimp), 689
re (class in diofant.functions.elementary.complexes), 284
real_root() (in module dio- rem() (diofant.domains.ring.CommutativeRing fant.functions.elementary.miscellaneous), method), 505 312 () 312
real_roots() (diofant.polys.polytools.Poly method), 603
real_roots() (diofant.polys.rootoftools.RootOf class method), 622
real_roots() (in module fant.polys.polytools), 615
RealAlgebraicField (class in diofant.domains), 506
RealField (class in diofant.domains), 508
RealInterval (class in diofant.polys.rootisolation), 991
Reals (class in diofant.sets.fancysets), 678
reconstruct() (in module diofant.solvers.diophantine), 771
recurrence_memo() (in module diofant.utilities.memoization), 904
red_groebner() (in module diofant.polys.groebnertools), 978
reduce() (diofant.polys.polytools.GroebnerBasis method), 587 static method), 675
reduce() (diofant.sets.sets.Intersection static method), 674
reduce() (diofant.sets.sets.Union static method), 673
reduce_inequalities() (in module diofant.solvers.inequalities), 746
reduced() (in module diofant.polys.polytools), 615 reshape() (diofant.matrices.sparse.SparseMatrixBase
refine() (diofant.polys.rootisolation.ComplexInterval method), 575
method), 991 residue() (in module dio-
refine() (diofant.polys.rootisolation.RealInterval fant.series.residues), 664 method), 992
refine() (diofant.polys.rootoftools.RootOf method), 622
RefinementFailed, 994
reflect() (diofant.geometry.ellipse.Circle method), 448
reflect() (diofant.geometry.ellipse.Ellipse method), 445
reflect() (diofant.geometry.polygon.RegularPolygon method), 970 method), 460 resultant() (in module dio-
RegularPolygon (class in diofant.geometry.polygon), 455
module diofant.core.relational), 109
Rel (in module diofant.core.relational), 109
Relational (class in diofant.core.relational),

Result (class in diofant.utilities.codegen),
result_variables
(diofant.utilities.codegen.Routine property), 874
resultant() (diofant.polys.polytools.Poly
110
(diofant.domains.field.Field method), 505
rem() (diofant.polys.polytools.Poly method), 603
rem() (in module diofant.polys.polytools), 615
remove0() (diofant.core.add.Add method), 108
remove0() (diofant.core.expr.Expr method), 79
render() (diofant.printing.pretty.stringpict.stringPict method), 645
reorder() (diofant.concrete.expr_with_intlimits.ExprWithIr method), 278
reorder() (diofant.polys.polytools.Poly method), 603
reorder_limit() (dio$\overline{\text { fant.concrete.expr_with_intlimits.ExprWithIntLimits }}$ method), 279
replace() (diofant.core.basic.Basic method), 49
replace() (diofant.matrices.matrices.MatrixBase
replace() (diofant.polys.polytools.Poly method), 604
reprify() (diofant.printing.repr.ReprPrinter method), 642
ReprPrinter (class in diofant.printing.repr), 642
reset() (diofant.combinatorics.polyhedron.Polyhedron method), 204
reshape() (diofant.matrices.dense.DenseMatrix method), 560 874
fant.polys.polytools), 615
retract() (diofant.polys.polytools.Poly method), 604
reverse_order() (dio-
fant.concrete.products.Product method), 273
reverse_order() (diofant.concrete.summations.Sum method), 272
reversed (diofant.core.relational.Relational property), 110
ReversedGradedLex0rder (class in diofant.polys.orderings), 621
rewrite() (diofant.core.basic.Basic method), 51
rewrite() (in module diofant.series.gruntz), 997
RGS (diofant.combinatorics.partitions.Partition property), 148
RGS_enum() (in module diofant.combinatorics.partitions), 151
RGS_generalized() (in module diofant.combinatorics.partitions), 151
RGS_rank() (in module diofant.combinatorics.partitions), 152
RGS_unrank() (in module diofant.combinatorics.partitions), 152
rhs (diofant.core.relational.Relational property), 111
riemann cyclic() (in module diofant.tensor.tensor), 863
riemann_cyclic_replace() (in module diofant.tensör.tensor), 863
right (diofant.sets.sets.Interval property), rotation(diofant.geometry.polygon.RegularPolygon 671
right() (diofant.printing.pretty.stringpict.string尹teation_matrix() fañt.vector.coordsysrect.CoordSysCartesian
right_open (diofant.sets.sets.Interval property), 672
ring (diofant.domains.ring.CommutativeRing property), 505
ring() (in module diofant.polys.rings), 965
RisingFactorial (class in diofant.functions.combinatorial.factorials), 326 round() (diofant.core.expr.Expr method), 79
RL (diofant.matrices.sparse.SparseMatrixBase RoundFunction (class in dioproperty), 571 fant.functions.elementary.integers),
rmul() (diofant.combinatorics.permutations.Permutation5
static method), 170
rmul_with_af() (dio-
Routine (class in diofant.utilities.codegen),
fant.combinatorics.permutations.Permutatioine () (diofant.utilities.codegen.CodeGen static method), 171 method), 872
root() (diofant.polys.polytools.Poly method), routine() (diofant.utilities.codegen.OctaveCodeGen 604
root (in module dio- row_insert() (diofant.functions.elementary.miscellaneous), - fant.matrices.matrices.MatrixBase 311 method), 546
Root0f (class in diofant.polys.rootoftools), row_join() (diofant.matrices.matrices.MatrixBase
method), 546
scalar_potential_difference() (in module row_join() (diofant.matrices.sparse.MutableSparseMatiö́ant.vector), 962 method), 568 scale() (diofant.geometry.curve.Curve row_list() (diofant.matrices.sparse.SparseMatrixBasemethod), 436 method), 575 scale() (diofant.geometry.ellipse.Circle row_op() (diofant.matrices.dense.MutableDenseMatrixmethod), 448 method), 563 scale() (diofant.geometry.ellipse.Ellipse row_op() (diofant.matrices.sparse.MutableSparseMatrixethod), 445 method), 569 scale() (diofant.geometry.entity.GeometryEntity row_structure_symbolic_cholesky() (dio- method), 407 fant.matrices.sparse.SparseMatrixBasescale() (diofant.geometry.point.Point method), 575 method), 416
 method), 563 method), 461
row_swap() (diofant.matrices.sparse.MutableSisambietrisims () (diomethod), 569
rref() (diofant.matrices.matrices.MatrixBase method), 547
rs swap () (in module diofant.stats.rv), 740
rsolve() (in module diofant.solvers.recurr), 821
rsolve_hyper() (in module diofant.solvers.recurr), 821
rsolve_poly() (in module dio-
fant.solvers.recurr), 822 dio-
rsolve_ratio() (in module diofant.solvers.recurr), 823 search() (diofant.ntheory.generate.Sieve runs() (diofant.combinatorics.permutations.Permutationethod), 237 method), 171
runs() (in module diofant.utilities.iterables), 897

## S

S (in module diofant.core.singleton), 56
s_poly() (in module
fant.polys.groebnertools), 978
sample() (in module diofant.stats), 738
sample_iter() (in module diofant.stats), 738
sampling_density() (in module diofant.stats.rv), 741
sampling_E() (in module diofant.stats.rv), 741
sampling_P() (in module diofant.stats.rv), 740
satisfiable() (in module diofant.logic.inference), 503
sec (class in diofant.functions.elementary.trigonometric), 292
sech (class in diofant.functions.elementary.hyperbolic), 302
Segment (class in diofant.geometry.line), 430
select() (diofant.simplify.epathtools.EPath method), 703
selections (diofant.combinatorics.graycode.GrayCode property), 218
separate() (diofant.vector.vector.Vector method), 952
separatevars() (in module diofant.simplify.simplify), 680
series() (diofant.core.expr.Expr method), 80
series() (in module diofant.series.series),
scalar_map()
(dio- 662
fant.vector.coordsysrect.CoordSysCarteœむn(class in diofant.sets.sets), 664
method), 950
set_comm() (diofant.tensor.tensor._TensorManager
scalar_multiply() (dio- method), 848
fant.matrices.sparse.SparseMatrixBaseset_comms() (diofant.tensor.tensor._TensorManager method), 576 method), 849
scalar_potential() (in module dio- set_domain() (diofant.polys.polytools.Poly fant.vector), 962 method), 605
set_global_settings() (dio- simplify() (in module dio fant.printing.printer.Printer class method), 631
set_modulus() (diofant.polys.polytools.Poly method), 605 sin
set_order() (diofant.polys.polytools.GroebnerBasis method), 587
setup() (in module diofant.config), 41
shape (diofant.matrices.matrices.MatrixBase property), 547
shape (diofant.tensor.indexed.Indexed property), 843
shape (diofant.tensor.indexed.IndexedBase property), 845
ShapeError (class in diofant.matrices.matrices), 551
Shi (class in diofant.functions.special.error functions), SingletonWithManagedProperties (class in 359
shift() (diofant.polys.polytools.Poly
Si $\begin{gathered}\text { method), } 605 \\ \text { (class }\end{gathered}$ in dio-
Si $\begin{gathered}\text { method), } 605 \\ \text { (class }\end{gathered}$ in dio-
simpli
sin
rBasis fant.simplify.simplify), 678
sine_transform() (in module diofant.integrals.transforms), 471
SineTransform (class in diofant.integrals.transforms), 486
SingleDomain (class in diofant.stats.rv), 739
SinglePSpace (class in diofant.stats.rv), 739
Singleton (class in diofant.core.singleton), 56
SingletonRegistry (class in diofant.core.singleton), 56 diofant.core.singleton), 57 fant.functions.special.error functions), singularities() (in module dio357
sides (diofant.geometry.polygon.Polygon sinh $\begin{gathered}\text { (class in in }\end{gathered}$ dioproperty), 454
Sieve (class in diofant.ntheory.generate), 236
sift() (in module diofant.utilities.iterables), 897
sig_cmp() (in module dio-
fant.polys.groebnertools), 978
sig_key() (in module dio- size (diofant.combinatorics.prufer.Prufer
fant.polys.groebnertools), 978
sig_mult() (in module dio- size (diofant.combinatorics.subsets.Subset
sig_mutt(
fant.polys.groebnertools), 978
sign (class in dio-
fant.functions.elementary.complexes), 285
signature() (diofant.combinatorics.permutatio fant.functions.elementary.hyperbolic), 301
size (diofant.combinatorics.permutations.Permutation property), 171
size (diofant.combinatorics.polyhedron.Polyhedron property), 205 property), 208
skip() (diofant.combinatorics.graycode.GrayCode method), 218
skip() (diofant.core.basic.preorder_traversal
method), 171
signed_permutations() (in module diofant.utilities.iterables), 898
signinf() (in module diofant.series.gruntz), 997
SimpleDomain (class in diofant.domains.simpledomain), 505
simplify() (diofant.core.expr.Expr method), 81
simplify() (diofant.functions.special.delta functan method), 332 signature () (diofant.combinatorics.permutations.Permaddliiodh), 55
slice() (diofant.polys.polytools.Poly
method), 605
slope (diofant.geometry.line.LinearEntity property), 425
smoothness() (in module diofant.ntheory.factor_), 252
smoothness_p() (in module diofant.ntheory.factor_), 252
solve() (diofant.matrices.sparse.SparseMatrixBase
simplify ()
solve() (in module diofant.solvers.solvers),
simplify() (diofant.matrices.dense.MutableDenseMatmi*2 method), 564 solve_congruence() (in module dio-
simplify() (diofant.matrices.matrices.MatrixBase - fant.ntheory.modular), 255 method), 547
solve_least_squares()
(dio-
fant.matrices.matrices.MatrixBase method), 547
solve_least_squares() (dio- sqf_list() (in module diofant.matrices.sparse.SparseMatrixBase method), 576
solve_linear() (in module diofant.solvers.solvers), 744
solve_linear_system() (in module diofant.solvers.polysys), 744
solve_poly_system() (in module diofant.solvers.polysys), 745
solve_surd_system() (in module diofant.solvers.polysys), 745
SOPform() (in module diofant.logic.boolalg), 493
sort_key() (diofant.combinatorics.partitions.Partition fant.functions.elementary.miscellaneous), method), 149
sort_key() (diofant.core.basic.Atom method), 46
sort_key() (diofant.core.basic.Basic method), 52
sort_key() (diofant.core.expr.Expr method), 81
sort_key() (diofant.core.numbers.Number method), 87
sort_key() (diofant.core.symbol.Dummy method), 83
sorted_components()
(diofant.tensor.tensor.TensMul method), 862
source (diofant.geometry.line.Ray property), 429
Space0rienter (class in diofant.vector.orienters), 957
SparseMatrix (in module diofant.matrices.sparse), 570
SparseMatrixBase (class in diofant.matrices.sparse), 570
spherical_bessel_fn() (in module diofant.polys.orthopolys), 624
spin() (diofant.geometry.polygon.RegularPolyg method), 461
split() (diofant.tensor.tensor.TensMul method), 862
split_super_sub() (in module diofant.printing.conventions), 643
split_symbols() (in module diofant.parsing.sympy_parser), 906
split_symbols_custom() (in module diofant.parsing.sympy_parser), 907
spoly() (in module diofant.polys.groebnertools), 978
sqf() (in module diofant.polys.polytools), 616
sqf_list() (diofant.polys.polytools.Poly method), 605
sqf_norm() (diofant.polys.polytools.Poly method), 605
sqf_norm() (in module diofant.polys.polytools), 616
sqf_normal() (in module diofant.solvers.diophantine), 770
sqf_part() (diofant.polys.polytools.Poly method), 606
sqf_part() (in module diofant.polys.polytools), 616
sqrt() (in module dio313
sqrt_mod() (in module diofant.ntheory.residue_ntheory), 264
sqrt_mod_iter() (in module diofant.ntheory.residue_ntheory), 264
sqrtdenest() (in module diofant.simplify.sqrtdenest), 698
square_factor() (in module diofant.ntheory.factor_), 253
square_factor() (in module diofant.solvers.diophantine), 770
srepr() (in module diofant.printing.repr), 642
sstr() (in module diofant.printing.str), 642
sstrrepr() (in module diofant.printing.str), 642
stabilizer() (diofant.combinatorics.perm_groups.PermutationGroup method), 200
stack() (diofant.printing.pretty.stringpict.stringPict static method), 645
standard_transformations (in module diofā̄t.parsing.sympy_parser), 906
start (diofant.sets.sets.Interval property),
gon 672
std () (in module diofant.stats), 738
StdFactKB (class in diofant.core.assumptions), 45
stirling() (in module diofant.functions.combinatorial.numbers), 327
StrictGreaterThan (class in diofant.core.relational), 118
StrictLessThan (class in diofant.core.relational), 121
stringify_expr() (in module diofant.parsing.sympy_parser), 906
stringPict (class in dio-
fant.printing.pretty.stringpict), 644
strong_gens (diofant.combinatorics.perm_grou\$spP(erioffataticeatisetssInterval property), 672 property), 201
StrPrinter (class in diofant.printing.str), superset (diofant.combinatorics.subsets.Subset 642
StudentT() (in module diofant.stats), 729 superset_size
sturm() (diofant.polys.univar.UnivarPolyElement fant.combinatorics.subsets.Subset method), 971
subfactorial (class in dio- support()(diofant.combinatorics.permutations.Permutatio fant.functions.combinatorial.factorials), method), 172
321 SurfaceBaseSeries (class in dio-
subgroup_search()
fant.combinatorics.perm_groups.Permu§atifaCe@ver2DRangeSeries (class in dio-
method), 201
subresultants() fant.polys.polytools.Poly method), 606
subresultants() fant.polys.rings.PolyElement method), 970
subresultants() (in module diofant.polys.polytools), 616
Subs (class in diofant.core.function), 132
subs() (diofant.core.basic.Basic method), 52
subs() (diofant.matrices.immutable.Immutable method), 577
subs() (diofant.matrices.matrices.MatrixBase method), 548
Subset (class in diofant.combinatorics.subsets), 209
subset (diofant.combinatorics.subsets.Subset property), 213
subset_from_bitlist() (dio-
fant.combinatorics.subsets.Subset class method), 214
subset_indices()
(diofant.combinatorics.subsets.Subset class method), 214
subsets() (in module diofant.utilities.iterables), 898
substitute_indices() fant.tensor.tensor.TensAdd method), 860
Sum (class in diofant.concrete.summations), 270
sum_of_four_squares() (in module diofant.solvers.diophantine), 763
sum_of_powers() (in module diofant.solvers.diophantine), 764
sum_of_squares() (in module diofant.solvers.diophantine), 765
sum of three squares() (in module diofant.solvers.diophantine), 763
summation() (in module dio-(dio-
sup (diofant.sets.sets.Set property), 668
(dio-
(dio-
fant.concrete.summations), 280
property), 214
fant.plotting.plot), 661
fant.plotting.plot), 661
swinnerton_dyer_poly() (in module diofant.polys.specialpolys), 624
symarray() (in module dio-
Symbol (class in diofant.core.symbol), 82
symbols() (in module diofant.core.symbol),
symmetric() (diofant.combinatorics.generators method), 175
symmetric_difference() (dio-
eSparseMfantixixets.sets.Set method), 668
symmetric_poly() (in module diofant.polys.specialpolys), 624
symmetric_residue() (in module diofant.ntheory.modular), 256
SymmetricGroup() (in module diofant.combinatorics.named_groups), 220
symmetrize() (in module diofant.polys.polyfuncs), 619
sympify() (in module diofant.core.sympify), 41
sysode_linear_neq_order1() (in module diofant.solvers.ode), 814

T (diofant.matrices.expressions.MatrixExpr property), 581
T (diofant.matrices.matrices.MatrixBase property), 521
table() (diofant.matrices.matrices.MatrixBase method), 549
tail_degree() (diofant.polys.rings.PolyElement method), 970
tan (class in diofant.functions.elementary.trigonometric), 291
tangent_lines() (diofant.geometry.ellipse.Ellipse

 302 method), 504
taylor_term() (diofant.core.expr.Expr to_field() (diofant.polys.polytools.Poly method), 81 method), 607
taylor_term() (dio- to_matrix() (diofant.vector.dyadic.Dyadic fant.functions.elementary.hyperbolic.csch method), 953
static method), 303 to_matrix() (diofant.vector.vector.Vector
taylor_term() (dio- method), 952
fant.functions.elementary.hyperbolic.sitto_prufer() (diofant.combinatorics.prufer.Prufer static method), 301
TC() (diofant.polys.polytools.Poly method), t

589
TensAdd (class in diofant.tensor.tensor), 858
TensExpr (class in diofant.tensor.tensor), 857
TensMul (class in diofant.tensor.tensor), 860
tensor_indices() (in module diofant.tensor.tensor), 852
tensor_mul() (in module diofant.tensor.tensor), 863
tensorcontraction() (in module diofant.tensor.array), 838
TensorHead (class in diofant.tensor.tensor), 854
TensorIndex (class in diofant.tensor.tensor), 851
TensorIndexType (class in diofant.tensor.tensor), 849
TensorProduct (class in diofant.diffgeom), 921
tensorproduct() (in module diofant.tensor.array), 839
TensorSymmetry (class in diofant.tensor.tensor), 852
tensorsymmetry() (in module diofant.tensor.tensor), 853
TensorType (class in diofant.tensor.tensor), 853
terminal_width() (dio- trailing() (in module diofant.printing.pretty.stringpict.stringPict method), 645
terms() (diofant.polys.polytools.Poly method), 606
terms_gcd() (diofant.polys.polytools.Poly method), 606
terms_gcd() (in module diofant.polys.polytools), 617
termwise() (diofant.polys.polytools.Poly method), 607
to_cnf() (in module diofant.logic.boolalg), 500
to_dnf() (in module diofant.logic.boolalg), 500
static method), 208
to_rational() (diofant.domains.RealField method), 508
to_ring() (diofant.polys.polytools.Poly method), 607
to_tree() (diofant.combinatorics.prufer.Prufer static method), 208
together() (diofant.core.expr.Expr method), 81
together() (in module diofant.polys.rationaltools), 625
tolist() (diofant.matrices.dense.DenseMatrix method), 561
tolist() (diofant.matrices.sparse.SparseMatrixBase method), 577
topological_sort() (in module diofant.utilities.iterables), 899
total_degree() (diofant.polys.polytools.Poly method), 607
total_degree() (diofant.polys.rings.PolyElement method), 970
totient (class in diofant.ntheory.factor_), 253
Trace (class in diofant.matrices.expressions), 583
trace() (diofant.matrices.matrices.MatrixBase method), 549 transform() (diofant.geometry.point.Point method), 416
transform() (diofant.integrals.integrals.Integral method), 483
transform_variable (diofant.integrals.transforms.IntegralTransform property), 485
transformation_to_DN() (in module diofant.solvers.diophantine), 757
transformation_to_normal() (in module diofant.solvers.diophantine), 771
transitivity_degree
(diofant.combinatorics.perm_groups.PermutationGroup
property), 202
translate() (diofant.geometry.curve.Curve method), 436
translate() (diofant.geometry.entity.Geometry method), 408
translate() (diofant.geometry.point.Point method), 416
transpose (class in diofant.functions.elementary.complexes), unicode_identifiers() (in module dio289
Transpose (class in diofant.matrices.expressions), 583
transpose() (diofant.core.expr.Expr method), 81
 method), 585 unify() (diofant.polys.polytools.Poly
transpose() (diofant.matrices.matrices.MatrixBase method), 608 method), 549 Union (class in diofant.sets.sets), 673
transpositions() (dio- union() (diofant.sets.sets.Set method), 669 fant.combinatorics.permutations.Permutati甲(n) (in module diofant.utilities.iterables), method), 172
tree_cse() (in module diofant.simplify.cse_main), 701 UnivarPolyElement (class in dio-
tree_repr(diofant.combinatorics.prufer.Prufer property), 209
trial_division() (in module diofant.polys.modulargcd), 990
Triangle (class in diofant.geometry.polygon), 461
Triangular() (in module diofant.stats), 730
trigamma() (in module dio- unrank()(diofant.combinatorics.graycode.GrayCode fant.functions.special.gamma functions), class method), 218 338
tegrate() (in module diofant.integrals.trigonometry), 480
trigsimp() (diofant.core.expr.Expr method), 81
trigsimp() (in module diofant.simplify.trigsimp), 692
trunc () (diofant.polys.polytools.Poly method), 608
trunc() (in module diofant.polys.polytools), 618
Tuple (class in diofant.core.containers), 143
tuple_count() (diofant.core.containers.Tuple method), 143
twoform_to_matrix() (in module diofant.diffgeom), 926
U
U() (in module diofant.printing.pretty.pretty_symbology), 643
ufuncify() (in module diofant.utilities.autowrap), 867
UfuncifyCodeWrapper (class in dioUnequality (class in diofant.core.relational), 117
unflatten() (in module diofant.utilities.iterables), 900 fant.interactive.session), 648
UnificationFailed, 994
Uniform() (in module diofant.stats), 731
UniformSum () (in module diofant.stats), 731
unify() (diofant.domains.domain.Domain 900
UnivariatePolynomialError, 994

UnivarPolynomialRing (class in diofant.polys.univar), 506
UniversalSet (class in diofant.sets.sets), 676
UnluckyLeadingCoefficient, 994
unrad() (in module diofant.simplify.sqrtdenest), 698
unrank() (diofant.combinatorics.prufer.Prufer class method), 209
unrank_binary() (dio-
fant.combinatorics.subsets.Subset class method), 215
unrank_gray() (diofant.combinatorics.subsets.Subset class method), 215
unrank_lex()
(diofant.combinatorics.permutations.Permutation class method), 172
unrank_nonlex() (diofant.combinatorics.permutations.Permutation class method), 173
unrank_trotterjohnson() (diofant.combinatorics.permutations.Permutation class method), 173
upper (diofant.tensor.indexed.Idx property), 842
842
upper
fant.matrices.matrices.MatrixBase method), 549
uppergamma (class in dio- vradius (diofant.geometry.ellipse.Ellipse fant.functions.special.gamma functions), property), 446 338
use() (in module dio-
fant.simplify.traversaltools), 702
V
values() (diofant.core.containers.Dict method), 144
vstack() (diofant.matrices.matrices.MatrixBase
values() (diofant.matrices.matrices.MatrixBaswidth() (diofant.printing.pretty.stringpict.stringPict method), 550
$\operatorname{var}()$ (in module diofant.core.symbol), 86 WignerSemicircle() (in module dio-
variables (diofant.concrete.expr_with_limits.ExprWithfaimaistats), 734 property), 276 Wild (class in diofant.core.symbol), 82
variables (diofant.core.function.Derivative property), 128
variables (diofant.core.function.Lambda property), 125
variables (diofant.core.function.Subs property), 133
variables (diofant.utilities.codegen.Routine property), 874
variance() (in module diofant.stats), 737
variations() (in module diofant.utilities.iterables), 900
vec() (diofant.matrices.matrices.MatrixBase method), 550
vech() (diofant.matrices.matrices.MatrixBase method), 550
Vector (class in diofant.vector.vector), 950
vectorize (class in diofant.core.multidimensional), 124
vectors in basis() (in module diofant.diffgeom), 926
verify_derivative_numerically() (in module diofant.utilities.randtest), 904
verify_numerically() (in module diofant.utilities.randtest), 905 fant.printing.pretty.pretty_symbology),
vertices (diofant.combinatorics.polyhedron.Polyhedrob44 property), 205
vertices (diofant.geometry.polygon.Polygon property), 454 y
vertices (diofant.geometry.polygon.RegularPo property), 461
vertices (diofant.geometry.polygon.Triangle property), 467
viete() (in module diofant.polys.polyfuncs), 619
vobj() (in module diofant.printing.pretty.pretty_symbology), 644 ( ) (in module diofant.stats), 732
VonMises() (in module diofant.stats), 732
vradius (diofant.geometry.ellipse.Circle property), 448

```
Z
Zero (class in diofant.core.numbers), }9
ZeroMatrix (class in dio-
 fant.matrices.expressions), 584
zeros()(diofant.matrices.dense.DenseMatrix
 class method),561
zeros()(diofant.matrices.sparse.SparseMatrixBase
 class method), 577
zeros() (in module diofant.matrices.dense),
 552
zeta (class in dio-
 fant.functions.special.zeta functions),
 373
zip_row_op() (dio-
 fant.matrices.dense.MutableDenseMatrix
 method),564
zip_row_op() (dio-
 \overline{fant.matrices.sparse.MutableSparseMatrix}
 method),570
Znm (class in dio-
 fant.functions.special.spherical_harmonics),
 398
```

